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Abstract Estimation of postmortem interval (PMI) is an im-
portant goal in judicial autopsy. Although many approaches
can estimate PMI through physical findings and biochemical
tests, accurate PMI calculation by these conventional methods
remains difficult because PMI is readily affected by surround-
ing conditions, such as ambient temperature and humidity. In
this study, Sprague-Dawley (SD) rats (10 weeks) were
sacrificed by suffocation, and blood was collected by dissec-
tion at various time intervals (0, 3, 6, 12, 24, and 48 h; n=6)
after death. A total of 70 endogenous metabolites were detect-
ed in plasma by gas chromatography-tandem mass spectrom-
etry (GC-MS/MS). Each time group was separated from each
other on the principal component analysis (PCA) score plot,
suggesting that the various endogenous metabolites changed
with time after death. To prepare a prediction model of a PMI,
a partial least squares (or projection to latent structure, PLS)
regression model was constructed using the levels of signifi-
cantly different metabolites determined by variable impor-

tance in the projection (VIP) score and the Kruskal-Wallis test
(P<0.05). Because the constructed PLS regression model
could successfully predict each PMI, this model was validated
with another validation set (n=3). In conclusion, plasma met-
abolic profiling demonstrated its ability to successfully esti-
mate PMI under a certain condition. This result can be con-
sidered to be the first step for using the metabolomics method
in future forensic casework.
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Introduction

Estimation of time since death is a practical task in daily fo-
rensic casework. The physical changes that occur after death,
including cooling of the body, rigor mortis, and development
of postmortem lividity, are well recognized as early postmor-
tem phenomena. These phenomena continue to be the main
basis for estimating the time since death, also known as the
postmortem interval (PMI). Accurate estimation of PMI is an
important medicolegal issue, as it remains a difficult problem
for forensic pathologists. For more than a century, various
approaches have been used to determine the PMI, including
examining various physical changes, changes in biochemical
constituents in various body tissues and fluids, DNA/RNA
degradation, and forensic entomology [1–14]. Despite exten-
sive studies on this issue, accurate PMI estimation remains a
challenge. Thus, a more reliable and accurate method to esti-
mate PMI is in demand.

Metabolomics broadly aims to measure the systemic met-
abolic changes over time in multicellular systems and can be
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defined as the comprehensive analytical approach for the
study of all low molecular weight biochemicals, including
sugars, amino acids, organic acids, nucleotides, and lipids
from biological specimens. Metabolic profiling has also been
used in studies investigating the metabolic response to various
diseases and drug abuse [15–19]. Previous studies using nu-
clear magnetic resonance (NMR) spectroscopy have shown
that levels of endogenous metabolites, such as amino acids
and saccharides, in a dead body change with time after death,
suggesting the potential for NMR as a useful tool in PMI
estimation [20–23]. However, there are no reports on a PMI
prediction model using mass spectrometry (MS)-based meta-
bolic profiling.

To the best of our knowledge, this is the first trial to estimate
PMI in a suffocated rat model using gas chromatography-
tandem mass spectrometry (GC-MS/MS)-based metabolic
profiling by constructing a prediction model with analytical
validation. The aim of the present study was therefore to as-
sess the applicability of GC-MS/MS-based metabolic profil-
ing to estimate PMI and to construct a prediction model based
on experiments with suffocated rats.

Materials and methods

Chemicals

All chemicals and reagents were of analytical grade or better
quality and purchased from Wako Pure Chemical Industries
(Osaka, Japan) , except where s ta ted otherwise .
Methoxyamine hydrochloride and 2-isopropyl-malic acid
were supplied from Sigma-Aldrich (St. Louis, MO, USA).
N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) was
purchased from GL Sciences (Tokyo, Japan).

