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Abstract Controlled Zn-mediated grafting of a thin layer of a
diazonium salt was used to functionalise a carbon electrode
with ruthenium(II)-tris-bipyridine (Ru)-labelled DNA for use
as a capture probe in an electrochemiluminescent genosensor.
A secondary reporter probe was labelled with a ferrocene (Fc)
molecule, and in the presence of the single-stranded DNA
target a genocomplex formed, where the Fc-label effectively
quenched the electrochemiluminescence of the signal emitted
from the Ru-label. The spacing of the labels for maximum
sensitivity and minimum detection limit was optimised, and
the signal reproducibility and stability of the method was
established.

Keywords Diazonium salt . Surface grafting . Genosensor .

Electrochemiluminescence

Introduction

Electrochemiluminescence (ECL) is a detection technique
that combines electrochemical and photochemical

processes. It has long attracted much attention because it
incorporates the advantages of both methods for biomol-
ecule detection, resulting in high sensitivity and versatility
[1, 2]. In ECL, high-energy electron-transfer reactions are
performed on electrodes via the application of a specific
potential to generate excited states that emit light [3, 4].
Exploiting potential provides a more selective source of
excitation than is afforded optically [5], and also sim-
plifies the instrumentation for the construction of portable
devices [6, 7]. The use of ECL transduction has been
reported for the detection of DNA [8] and proteins [9]
immobilised on different substrates including carbon
[10], gold [11], and indium tin oxide [12], using diverse
ECL-active species as labels [13, 14]. The most common-
ly used ECL detection method is based on the co-reactant
mechanism [15, 16], and the coordination compounds
formed by ruthenium(II) and pyridinic derivatives as che-
lates, either as a single molecule or in combination with
nanostructures [2, 17], have been reported as preferable
luminophores, using tripropylamine (TPA) as co-reactant
[18, 19]. In this system the same applied potential is able
to oxidise both the Ru(bpy)3

2 + (luminophore) and the TPA
(co-reactant), producing strong oxidative species. From
the reaction of these two species the excited state Ru(-
bpy)3

2 + * is formed, which emits light [20]. ECL Bon/off^
strategies have recently been reported for clinical analytes
[21] using immuno [22] and DNA [23, 24] detection,
where ferrocene derivatives are used to quench the ruthe-
nium complex signal (Boff^) because they have good
quenching efficiency and stability in different chemical
media [1, 25–27]. Although ECL is a very sensitive meth-
od [28], one of its limitations is the high potentials re-
quired to excite the active centre, and this is particularly
critical for surface-immobilised ECL strategies. Therefore
the robustness of the surface chemistry determines the
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reproducibility of the ECL signal, which has two main
components: the stability of the ECL response after ap-
plying consecutive pulses once the surface has been mod-
ified (with acceptable RSD values <5 %) [1, 14, 15, 29],
and the inter-sensor reproducibility associated with sensor
fabrication, which varies from 2 [1, 2, 15] to 10 % [16]
depending on the substrate used.

Consequently, in ECL measurements a strong and
stable covalent bond, which is able to resist the high
applied potentials, is crucial. The methods based on di-
azonium derivatives immobilised on gold or carbon sur-
faces have been revealed to be stable at the potential
used in ECL detection [30, 31].

In this work an ECL sensor for the detection of a
Francisella tularensis DNA target was developed. The
Francisella subspecies tularensis is one of the causative
agents of the disease tularemia [32], and current methods
for detecting this bacterium involve time-consuming cul-
turing of suspect pathogens [33] or, alternatively, the
detection of antibodies, which cannot be achieved until
at least two weeks after infection [34]. These disadvan-
tages render rapid DNA detection an attractive strategy.
One method of detecting the subspecies tularensis is the
use of the specific sequences of tul4 [35], which was
used as a model target for the present study.

