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Abstract In asymmetrical flow field-flow fractionation (As-
FlFFF), only the membrane-covered accumulation wall is per-
meable to fluid; the opposite channel wall is impermeable.
Fluid enters the channel at the inlet and exits partly through
the membrane-covered accumulation wall and partly through
the channel outlet. This means that not only does the volumet-
ric channel flow rate decrease along the channel length as fluid
exits through the membrane but also the cross-channel com-
ponent to fluid velocity must approach zero at the imperme-
able wall. This dependence of cross-channel fluid velocity on
distance across the channel thickness influences the equilibri-
um concentration profile for the sample components intro-
duced to the channel. The concentration profile departs from
the exponential profile predicted for the ideal model of field-
flow fractionation. This influences both the retention ratio and
the principal contribution to bandspreading—the nonequilib-
rium contribution. The derivation of an equation for the non-
equilibrium bandspreading parameter χ in As-FlFFF is pre-
sented, and its numerical solution graphed. At high retention,
it is shown that the solutions for both retention ratio R and χ
converge on those for the ideal model, as expected. At lower
levels of retention, the departures from the ideal model are
significant, particularly for bandspreading. For example, at a
level of retention corresponding to a retention parameter λ of
0.05, R is almost 4 % higher than for the ideal model (0.28047
as compared to 0.27000) but the value of χ is almost 60 %

higher. The equations presented for both R and χ include a
first-order correction for the finite size of the particles—the
steric exclusion correction. These corrections are shown to be
significant for particle sizes eluting well before steric inver-
sion. For example, particles of half the inversion diameter are
predicted to elute 25 % slower and to show almost 40 %
higher bandspreading when steric effects are not accounted
for. The work presented contributes to the fundamental theory
of As-FlFFF and allows quantitative prediction of both reten-
tion and bandspreading at all levels of retention.
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Introduction

Field-flow fractionation (FFF) is a separation and characteriza-
tion technique for particles and macromolecules. It is similar in
operation to liquid chromatography. A small sample is intro-
duced into a fluid flowing through a thin channel rather than a
chromatographic column, and sample components are differen-
tially retained in the channel not by partition into a stationary
phase but by the action of a field of some sort that is applied
across the thickness of the channel. The sample particles or
molecules, collectively referred to as particles hereafter, interact
with the applied field and are driven across the channel thick-
ness, away from the so-called depletion wall and toward the so-
called accumulation wall. If the particles are sufficiently small
(generally sub-micron), they quickly approach dynamic equilib-
rium distributions across the channel thickness where at every
point transport toward the accumulation wall is exactly coun-
tered by diffusion away from the wall due to local concentration
gradient. It is referred to as a dynamic equilibrium because
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particles are constantly moving by Brownian diffusion through-
out the thickness of the concentration profile yet the concentra-
tion profile remains constant. For a field that is constant across
the channel thickness, each component ideally attains a concen-
tration profile that decays exponentially away from the accumu-
lation wall, the mean thickness of which is equal to the ratio of
the diffusion coefficient to the field-induced transport velocity
across the channel thickness. Due to the no-slip condition at the
channel walls and viscous drag, the fluid flowing along the
channel has a parabolic velocity profile across the channel thick-
ness, with zero velocity at the accumulation and depletion walls
and maximum velocity at the channel center. The different sam-
ple components are separated as a result of their differing con-
centration distributions within this parabolic fluid velocity pro-
file. Sample particles that are confined to thin layers close to the
accumulation wall are carried by relatively slowly moving fluid,
while particles forming thicker layers spend some of their time
in faster moving fluid streams as well as those slower streams
close to the wall. The fast exchange of particle positions within
each concentration profile results in the migration of each com-
ponent along the channel as a coherent band. The finite time for
diffusion within each profile under the imposed shear flow does
lead to a slight departure from equilibrium which gives rise to
the primary contribution to bandspreading known as nonequi-
librium bandspreading [1, 2].

The mechanism described above involving sub-micron ma-
terials is known as the normal mode of elution, as it corresponds
to the original mode of operation envisioned for FFF [3]. It is
also sometimes known as the Brownian mode due to the con-
tribution of Brownian diffusion to the mechanism. A great ad-
vantage of this mode is that, in the ideal case, particle retention
times and nonequilibrium bandspreadingmay be predicted from
FFF theory. Conversely, particle properties may be derived from
measurement of retention timeswithout resort to calibration. It is
this mode of FFF with which we are concerned here.

Many different fields have been utilized for FFF including
gravitational [4], centrifugal [5–7], thermal gradient [8, 9],
electrical [10, 11], and magnetic [12, 13]. Any field that inter-
acts with a sample material property to drive the particles
across the channel thickness may be used. There is a type of
FFF that does not require a specific interaction with an applied
field, however. In this type of FFF, the particles are carried
across the channel thickness by a secondary, transverse com-
ponent to fluid flow. It is consequently known as flow FFF, or
FlFFF. In its original form [14], the two major walls of the
channel are permeable. In addition to the fluid flow along the
length of the channel, there is a secondary flow of fluid in
through one of the walls and out through the other. This sec-
ondary flow carries the particles across the channel thickness
simply by entrainment. The particles are retained in the chan-
nel by laying a semi-permeable membrane over the wall
through which only the fluid then passes out of the channel.
The membrane-covered porous wall serves as the

accumulation wall. Sub-micron particles approach differing
transverse concentration distributions across the channel
thickness only because of their differing diffusion coefficients.
Smaller particles, having higher diffusion coefficients, form
thicker, more diffuse layers next to the membrane and are
eluted from the channel more quickly than larger particles.
The proper setup for this form of FlFFF requires the flow rate
through the depletion wall to equal the flow rate through the
accumulation wall. The flow rate at the channel inlet will then
necessarily equal the channel outlet flow rate. Ideally, the flux
through each of the walls should also be uniform, which is
more easily achieved for the membrane-covered accumulation
wall than for the more porous depletion wall [15]. This form
of FlFFF is known as symmetrical FlFFF (referred to here as
Sym-FlFFF) due to the equalized transverse and longitudinal
channel flow rates and assumed uniform wall flux.