Animal experiments

Training set

Thirty-six male Sprague-Dawley (SD) rats (10 weeks old,
weight 282–320 g) were obtained from Japan SLC, Inc. (Ha-
mamatsu, Japan). The rats were kept in an animal facility in a
specific and opportunist pathogen-free environment at 22–
24 °C with a 12/12 h light-dark cycle. The animals were sup-
plied with water and food ad libitum. After fasting for 16 h,
they were sacrificed by CO2 inhalation and cardiac blood was
collected by dissection at six time intervals (0, 3, 6, 12, 24, and
48 h after death; 0 h: T1–T6, 3 h: T7–T12, 6 h: T13–T18, 12 h:
T19–T24, 24 h: T25–T30, 48 h: T31–T36). Until sample col-
lection, bodies were preserved at 16 °C and 40–45% humidity
and separately bagged in a plastic bag to prevent drying. The
body weight was recorded at 0 h and each sample collection
time. The blood samples were rapidly prepared to plasma and

quickly frozen under liquid nitrogen and stored at −80 °C until
analysis.

Validation set

Another 18 male SD rats (10 weeks old, weight 282–319 g)
were used under the same experimental course as above. The
blood samples were collected at six time intervals (0, 3, 6, 12,
24, and 48 h after death; 0 h: V1–V3, 3 h: V4–V6, 6 h: V7–
V9, 12 h: V10–V12, 24 h: V13–V15, 48 h: V16–V18).

Experimental procedures were performed in accordance
with the Guide for the Care and Use of Laboratory Animals
(Animal Research Laboratory, Osaka Medical College).

Sample preparation

Frozen plasma samples were thawed on an ice bath prior to
use. The extraction protocol was the same as described in
previous reports with slight modification [19]. In brief, an
internal standard aqueous solution (25 μl, 2.3 mM 2-
isopropyl-malic acid) and chloroform-methanol (2:5, v/v) sol-
vent mix (225 μl) was added to 50 μl each of the plasma
samples, and samples were vortexed for 5 min. After centri-
fugation at 16,000×g at 4 °C for 5 min, 225 μl of the upper
layer was removed to another Eppendorf tube, and 200 μl
distilled water was added. After vortexing for 5 min, the
mixed solution was centrifuged at 16,000×g at 4 °C for
10 min, and 300 μl of the upper layer was moved to another
tube. We then collected 4 μl of solution from the tube and
added 196 μl of distilled water. This diluted sample was con-
centrated by a centrifugal concentrator (Concentrator 5301,
Eppendorf AG, Hamburg, Germany) for 1 h, followed by
freeze-drying (VD-400F, TAITEC, Saitama, Japan) overnight.
Methoxyamine hydrochloride pyridine solution (60 μl,
20 mg/ml) was added to the residue, and the sample was
incubated at 30 °C for 90 min for methoximation. MSTFA
(40 μl) was added to the solution, and the sample was incu-
bated at 37 °C for 30 min for trimethylsilylation.

Instrumental analysis

A GCMS-TQ8030 triple quadrupole gas chromatograph mass
spectrometer (Shimadzu, Kyoto, Japan) was used for analysis.
A DB-5 capillary column (30 m×0.25 mm i.d., film thickness
1 μm, Agilent, Santa Clara, CA, USA) was used for the chro-
matographic separation. The column oven temperature was
maintained at 100 °C for 4 min, and then increased by
10 °C/min to 320 °C, with a final hold for 9 min. The transfer
line temperature and carrier gas (He) flow rate were set at
280 °C and 1.1 ml/min, respectively. The electron ionization
(EI) operating parameters were set as follows: the ion-source
and interface temperatures, 200 and 280 °C, respectively, and
electron energy, 70 eV. Mass spectra were collected from m/z
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35–600 at scan rate of 2,000 units/s. GC-MS/MS was con-
ducted in the positive ion mode. Samples were automatically
injected in the splitless mode, and the injection volumewas set
at 1 μl. Sequence of the sample injection was randomly ar-
ranged. In a single analysis, we performed scan mode for
qualitative analysis and selected reaction monitoring (SRM)
detection for quantitative analysis at the same time. The SRM
transitions and collision energies are shown in the Electronic
Supplementary Material (ESM; Table S1). Peak detection and
peak area calculation of the data were carried out by the built-
in software (GCMS solution Ver4.11) and a metabolite data-
base (Shimadzu, ver. 2.0). Peak areas of each metabolite were
normalized by that of 2-isopropyl-malic acid.