In this work, an Bon/off^ approach was developed
based on a sandwich-type detection of DNA by using
two DNA sequences complementary to almost consecu-
tive regions of the DNA target: a capture DNA probe
labelled with ruthenium(II) tris-bipyridine (Rubpy), and
a secondary DNA reporter probe labelled with ferro-
cene. In the presence of single-stranded target DNA
the probes hybridise to their complementary sequences
on the target, bringing them into close proximity, per-
mitting energy transfer, and thus facilitating the
quenching effect of the ferrocene on the Rubpy signal.
This on/off sandwich approach also increases the spec-
ificity, because two regions of the target hybridise with
two different probes. The system was optimised in the
solution phase and then, using the optimised experimen-
tal conditions, a solid-phase system using stable diazo-
nium grafting was investigated [31].

Materials and methods

Chemicals

All reagents were commercially available and used as re-
ceived. Ruthenium(II)-tris-bipyridine-N-hydroxysuccinimide,
N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide hydro-
chloride (EDC), N-hydroxysuccinimide (NHS), streptavidin,
NaH2PO4.H2O, Na2HPO4, 3-hydroxypicolinic acid,

strontium nitrate, potassium ferricyanide(III), potassium
ferrocyanide(II), and tetramethylbenzidine (TMB) liquid
substrate system were purchased from Sigma–Aldrich
(Spain). H2SO4 was purchased from Scharlau (Spain),
and dimethyl sulfoxide from Abcam plc. The Sephadex
G-25 size-exclusion column was from Pierce, the magnet-
ic beads from SIMAG, and the 3,5-bis(4-aminophenoxy)
benzoic acid from TCI. All solutions were prepared with
Milli-Q water (18 MΩ cm; Millipore). All HPLC-grade
oligonucleotides were provided by Biomers.net (Ulm,
Germany). The DNA targets and ferrocene-labelled
DNA (Fc–DNA) were used as received and the Rubpy–
DNA conjugates were prepared as described below. The
DNA sequences used were:

For studying the effect of the separation between the lumi-
nescent ruthenium(II) tris-bipyridine (Rubpy) group attached
to the DNA and the quencher ferrocene (Fc) linked to the
secondary probe:

5′-TGGGCGTTAAACGTGACA-3′-NH2 was used for
preparing the Rubpy–DNA:
Rubpy–DNA: TGGGCGTTAAACGTGACA-3 ′-
NHCO-Rubpy; m/z=6370.69
Fc–DNA: Fc-5′-ACCGAGACGAATAGGTAT-3′
Targets containing spacer T (n=0, 1, 2, 3, 4, 5, and 6):
5′-ATACCTATTCGTCTCGGT (T)n TGTCACGTTT
AACGCCCA-3′
For detection of Francisella tularensis DNA by ECL:
Biotin-TEG-5′-CTTAGTAATTGGGAAGCTTGTATC
ATGGCACTTAGAA-3′-NH2 was used for preparing the
Rubpy–DNA capture probe:
Biotin-TEG-5′-CTTAGTAATTGGGAAGCTTGTATC
ATGGCACTTAGAA-3′-NHCO-Rubpy;
m/z=12815.74
Fc–DNA secondary probe: Fc-5′-TTCTGGAGCCTG
CCATTGTAAT-3′
Target: 5′ATTACAATGGCAGGCTCCAGAAGGTTCT
AAGTGCCATGATACAAGCTTCCCAATTACTAA
GTATGCTGAGAAGAACGATAAAACTTGGGCA-3′

Instrumentation

Electrochemical (EC)measurements were performed on a PC-
controlled PGSTAT12 Autolab potentiostat (EcoChemie,
The Netherlands). The electrochemiluminescence (ECL) ex-
periments were performed using a device assembled at
Institut für Mikrotechnik Mainz GmbH (IMM), Germa-
ny. The ECL equipment contained a photomultiplier
(Hamamatsu H10682-01) connected to a potentiostat
manufactured by PALM INSTRUMENTS BV to supply
the voltage to the working electrode. The screen-
printed-carbon-electrodes configuration (DRP-110) of
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working electrode: carbon disk (φ=4 mm); reference
electrode: silver; counter electrode: carbon, was used
in both EC and ECL experiments. The carbon electrodes
were activated by cycling three times from 0 to −1.2 V
in 0.5 mol L−1 KOH at 50 mV s−1 scan rate. The
quality of the cleaning step was checked using cyclic volt-
ammetry in 1 mmol L−1 K4[Fe(CN)6]/K3[Fe(CN)6] with
50 mmol L−1 Sn(NO3)2 as supporting electrolyte. The CV
was recorded from −0.2 to 0.4 V at 100 mV s−1.