A different form of FlFFF was introduced independently
by Granger et al. [16] and by Wahlund and Giddings [17]. In
this form of FlFFF, only the accumulation wall is permeable
and the fluid flow at the channel outlet and through the mem-
brane originates at the channel inlet. It follows that the volu-
metric flow rate decreases along the length of the channel. The
system has certain similarities to hollow fiber FFF in that the
elution flow and permeate flow originate at the inlet [18–22].
This form of FlFFF was named asymmetrical FlFFF (As-
FlFFF, also sometimes referred to as AF4 or AF4) because
of its characteristic flow setup, and it is this form of FlFFF
with which we are concerned here. As-FlFFF has the advan-
tage of eliminating potential problems associated with non-
uniform flux through the depletion wall. However, for a chan-
nel of constant breadth, the mean flow velocity along the
channel length necessarily decreases from the inlet to the out-
let as fluid is lost through the accumulation wall. This can lead
to problems in particle elution due to non-ideal effects such as
those due to particle interactions with the membrane surface.
These interactions tend to increase as flow velocity decreases,
and consequently, some of the more retained particles may not
elute. The decrease in mean flow velocity due to loss of vol-
umetric flow rate along the channel length may be compen-
sated by gradually reducing the channel breadth along its
length. In 1991, Wahlund and Litzén [23] introduced the trap-
ezoidal channel in which the channel breadth decreases line-
arly along its length. While the mean channel flow velocity in
such a channel will not be constant, its variation can be greatly
reduced in comparison to a channel of constant breadth. This
arrangement has since become widely adopted. In 1997, a
channel having an exponentially decreasing breadth was pro-
posed for use in As-FlFFF. Such a channel not only has the
benefits of the trapezoidal channel but also has the potential
for isocratic operation with constant mean flow velocity along
the channel length [24]. (We use the term isocratic, meaning
equal power or strength, to indicate operation at constant cross
flow rate.) This would be very useful for the study of
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hydrodynamic lift forces in the steric mode of FlFFF [25, 26]
where the variation of channel flow velocity would greatly
complicate the interpretation of results. Note that the steric
mode of FlFFF is more commonly referred to as lift-
hyperlayer FlFFF due to the fact that the lift forces tend to
drive particles relatively far from the accumulation wall. Par-
ticles of a given size are carried along the channel as a thin
layer some distance from the accumulation wall; this layer
being referred to as a hyperlayer [26]. It has been shown that
constant channel flow velocity can also be advantageous for
particle analysis in the normal mode [27]. This is because, as
mentioned above, particle-membrane interactions increase as
channel flow velocity is reduced, and particles may not elute if
the flow velocity falls below some threshold. A varying chan-
nel flow velocity will carry particles not only through regions
of the channel where the velocity is higher than the mean but
also through regions where it is lower. These regions of lower
flow velocity may be areas where particles are more likely to
interact with the membrane and where they may even be
adsorbed. It is therefore better to maintain a constant flow
velocity so that there are no such regions of slower flow.

As-FlFFF is today the most widely used form of FFF, yet
its theoretical description is incomplete. Retention and non-
equilibrium bandspreading are commonly assumed to differ
insignificantly from predictions based on the Sym-FlFFF
model which is in turn assumed to correspond to the ideal
model. While the theory for retention ratio (without the steric
exclusion correction) has been presented before [17], and the
small differences in comparison to the Sym-FlFFF are known,
this is not the case for nonequilibrium bandspreading. The
theory for nonequilibrium bandspreading in As-FlFFF is de-
rived here for the first time, and this finally allows comparison
of the two systems. It was expected that the results converge at
high retention, but without the result of this derivation, it was
not possible to predict the level of retention where they di-
verge significantly.

Assumptions regarding fluid flow and particle
migration

It is assumed that the flux through the membrane over the
accumulation wall is uniform. This requires that the pressure
drop along the channel length be small compared to the pres-
sure drop across the thickness of the membrane and the
supporting porous frit, not only at the channel inlet but also
at the channel outlet. The local mean fluid velocity along the
channel length is also assumed to be uniform across the chan-
nel breadth and equal to the local channel volumetric flow rate
divided by the local cross-sectional area of the channel. Ex-
cept for the regions close to the side walls, this assumption
will be reasonably good along the main body of the channel
provided the channel thickness is uniform and the cross-

sectional aspect ratio of the channel is high. The assumption
is less good in the region of the inlet and outlet endpieces
where the flow from the inlet and toward the outlet has a radial
pattern [28]. With the usual method of sample introduction
and focusing used in As-FlFFF, the flow pattern in the inlet
endpiece has little influence on the sample migration and
bandspreading.

In addition, particle migration along the channel is assumed
to be unperturbed by any non-ideal effects due to particle-wall
and particle-particle interactions. Particles are assumed to mi-
grate along the channel length at velocities equal to that of
undisturbed fluid at the cross-channel positions of their cen-
ters. This assumption is not strictly valid when a particle is
very close to a bounding wall [29–31], but for a diffuse layer
of particles, in which there is a constant exchange of positions,
particles will spend very little time next to the wall and the
assumption is likely to be acceptable. The assumption be-
comes more valid as α decreases relative to λ. This effect is
discussed in a little more detail in a later section.