UV–visible spectra were recorded using a temperature-
controlled Cary 100 Bio spectrophotometer (Varian) in
1 cm quartz cells. Plate optical densities were recorded
using a Wallac Victor2 1420 Multilabel counter from
Perkin Elmer. The fluorescence experiments were per-
formed using a Cary Eclipse spectrofluorimeter. The
excitation wavelength was set at 460 nm. The fluores-
cence spectra were recorded in the wavelength interval
540–700 nm, with excitation and emission slits of
10 nm and a scan rate of 240 nm min−1. All experi-
ments were performed in triplicate and the average val-
ue was used.

The analyses of the conjugates were performed using an
Applied Biosystems Voyager STR MALDI-TOF spectrome-
ter. Samples were prepared using 3-hydroxypicolinic acid in
50:50 (v/v) acetonitrile–water buffered with 0.05 mol L−1

diammonium acetate as matrix. Linear positive mode was
used for detection.

Experimental

For synthesis of the conjugates Rubpy–DNA, ruthenium(II)
tris-bipyridine N-hydroxysuccinimide was first dissolved in
DMSO, and then water was slowly dropped to avoid pre-
cipitation (important: the percentage (v/v) of DMSO with
respect to the final volume of water was less than 10 %).
The resulting Rubpy solution was then mixed with a
25 μmol L−1 solution of biotin–TEG–DNA–NH2 probe in
PBS (pH=7.8) in a 1:8 DNA–Rubpy molar ratio. The reac-
tion was performed by shaking at room temperature. Be-
cause the Rubpy is very sensitive to light, the conjugation
was performed in light-shielded containers. After 1 h, the
product obtained was purified using the NAP G-25 size-
exclusion column (DNA quality) to separate the uncoupled
Rubpy. This step was achieved following step 7 of the pro-
cedure MSD® TAG-NHS-Ester, MSD Labeling method.
The column was pre-equilibrated with PBS and the absor-
bance of the fractions obtained was measured. Finally the
non-labelled DNA was isolated from the conjugate using
carboxyl magnetic beads. The particles (500 μL) were
washed with 1 mL MES two times and the carboxyl groups
were activated by adding EDC and NHS at 80 and
40 mg mL−1, respectively, over 20 min. The activated par-
ticles were separated using a magnet and washed with PBS.

Then the DNA conjugates were mixed with the magnetic
beads and shaken for 2 h. The beads containing the non-
labelled DNA were separated by magnet and the superna-
tant was characterised by mass spectroscopy and UV–visi-
ble spectroscopy.

For ECL measurements, carbon surfaces were grafted
with 3,5-bis(4-diazophenoxy) benzoic acid tetrafluorobo-
rate [31]. The details of the synthesis of the diazonium
salt and its immobilisation on carbon electrodes via Zn-
mediated grafting were as reported elsewhere [31]. After
activation of the carboxylate groups of the diazonium-
salt-coated surface using 20 μL EDC–NHS (2:1 molar
ratio), 1 μmol L−1 streptavidin was linked via amide-
bond formation. After washing, the biotin–Rubpy–DNA
capture probe, previously dissolved in PBS buffer at pH
7.4 to a concentration of 1 μmol L−1, was immobilised on
the modified carbon surfaces over 1 h at 25 °C. After
rinsing the electrode, the ECL signal was recorded at a
potential pulse of +1 V for 5 s (using 100 mmol L−1 TPA
as coreactant, PBS pH 7.8). The measurements were re-
corded 10 times to check the reproducibility of the signal.

After the modification of the electrode with Rubpy–
DNA, a differential pulse voltammetry (DPV) signal was
recorded in 0.1 mol L−1 PB pH 7.4, over a potential
range of 0.1–1.1 V and with a scan rate of 50 mV s−1.
This revealed that the target and secondary Fc–DNA
were hybridised, and the DPV signal was then recorded
again, but in the potential range 0.1–0.4 V to detect the
ferrocene on the surface. In the absence of the target, the
signal from ferrocene was absent as expected.
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After the immobilisation of the Rubpy–DNA capture probe
to the surface following the procedure described above, the
target sequence at different concentrations (0, 0.1, 0.5, 0.7,
0.8, 1, 2, 3, 4, 5 nmol L−1) was dissolved in PB buffer (pH

7.4, with 0.8 mol L−1 NaCl) and hybridised to the capture
element over 1 h. Finally the secondary Fc–DNA probe was
hybridised to the target in a molar ratio 1:1 with respect to the
Rubpy–DNA, and the detection was performed using the

Fig. 2 (a) The ECL signal from
carbon-modified Rubpy–DNA
for ten consecutive pulses of
potential application. (b) Initial
ECL signal from immobilised
Rubpy–DNA, (c) ECL signal
after hybridisation with target
DNA and Fc–DNA, and (d) ECL
signal after denaturation of
genocomplex with 0.1 mol L−1

NaOH. Potential pulse of +1 V vs.
Ag for 5 s (100 mmol L−1 TPA in
PB pH 7.8)

Fig. 3 Evidence of the presence
of Rubpy (a) and ferrocene (b) in
the system (DCOOH–
streptavidin–Rubpy–DNA–
target–Fc–DNA) on a carbon
surface. (c) Dependence of peak
current on scan rate of
immobilised Fc–DNA
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same conditions described above, before and after interaction
with Fc–DNA.

Results and discussion

First, a model system based on short sequences, specifical-
ly designed not to have self-complementarity leading to
secondary structures, was used to study the effect of the
separation between the luminescent Rubpy and the
quencher ferrocene (Fig. 1). Rubpy was linked to DNA
via amide-bond formation between the activated carbox-
ylic group of a Rubpy derivative and aminated DNA, and
the bioconjugate was purified using column chromatogra-
phy. It was then evaluated using UV–visible spectroscopy at
260 nm to detect DNA, at 460 nm to measure the character-
istic bands of the Rubpy metal-to-ligand charge transfer, and
at 277 nm to measure the π → π* ligand charge-transfer
transition, which appears 10 nm shifted to blue with respect
to the original Rubpy. The expected m/z=12815.74 of the
bioconjugate was observed using MALDI-TOF.

Rubpy–DNA and Fc–DNA were added in a 1:1 mo-
lar ratio to target-DNA sequences with spacers ranging
from 0 to 6 bases, the genocomplex was incubated
protected from light. A control was performed in the
absence of target DNA, and no quenching was ob-
served. The same procedure was followed to study the
system using fluorescence detection and the results were

compared, with the control response regarded as a
100 % signal (Fig. 1).

Comparing both methods, two bases in the spacer of
the target was found to be the optimum compromise
between proximity (needed for energy transfer) and ste-
ric hindrance (which could affect the hybridisation of
strands) because it obtained the highest quenching ef-
fect, giving a decrease in signal of 85 % and 95 %
for ECL and fluorescence, respectively (Fig. 1). It
should be noted that the concentration of the probes
used for ECL analysis was four orders of magnitude
lower than that for fluorescence analysis, revealing the
increased sensitivity achievable using ECL detection.

Once the spacing of Fc to Rubpy labels had been
optimised, the target system of Francisella tularensis
was studied. Any potential cross-reactivity between the
two probes to be used was evaluated, and no interaction
was observed (Electronic Supplementary Material (ESM)
Fig. S1a). The pH for maximising ECL (basic) [36]
whilst not inhibiting hybridisation was evaluated by
immobilising the capture probe on a streptavidin plate
and using the secondary probe labelled with HRP for
detection by colorimetric enzyme-linked oligonucleotide
assay, and pH 7.8 was chosen as an optimum compro-
mise between efficient DNA hybridisation and TPA de-
protonation (ESM Fig. S1b) [12].