The so-called steric exclusion effect is taken into account.
This accounts for the fact that the center of a spherical particle
cannot approach to within the particle radius of either the
membrane or the upper wall [32, 33]. The spherical particle
assumption is made for the purpose of deriving expressions
for R and χ. In the later discussion of the significance of the
steric correction, it is explained that the correction may be
valid for non-spherical particles provided their aspect ratio is
not too high.

The fluid velocity profile across the channel thick-
ness is assumed to be parabolic in both Sym-FlFFF
and As-FlFFF. This requires a no-slip boundary condi-
tion at the membrane surface and also at the upper
permeable wall in Sym-FlFFF. This is an acceptable
assumption for a typical ultrafiltration membrane but
there may well be a small slip velocity for a porous frit
wall [34]. The distortion of axial velocity profile due to
cross flow in Sym-FlFFF would be negligible for the
typical cross flow velocities employed [35]. This is also
true for typical conditions used in As-FlFFF [16, 36].

Particle migration and nonequilibrium bandspreading
are assumed to be described by the steady state mecha-
nism corresponding to ideal FFF theory. This means that
the transition from the initial focused zone to a migrating
zone is not taken into account. Given the small transport
distances across the zone thickness, this transition can be
expected to occur very quickly following the start of
migration.

The retention ratio

The retention ratio R is defined for a monodisperse collection
of particles as the ratio of the mean local velocity of the
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particles along the channel length to the mean local channel
flow velocity, and is given by the equation

R ¼ c xð Þv xð Þh i
c xð Þh i v xð Þh i ¼
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in which c(x) and v(x) are the concentration and channel flow
velocity profiles as functions of the distance x across the chan-
nel thickness, measured from the accumulation wall, and w is
the channel thickness. The angle brackets in Eq. (1) indicate
the mean value of the enclosed functions across the channel
thickness, as apparent from the final form on the right-hand
side of Eq. (1).

The concentration profile across the channel thickness is
obtained by considering the motion of particles toward the
membrane caused by their entrainment in fluid exiting
through the membrane and the diffusion away from the mem-
brane according to Fick’s first law of diffusion. The net flux of
particles away from the membrane Jx is given by

J x ¼ − uj jc−D dc

dx
ð2Þ

where u is the local fluid velocity across the channel thickness
in the x-direction, c is the local particle concentration, andD is
the particle translational diffusion coefficient. Note that u is
generally negative, and its absolute value is included in
Eq. (2), consistent with the FFF literature. At steady state,
the flux becomes zero at all x, and it can then be seen that

Z
c0

c
dc

c
¼ −

Z
a

x
uj j
D

dx ð3Þ

in which c0 is the particle concentration at the point of
closest approach of a particle center to the membrane sur-
face (corresponding to particle radius a in the case of a
spherical particle).

In As-FlFFF, the cross flow fluid velocity is not constant
across the channel thickness. It falls to zero at the imperme-
able depletion wall. The cross flow velocity as a function of x
is given by [17]

uj j ¼ u0j j 1−
3x2

w2
þ 2x3

w3

� �
ð4Þ

where |u0| is the cross flow velocity at the membrane surface,
given by

u0j j ¼ V̇c

AC
¼ V̇cw

V 0
C

ð5Þ

where V̇c is the cross-channel volumetric flow rate exiting
through the membrane, AC is the area of the membrane-
covered accumulation wall, andVC

0 is the volume of the channel.
Substitution of Eq. (4) into Eq. (3) results in the concentra-

tion profile given by

c xð Þ ¼ c0exp −
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ð6Þ

in which ℓ0=D/|u0|. We can now let ζ=x/ℓ0 and λ0=ℓ0/w, so
that x/w=λ0ζ. The concentration profile for α/λ0≤ζ≤(1−α)/
λ0 may then be given in the form

c ζð Þ ¼ c0
0
exp −ζ 1−λ0

2ζ2 þ 0:5λ0
3ζ3

� �� �
¼ c0

0
exp − f ζð Þð Þ ð7Þ

where c0′ is the concentration extrapolated to x=0:

c0
0 ¼ c0exp

α
λ0

1−α2 þ 0:5α3
� �� �

ð8Þ

and the function f(ζ) is defined by

f ζð Þ ¼ ζ 1−λ0
2ζ2 þ 0:5λ0

3ζ3
� � ð9Þ

The parabolic fluid velocity profile across the channel
thickness is given by

v xð Þ ¼ 6 vh i x
w

1−
x

w

� �
ð10Þ

which may then be written in the form

v ζð Þ ¼ 6 vh iλ0ζ 1−λ0ζð Þ ð11Þ

Substituting Eqs. (7) and (11) into Eq. (1) and excluding
the regions of steric exclusion from the integrals, we obtain the
following expression for the steric-corrected retention ratio in
As-FlFFF:

R ¼

6λ0

Z
α=λ0

1−αð Þ=λ0

ζ 1−λ0ζð Þexp − f ζð Þð Þdζ

Z
α=λ0

1−αð Þ=λ0

exp − f ξð Þð Þdξ
ð12Þ

This expression differs from that previously published [17]
by including a first-order correction for finite particle size
through the limits of the integrals. The retention ratio with
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steric exclusion correction for the ideal model of FFF and
assumed to describe retention in Sym-FlFFF is given by [32]

R ¼ 6α 1−αð Þ þ 6λ 1−2αð Þcoth 1−2α
2λ

� �
−2λ

� �
ð13Þ

in which λ=ℓ/w=D/|u|w, and |u| is assumed to be constant
across w. The hyperbolic cotangent rapidly approaches unity
as λ decreases (for example, coth (3.0)=1.0049698 and coth
(5.0)=1.0000908). Equation (13) may therefore be approxi-
mated by [37]

R ¼ 6α 1−αð Þ þ 6λ 1−2α−2λð Þ ð14Þ

which is accurate to within 0.5 % for λ≤0.15 and α≤0.05.
The concentration profile in As-FlFFF, described by

Eq. (7), deviates slightly from the exponential profile found
in Sym-FlFFF. For a given V̇c=AC, the concentration decays a
little more slowly in the asymmetrical case because the fluid
cross flow velocity component decreases with distance from
the accumulation wall. For a given V̇c=AC, the value of λ0 for
As-FlFFF will be equal to the λ for Sym-FlFFF, but the reten-
tion ratio will be greater for As-FlFFF than for the symmetri-
cal case.