Finally, using the optimised conditions of two-base
spacing between labels and a pH of 7.8, a 22-mer-Fc–
DNA probe and a 37-mer-Rubpy probe were hybridised
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with 91-mer-Francisella tularensis target in solution
phase as a proof-of-concept with a real system. The
evaluation was performed using two concentrations of
target DNA, 0.15 and 0.5 μmol L−1. The controls of
Rubpy–DNA and Fc–DNA in the absence of DNA tar-
get were observed, as expected, to be maximum and
minimum, respectively. When DNA target was intro-
duced in a quantity of 0.5:0.15:0.5 μmol L−1 notable
quenching of approximately 60 % was observed, and
when the concentration of DNA target was increased
the ECL signal was further reduced, indicating that the
quenching effect is proportional to the target concentra-
tion (ESM Fig. S2).

Having obtained a proof-of-concept in the homoge-
nous solution phase, the possibility of transferring the
system to an immobilised, heterogeneous phase was in-
vestigated. This is highly attractive in terms of simplic-
ity and potentially increased sensitivity and multiplexing
capability. However, it is known that thiolated DNA
desorbs from gold electrodes at potentials of > ca.
1 V vs. Ag, and thus grafting of a bipodal diazonium
salt on carbon electrodes was used. This diazonium salt,
3,5-bis(4-diazophenoxy)benzoic acid tetrafluoroborate,
has recently been revealed to be stable at high positive
potential because of the formation of covalent bonds
with carbon. Furthermore, the immobilisation strategy
involves a simple 5 min Zn-mediated grafting without
the necessity of using a potentiostat, resulting in an
almost monolayer formation brought about by a lack
of radicals [31].

In our approach, this organic phase was linked to
streptavidin and used to anchor the labelled biotin–Rubpy–
DNA capture probe. Stability of immobilisation was tested
by applying a potential of +1 V vs. Ag. The stability and
reproducibility of the signal was recorded, and remained un-
affected during at least ten cycles of application of potential
(RSD 3 %) (Fig. 2a).

Figure 2 shows the switch on/off process used for
detecting the DNA target. First, the baseline ECL signal
from the immobilised Rubpy–DNA was recorded
(Fig. 2b), and then the target DNA and the reporter
Fc–DNA probe were added and the signal was recorded
again (Fig. 2c). To establish that the quenching of the
Rubpy signal is caused by ferrocene and is not the
result of damage to the phase, alkaline conditions were
used to denature the genocomplex and revert to the
Rubpy–DNA probe. The ECL signal was successfully
recovered (RSD 4.5 %) (Fig. 2d), clearly revealing the
quenching effect of ferrocene and the possibility of re-
using the phase for repeated measurements of target
DNA.

The presence of the Rubpy and ferrocene-labelled
probes was further established by recording differential
pulse voltammograms (Fig. 3a, b). The significant dif-
ference in current intensity between Rubpy and ferro-
cene can be attributed to the fact that the amount of
ferrocene present depends on the target-DNA concentra-
tion, whereas a monolayer of the immobilised labelled
DNA probe would result in a higher amount of Rubpy
being present. The surface confinement of the ferrocene
group was also confirmed using cyclic voltammetry,
which revealed linear behaviour of cathodic and anodic
peak currents vs. scan rate (Fig. 3c).

This method was tested for quantitative detection of the
Francisella tularensis target DNA. A calibration curve
(Fig. 4) was constructed with different target concentra-
tions, using the optimised experimental conditions. Each
measurement was performed in triplicate using three
different electrodes. The RSD of the measurements
(10 % in the linear range) indicates good reproducibility
of screen-printed electrodes. The quenching of the sig-
nal was proportional to the concentration of the DNA
target in the range 0–1 nmol L−1, with a limit of detec-
tion of 0.1 nmol L−1.

Conclusions

A method based on Zn-mediated immobilised 3,5-bis(4-
diazophenoxy)benzoic acid tetrafluoroborate was revealed to
be efficient for the surface confinement of a captured Rubpy-
labelled DNA probe and its subsequent use for DNA-target
detection by ECL quenching by a Fc-labelled reporter probe.
As a result of the robustness of the thin layer of covalent
linker, a stable and reproducible ECL signal from Rubpy–-
DNAwas recorded during ten cycles after applying +1 V vs.
Ag. Experimental conditions were optimised and detection of
a subnanomolar concentration of DNA target was achieved.
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