Figure 1 shows plots of R as a function of λ0 from 0 to 0.25
for both As-FlFFF and Sym-FlFFF (RAs and RSym, respective-
ly). Numerical methods were used for solution of the integrals
in Eq. (12). Note that λ0 for Sym-FlFFF is defined as for As-
FlFFF in terms of cross-channel fluid velocity component at
the membrane, remembering that ideally this is constant
across the channel thickness. The range of λ0 chosen for the
R-plots is sufficient to compare retention ratios up to around
0.8. Elution at higher retention ratios is not useful for deter-
mining sample properties or for significant separation. In the
interests of clarity, the steric correction is not included (α is set
to zero). Steric correction could have been included in one of
two ways, neither of which is particularly helpful or appeal-
ing. Either an arbitrary constant value for α could be consid-
ered (the figure then representing the result of varying cross
flow rate for a fixed particle size) or α could vary inversely
with λ0 around some arbitrary value (the figure then
representing the retention ratios for a range of particle sizes
at fixed cross flow rate). The inclusion of an equivalent steric
contribution to both RSym and RAs would simply reduce their
relative difference a little. It is far better to make the compar-
ison with omission of the steric correction. This is not to say
that the correction is unimportant as explained later. Also
shown in Fig. 1 is a plot of the ratio of the two functions,
RAs/RSym. It is seen that RAs>RSym for 0<λ0≤0.25. In fact,
RSym just exceeds RAs for λ0 greater than around 0.5, but this
is of only academic interest at this level of retention. The
difference is greatest (just over 11 %) at λ0 of 0.12, but less
than 4 % at λ0 of 0.05 where RSym=0.27000 and RAs=

0.28047. As λ0 becomes smaller, the particles are confined
to thinner regions close to the membrane where the flow con-
ditions in As-FlFFF more closely match those of Sym-FlFFF,
and the difference in R becomes smaller.

Nonequilibrium bandspreading

As mentioned earlier, the nonequilibrium contribution to
bandspreading is generally the major contribution to
bandspreading in FFF. We expect the nonequilibrium contri-
bution to bandspreading to be larger in the case of As-FlFFF

as compared to Sym-FlFFF (for given V̇c=AC ) because of the
slower decay of concentration away from the accumulation
wall. We also expect the bandspreading of As-FlFFF and
Sym-FlFFF to converge as retention increases and particles
are confined to a thin region close to the membrane.

Giddings [1] showed how the departure from equilibrium
concentration distribution caused by the shear flow of the
carrier fluid could be described in terms of an equilibrium
departure function ε(x) defined by

c xð Þ ¼ c* xð Þ 1þ ε xð Þð Þ ð15Þ

where c(x) is the actual concentration profile and c*(x) is the
equilibrium concentration profile which corresponds to the
profile expected when it is not disturbed by the shear flow.
The equilibrium profile c*(x) therefore corresponds to Eq. (6)
for As-FlFFF. Effective separation requires that ε(x) be small
over most of the system so that elution takes place in near-
equilibrium conditions. He showed that, by consideration of
the transport equations in the cross-channel and longitudinal
directions, a second-order differential equation in ε could be
derived. Following this approach, we obtain

Fig. 1 Retention ratio for As-FlFFF (RAs, full red curve) and for Sym-
FlFFF (RSym, dashed blue curve) as functions of retention parameter λ0.
Ratio of the retention ratios (dot-dashed black curve) plotted against the
right-hand axis
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D
∂2ε
∂x2

− u xð Þj j∂ε
∂x

¼ v xð Þ−R vh ið Þ∂lnc
*

∂z
ð16Þ

where z is the distance along the channel length. Note that in
Eq. (16), we include the functional dependence of cross-
channel velocity u on position x, and a negative sign appears
on the left-hand side of the equation because the absolute
value of u is considered. The variation of u across the channel
thickness was not considered in the previous derivations of
nonequilibrium bandspreading. Equation (16) may be con-
verted to dimensionless variables by substituting a new di-
mensionless nonequilibrium function ϕ for the dimensionless
function ε, where they are related by

ϕ ¼ εD

R vh iℓ 0
2∂lnc*=∂z

ð17Þ

The transverse distance x is converted to dimensionless ζ
defined previously as ζ=x/ℓ0, and the local fluid velocity is
reduced by the zone velocity,

μ ζð Þ ¼ v ζð Þ
R vh i ¼

6λ0ζ 1−λ0ζð Þ
R

ð18Þ

Equation (16) can then be transformed to the following:

d2ϕ

dζ2
− 1−3λ0

2ζ2 þ 2λ0
3ζ3

� �dϕ
dζ

¼ μ ζð Þ−1 ð19Þ

In the original derivation [1, 2], no account was taken of
steric exclusion, and it was required that Eq. (19) be solved for
ϕ(ζ) subject to the boundary condition dϕ/dζ=0 at the accu-
mulation wall and the condition 〈c*ϕ〉=0.

The contribution to nonequilibrium bandspreading is given
by the equation [1, 2]:

H ¼ χw2 vh i=D ð20Þ
where χ is the nonequilibrium bandspreading parameter given
by

χ ¼ −2λ0
2R c*Φ μ−1ð Þ� 	

= c*
� 	 ð21Þ

in which c*, Ф, and μ are all functions of position across the
channel thickness, and Φ=ϕ−g1 where g1 is the value of ϕ at
ζ=0 (consistent with the condition 〈c*ϕ〉 =0). The relation-
ship between Ф and ϕ means that Ф can be obtained directly
by solution of the differential equation

d2Φ

dζ2
− 1−3λ0

2ζ2 þ 2λ0
3ζ3

� �dΦ
dζ

¼ μ ζð Þ−1 ð22Þ

with boundary conditions Φ=0 and dΦ/dζ=0 at ζ=0 when
steric exclusion is not considered. We can include the

consideration of steric exclusion by solving Eq. (22) with
the boundary conditions Φ=0 and dΦ/dζ=0 at ζ=α/λ0, and
the result can be written in the form

Φ ζð Þ ¼
Z
α=λ0

ζ

exp f ζð Þð Þ
Z
α=λ0

ζ

exp − f ζð Þð Þ μ ζð Þ−1ð Þdζdζ ð23Þ

with f(ζ) defined by Eq. (9). The value of χ is obtained by
solving Eq. (21) which may be written in the form

χ ¼ −2λ0
2R

Z1−αð Þ=λ0

α=λ0

exp − f ζð Þð ÞΦ ζð Þ μ ζð Þ−1ð Þdζ

Z1−αð Þ=λ0

α=λ0

exp − f ζð Þð Þdζ
ð24Þ

with μ(ζ) given by Eq. (18), R given by Eq. (12), and Ф(ζ)
given by Eq. (23).

We note that the determination of χ does not, in fact, re-
quire that Ф equal zero at ζ=α/λ0. This is because

Z
α=λ0

1−αð Þ=λ0

exp − f ζð Þð Þ μ ζð Þ−1ð Þdζ ¼ 0 ð25Þ

which may be shown to be true by rearrangement of Eq. (12).
Therefore, any non-zero value forФ at ζ=α/λ0 (which would
simply be a constant added to Eq. (23)) would have no net
contribution to the integral in the numerator of Eq. (24). Only
one boundary condition is therefore required for solution of
Eq. (22), that being dΦ/dζ=0 at ζ=α/λ0. An arbitrary constant
of integration would then be included in Eq. (23). We set Φ(α/
λ0)=0 only for convenience.

The numerical evaluation of Eq. (24) is computationally
non-trivial since the numerator contains three levels of inte-
gration. The equation may be simplified in the same manner
used for the derivation of the symmetrical case [2], taking into
account Eq. (25), reducing the numerator to two levels of
integration. After rearrangement, the result for the product
χR may be written as

χR ¼ 2λ0
2

Z
α=λ0

1−αð Þ=λ0

exp f ζð Þð Þ
Z
α=λ0

ζ

exp − f ζð Þð Þ 6λ0ζ 1−λ0ζð Þ−Rð Þdζ

2
64

3
75
2

dζ

Z
α=λ0

1−αð Þ=λ0

exp − f ζð Þð Þdζ

ð26Þ

The reduction of levels of integration from three to two
results in a considerable saving in numerical computation.
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We also note that integration of the numerators of
Eqs. (24) or (26) are to be carried out over the interval
from α/λ0 to (1−α)/λ0. The upper limit (1−α)/λ0 in-
creases with decrease of λ0, with the result that for small
λ0 integration would be carried out over regions where
there should be negligible contribution to the result. This
would be a waste of computational effort, but, more im-
portantly, rounding errors in the lower level integrals in
these regions can lead to catastrophic error in the final
result. In practice, using a Digital Visual Fortran compil-
er (Version 5.0, Digital Equipment Corporation, 1997)
with double precision, it was found that results were
stable and accurate if the integration was restricted to
the interval from α/λ0 to (α+25λ0)/λ0 for λ0<(1−2α)/
25.

For Sym-FlFFF, the product of χ and R with inclusion of
the simple steric exclusion correction is given by [32, 33, 37]

χ R ¼ 12 λ2 336λ4 þ 24 1−2αð Þ2λ2− 1−2αð Þ4
n oh

− 120 1−2αð Þλ3−6 1−2αð Þ3λ
n o

coth
1−2α
2λ

� �

− 12 1−2αð Þ2λ2− 1−2αð Þ4
n o

coth2
1−2α
2λ

� �

−6 1−2αð Þ3λcoth3 1−2α
2λ

� �

ð27Þ

which reduces for conditions where coth((1−2α)/2λ)→1 to

χR ¼ 144λ4 1−2αð Þ2−10 1−2αð Þλþ 28λ2
h i

ð28Þ

Dividing Eq. (28) by Eq. (14) gives the following
approximate expression for χ:

χ ¼
24λ4 1−2αð Þ2−10 1−2αð Þλþ 28λ2

h i
α 1−αð Þ þ λ 1−2α−2λð Þ ð29Þ

which for negligible α reduces to

χ ¼ 24λ3 1−10λþ 28λ2
� �

1−2λð Þ ð30Þ

Figure 2 shows plots of χ as a function of λ0, again for the
relevant range of λ0 from 0 to 0.25, for the two forms of FlFFF
(χAs and χSym, respectively). The steric exclusion correction
was omitted in the interest of clarity for the same reasons
given for the comparison of retention ratios. The χ parameter
is larger for As-FlFFF than for Sym-FlFFF for λ0 up to about
0.23. Also shown is the plot of the ratio of χAs/χSym. The
magnitude of χAs is more than twice that of χSym for λ0 be-
tween about 0.075 and 0.095 (corresponding to R between

around 0.38 and 0.5), but the difference decreases for higher
levels of retention. At λ0=0.05 (corresponding to RAs=
0.28047), χSym=0.0019000, whereas χAs=0.0030255 which
is almost 60 % higher. At λ0=0.025 (corresponding to RAs=
0.14393),χSym=0.00030296 andχAs=0.00033845 and the dif-
ference is less than 12 %. At λ0=0.02 (RAs=0.11595), χSym=
0.00016224 and χAs=0.00017420; a difference of less than
7.4 %.

Nonequilibrium plate height for isocratic elution

Consider the channel to be divided into small, discrete
intervals along its length. There will be a contribution to
bandspreading within each interval. To take into account
the falling volumetric flow rate along the channel length
and the variation in channel breadth, the contributions to
variance in zone breadth on the channel are not simply
added. The variance at the previous interval is adjusted
for the change in mean fluid velocity before the contri-
bution to variance at the current interval is added. For
this consideration of isocratic elution, we need only con-
sider that <v> is some function of z. We indicate this
dependence on discrete positions zi using the notation
<v(zi)>, and the velocity-adjusted summation may then
be written as

σi
2 ¼

Xi

j¼1
Cδσ j

2 ¼ δσi
2 þ v zið Þh i

v zi−1ð Þh i
� �2Xi−1

j¼1
Cδσ j

2 ð31Þ

where the subscript C on the summation sign indicates
that it does not represent a simple summation—it is a
velocity-corrected summation. The result σi

2 is the
velocity-corrected sum of the contributions to variance
for intervals 1 to i. The mean fluid velocity is a function
of distance along the channel. The dependence on dis-
tance in turn depends on the volumetric flow rates at the
channel inlet and outlet (together determining the flow
rate through the membrane) and on the variation of chan-
nel breadth along the channel. Expanding the final term
in the summation on the right-hand side of Eq. (31)
shows that

Xi

j¼1
Cδσ j

2 ¼ δσi
2 þ v zið Þh i

v zi−1ð Þh i
� �2

δσi−1
2 þ v zi−1ð Þh i

v zi−2ð Þh i
� �2Xi−2

j¼1
Cδσ j

2

( )

ð32Þ

and therefore

Xi

j¼1
Cδσ j

2 ¼ δσi
2 þ v zið Þh i

v zi−1ð Þh i
� �2

δσi−1
2 þ v zið Þh i

v zi−2ð Þh i
� �2Xi−2

j¼1
Cδσ j

2 ð33Þ
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Successive expansions show that for isocratic operation

σi
2 ¼

Xi

j¼1
Cδσ j

2 ¼
Xi

j¼1

v zið Þh i
v z j
� �� 	

 !2

δσ j
2

¼ v zið Þh i2
Xi

j¼1

δσ j
2

v z j
� �� 	2 ð34Þ

The absence of the subscript C on the summation signs in
the two right-hand formulae indicates that these represent sim-
ple summations. Rearranging Eq. (34) and dividing through-
out by the square of the local zone velocity (=R〈v(zi)〉) shows
that for the case of isocratic elution, the result reduces to a
simple summation of contributions to variance in elution time
δσtj

2:

σti
2 ¼ σi

2

R v zið Þh ið Þ2 ¼
Xi

j¼1

δσ j
2

R v z j
� �� 	� �2 ¼

Xi

j¼1

δσt j
2 ð35Þ

where σti
2 is the resulting variance in elution time at interval i.

This is equivalent to the situation in gas chromatography
where local gas velocity varies due to its compressibility
[38]. In the case of programmed cross flow rate in As-FlFFF,
the variance in elution time does not reduce to the simple
summation of Eq. (35), however.

The local nonequilibrium plate height at position zj along
the channel is given by [2]

Hneq z j
� � ¼ χw2

D
v z j
� �� 	 ð36Þ

where the nonequilibrium bandspreading parameter χ is a
function of the retention parameter λ or λ0 and ratio of particle

radius to channel thickness α.
For a small migration distance δz, the local contribution to

variance of the zone breadth on the channel is given by

δσ j
2 ¼ Hneq z j

� �
δz ¼ χw2

D
v zj
� �� 	

δz ð37Þ

The local zone velocity dz/dt is given by

dz

dt
¼ R v z j

� �� 	 ð38Þ

and therefore, substituting for δz in Eq. (37) using Eq. (38),

δσ j
2 ¼ χRw2

D
v zj
� �� 	2

δt ð39Þ

Figure 3 shows plots of the product χR versus λ0 for the
two forms of FlFFF (given by Eqs. (26) and (27), respective-
ly), as well as their ratio. The product χR is relevant to the
local contribution to zone variance as shown by Eq. (39)
above. Finally, Fig. 4 shows plots of χR/144λ0

4 versus λ0
for each case. Also included is a plot of the function (1−
10λ0+28λ0

2) which is consistent with the approximate
Eq. (28) for Sym-FlFFF. This illustrates how good the approx-
imation of Eq. (28) is for λ0 up to around 0.15 in Sym-FlFFF.
At λ0=0.15 and α=0, Eq. (28) overestimates χRSym by less
than 5.8 %. Unfortunately, such an accurate and simple ap-
proximation for χRAs is not available.

From Eqs. (34) and (39)

σi
2 ¼

Xi

j¼1
Cδσ j

2 ¼ v zið Þh i2χRw
2

D

Xi

j¼1

δt ð40Þ

If it is assumed that retention time tr=(i+f)δt where 0≤f<1
(so that f is the final fraction of an interval in δt), and zi+f=L,
then the variance in zone breadth at the channel outlet is given
by

σ2 ¼ vLh i2χRw
2

D
tr ¼ vLh i2χw

2t0

D
ð41Þ

where 〈vL〉 is the mean flow velocity at the outlet, and t0 is the
void time, or non-retained time, for migration from the focus-
ing point to the outlet, so that under isocratic conditions, R=t0/
tr. The variance in retention time σt

2 is then given by dividing
Eq. (41) by the square of zone velocity at the channel outlet:

σt
2 ¼ σ2

R vLh ið Þ2 ¼ χw2t0

R2D
ð42Þ

which, for ideal elution behavior, is seen to be independent
of the channel breadth profile. For isocratic elution, the
apparent plate height contribution due to nonequilibrium
bandspreading is given by

Fig. 2 Nonequilibrium parameter for As-FlFFF (χAs, full red curve) and
for Sym-FlFFF (χSym, dashed blue curve) as functions of retention
parameter λ0. Ratio of the parameters (dot-dashed black curve) plotted
against the right-hand axis

4334 P.S. Williams



Hneq ¼ L−z
0

� � σt
2

tr2
ð43Þ

where L−z′ is the elution path length from the focusing
point z′ to the channel outlet and σt

2 is given by Eq. (42).
The retention time tr is simply equal to t0/R, so that

Hneq ¼ χw2

D

L−z0
� �
t0

¼ χw2

D
vh i ð44Þ

in which vh i (=(L−z′)/t0) is the time averaged mean chan-
nel flow velocity along the elution path. The form of this

equation for Hneq is consistent with the result presented by
Litzén and Wahlund [23], although we now have the correct
solution for the steric-corrected χ for As-FlFFF. The apparent

nonequilibrium plate height is seen to be proportional to χ,
and the ratio of plate height expected in Sym-FlFFF to that in
As-FlFFF will therefore correspond to the χAs/χSym plot
shown in Fig. 2.

It should be pointed out that this treatment of velocity-
corrected summation of contributions to zone variance for a
sample zone migrating along an As-FlFFF channel is not
strictly correct. Except for the special case of the exponential
channel with flow rates adjusted for constant mean fluid ve-
locity along the channel, the system is non-uniform in both the
local mean particle migration velocity and local plate height.
Conditions therefore vary across the finite breadth of a migrat-
ing zone. For the approach described by Eqs. (31) to (44), it is
assumed that the zone has a variance determined by condi-
tions experienced by the center of mass as it migrates along
the channel. This is the approach taken for the integral method
of determining retention and bandspreading in forms of FFF
where the channel flow velocity is uniform along the channel
length (although it may vary with time) [37, 39–43].
Blumberg and Berger [44] have discussed zone migration in
non-uniform systems. They showed that non-uniformity al-
ways gives rise to a loss of efficiency, but the effect was
generally very small. We can therefore assume that the predic-
tions of bandspreading based on Eqs. (31) to (44) will be
acceptable.

Influence of steric correction on retention
and nonequilibrium bandspreading

Extrapolation of Eq. (13) or Eq. (14) to very high field
strength or cross flow where λ approaches zero puts retention
into the steric mode. The limiting equation, R=6α(1−α), cor-
responds to the simplistic model of steric FFF in which spher-
ical particles move at a velocity equal to that of undisturbed
fluid at a distance of one particle radius from the wall. Exper-
iments showed that this model is not realistic; particles are
driven away from the wall by hydrodynamic lift forces and
are retarded relative to the fluid by other hydrodynamic effects
[45]. An empirical correction factor γ, of order unity, was
included in the simplistic equation to account for these effects.
It was found that γ was a function of channel flow velocity,
field strength or cross flow rate, and particle size. In studies of
the steric inversion phenomenon, it was assumed that the γ
function could be extrapolated from the steric mode through
the inversion point [46]. It was subsequently included in the
steric-corrected retention ratio equation for the normal mode
which implied that there was some uncertainty associated with
the steric correction. Of course, the inclusion of γ does not
exclude the possibility that γ approaches unity in the range of
normal mode elution. A theoretical modeling of the influence
of hydrodynamic retardation of spherical particles close to the
channel walls on the retention ratio in normal mode FFF

Fig. 3 Product of χR for As-FlFFF (χRAs, full red curve) and for Sym-
FlFFF (χRSym, dashed blue curve) as functions of retention parameter λ0.
Ratio of the products (dot-dashed black curve) plotted against the right-
hand axis

Fig. 4 The function χR/144λ0
4 for As-FlFFF (full red curve) and for

Sym-FlFFF (dashed blue curve) versus retention parameter λ0. Also
included is the curve corresponding to (1−10λo+28λ02) consistent with
the approximate Eq. (28) for Sym-FlFFF (dashed black curve)
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hydrodynamic chromatography has been carried out by Pasol
et al. [31]. They did not include any tendency for particles to
be driven away from the walls in this model. Values of λ of
0.01, 0.05, 0.1, 0.2, and ∞ (no field) were considered, and
calculated R graphed over the complete range of α from 0 to
0.5. The calculated R converge on those predicted by Eq. (13)
as α approaches zero, as expected, but the wide range of α
makes it difficult to discern the difference between the solu-
tions when α<λ≪1, which is the region with which we are
concerned here. Shendruk et al. [47] later presented experi-
mental results supporting the model, but again, the experi-
ments were not relevant to the typical range of steric-
corrected normal mode FFF.

The best evidence for the validity of the simple steric cor-
rection for spherical particles comes from studies of the per-
turbation to retention ratios due to particle-wall interactions
[48]. Equation (14) was modified to include an additional term
δw to account for the interaction:

R ¼ 6α 1−αð Þ þ 6λ 1−2α−2λð Þ 1þ δw=ℓð Þ ð45Þ

in which ℓ=λw, and δw corresponds to a positive distance
in the case of a repulsion. It was found that δw was inde-
pendent of particle diameter d in sedimentation FFF when
there was a significant repulsion (found when using a
carrier solution of low ionic strength, for example). More-
over, when ionic strength of the carrier solution was suf-
ficiently high and a good surfactant used, then δw was
insignificant. The approach has also been applied to
Sym-FlFFF, and δw was again seen to decrease with in-
crease of ionic strength of the carrier solution [49]. These
studies suggest that the simple steric exclusion model is
valid for spherical particles when particle-wall repulsion
can be suppressed. Perturbations due to other influences,
such as lift forces, particle-wall interactions, sample
overloading, etc., can be considered secondary effects.

Finally, it may be assumed that Eqs. (12) to (14) and
(26) to (30) will be a reasonable approximation for par-
ticles that are not spherical but do not have a major axis
that differs greatly from the others, i.e., particles that are
not thin plates or long rods. Such particles close to the
wall will tend to tumble over their major axis in the
shear flow, and the value for α will be determined by
the dimensions of the major axis. Different behavior may
be expected for particles of high aspect ratio such as
plate-like particles or long carbon nanotubes, for exam-
ple, where rotation may be hindered [50–53]

The significance of the steric correction to both retention
and nonequilibrium bandspreading can be deduced from the
following. We suppose that Eqs. (12) and (13) are acceptably
accurate for some range ofα/λ, and consider the case of strong
retention where λ≪1 and α≪1. The retention ratio for both
Sym-FlFFF and As-FlFFF is then given by

R ¼ 6αþ 6λ ð46Þ

We can assume that Eq. (46) breaks down before steric
inversion or not, but it is simple to show that for FlFFF where
α∝d and λ∝1/d, the projected steric inversion occurs at the
point whereαi=λi (where the subscript i refers to the inversion
point). For a particle that is some fraction f of the projected
inversion diameter, but not so small that the λ≪1 condition
breaks down, we see that

R ¼ 6 f αi þ 6λi= f ¼ 6λi f þ f −1
� � ð47Þ

If retention time is normalized by the projected inversion
time tri, we obtain

tr
tri

¼ 12λi

6λi f þ f −1
� � ¼ 2

f þ f −1
� � ð48Þ

and if retention time predicted without the steric correction tr′
is normalized in the same way

tr
0

tri
¼ 12λi

6λi= f
¼ 2 f ð49Þ

Equations (48) and (49) are plotted in Fig. 5, labeled tr, as
the full blue line and red dashed line, respectively. They are
seen to diverge well below the inversion diameter. For a par-
ticle just half the inversion diameter, the uncorrected tr′ is 25%
higher than the corrected tr (tr=0.8 tr′). The error in calculated
particle diameter caused by ignoring the steric correction
would be 20 % (this is indicated by the dashed black line that
shows tr′ for d=0.4 di is equal to tr for d=0.5 di).

Fig. 5 Plots of steric-corrected tr (blue full curve) and steric-uncorrected
tr (red dashed curve) normalized to the projected steric inversion time tri,
and of steric-corrected σt (blue full curve) and steric-uncorrected σt (red
dashed line) normalized to the projected σt at steric inversion
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Under the same high retention conditions, the standard de-
viation in retention time σt can be obtained from Eq. (42) and
the limiting forms of Eqs. (13) and (27):

σt ¼ 2λ4w2t0

3 αþ λð Þ3D

 !1=2

ð50Þ

Taking the same approach as for the retention ratio, and
remembering that D∝1/d, it can be shown that

σt dð Þ
σt dið Þ ¼

2

f 2 þ 1

� �3=2

ð51Þ

where σt(d) is the standard deviation in retention time for a
particle of diameter d, and σt(di) is that for the projected in-
version diameter di. If the steric correction is ignored, it can be
shown that

σt
0
dð Þ

σt dið Þ ¼
ffiffiffi
8

p
ð52Þ

Equations (51) and (52) are also plotted in Fig. 5, labeled
σt, as the full blue curve and dashed red line, respectively. The
steric-corrected σt is seen to fall with increase of d, unlike the
uncorrected σt′ which remains constant. For d that is just half
di, the uncorrected σt′ is almost 40 % higher than the corrected
σt. These differences are significant as it is not uncommon
that such particle sizes are encountered in As-FlFFF analyses.

Conclusions

In As-FlFFF, the cross-channel component to fluid velocity
varies with distance from the membrane-covered permeable
accumulation wall and this leads to a departure from the ideal
exponential concentration profile predicted for Sym-FlFFF
where the cross-channel fluid velocity component is ideally
constant. This in turn affects both the retention ratio and the
nonequilibrium bandspreading parameter. The approach taken
by Giddings and co-workers [1, 2] for the derivation of an
equation for the nonequilibrium bandspreading parameter χ
was modified to account for the variation in the cross-channel
fluid velocity component. It was shown that as λ0 decreases
the retention ratio and the value of the function χ converge to
those for Sym-FlFFF, as expected. It follows that under con-
ditions of strong retention, we can expect As-FlFFF to frac-
tionate samples as well as Sym-FlFFF, but for weaker reten-
tion, As-FlFFF will exhibit significantly higher bandspreading
than Sym-FlFFF. It was mentioned that the non-uniform na-
ture of the As-FlFFF systemwill lead to small deviations from
the bandspreading predicted using the approach based on
summation of contributions to variance for conditions at the

center of mass of a zone. This criticism does not apply to the
equations describing local nonequilibrium plate height
(Eqs. (20) and (36)).

The steric exclusion effect constitutes a first-order correc-
tion for finite particle size. The equations for both R and χ
were derived with the inclusion of steric corrections. Other
effects can also perturb elution, but these can often be mini-
mized by optimizing carrier composition, reducing sample
size, etc. The steric effect cannot be avoided, and it has been
shown to be significant for particles much smaller than the
projected inversion diameter. It is therefore important that it
be taken into account when extracting quantitative informa-
tion from experimental retention time measurements.
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