Statistical analysis

Multivariate analysis including principal component analysis
(PCA), partial least squares (or projection to latent structure,
PLS) analysis, and calculation for variable importance in the
projection (VIP) score were performed using SIMCA P+ sta-
tistical software (ver. 13, Umetrics AB, Umea, Sweden).
Kruskal-Wallis test was performed for the evaluation of statis-
tically significant metabolites using JMP Pro software (ver.
11, SAS Institute Japan Ltd., Japan). Hotelling’s T2 is a mul-
tivariate generalization of Student’s t distribution. It provides a
tolerance region for the data in a two-dimensional score plot
that represented a 95 % confidence interval [24]. VIP shows
the contribution of each predictor variable to the model and
presents the influence of each predictor on response variables
[25]. In SIMCA P+, VIP plots are sorted based on the impor-
tance of variables. Variables with importance value greater
than 1 are usually considered as the most important value for
explaining Y-variables, and VIP value is often used for vari-
able selection. To construct a more highly accurate model of
PMI estimation, the metabolites were selectedwith a threshold
of VIP score >1.2. The predictive ability of the developed
model was evaluated using the permutation test. To ensure
the stability of the probability estimates, 50 permutations were
carried out.

Results

Body weights of animals

We recorded the weight of animals at the time of sacrifice and
at each sample collection. The weights in grams at the times of
sacrifice (3, 6, 12, 24, and 48 h after death groups) were 304.6
±11.9, 297.4±7.6, 305.5±10.9, 300.4±10.6, and 291.4±6.0,
respectively, and the weights at sample collection were 304.4
±11.9, 297.3±7.6, 305.4±10.9, 300.1±10.6, and 291.1±5.9.

Metabolite identification

A total of 70 endogenous metabolites were detected in plasma
by GC-MS/MS (Table 1). As data from the T16 sample could
not be obtained due to injection failure, statistical analysis was
performed excluding sample T16.

PCA analysis and PLS regression model

On the PCA score plot, each time group was separated from
each other with the exception of a considerable overlap of time
points 3 and 6 h and a minor overlap of 12 and 24 h, suggest-
ing that the various endogenous metabolites changed with
time after death (Fig. 1). To prepare a prediction model of a
PMI, a PLS regression model was constructed using the levels
of significantly different metabolites determined by the VIP
score (VIP score >1.2) and Kruskal-Wallis test (P<0.05) (see
ESM Fig. S1). As a result, 25 metabolites were selected
(Table 1). Figure S2 in the ESM shows the concentration
changes of the 25 metabolites over time, and these were used
for the PLS regression model. In the regression model, the R2

and Q2 values were 0.98 and 0.96, respectively (Fig. 2a). In
the permutation test plot, the y-intercept values of the regres-
sion line were 0.11 for R2 and −0.21 for Q2 (Fig. 2b).

Validation analysis

Since the constructed PLS regression model could successful-
ly predict each PMI, this model was validated with a new
validation set (n=3). In the validation set, the same 70 metab-
olites from the previous analysis were detected. This result
showed the satisfactory prediction accuracy of the regression
model from the metabolic profiling (Table 2).

Discussion

In this study, we investigated the GC-MS/MS-based metabol-
ic profiling of a suffocated rat model after a certain period of
time after death and constructed a prediction model of PMI
estimation with satisfactory prediction accuracy, substantiated
by another validation analysis.

In forensic practice, PMI estimation is an important sub-
ject. Various strategies are currently used to determine the
PMI, including evaluation of various physical changes,
changes in biochemical constituents in various body tissues
and fluids, DNA/RNA degradation, and forensic entomology
[1–14]. Despite broad research, accurate PMI estimation re-
mains a problem.

Recently, analytical methods have been developed to gen-
erate multivariate profiles of metabolites, mainly using NMR
or MS [26]. To examine the mechanism of various diseases
and conditions, 1H-NMR-based metabolomics studies have
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been carried out using a variety of tissues and body fluids
[27–29]. Several studies have estimated PMI using 1H-
NMR. Scheurer et al. measured concentrations of 27 metabo-
lites or metabolite groups in a sheep head model and selected
five (acetate, alanine, butyrate, free trimethyl-ammonium, and
propionate) for further statistical analysis and modeling by
analytical functions [21]. Furthermore, to evaluate the temper-
ature effect, the same research group performed the simulta-
neous determination of 25 different biochemical compounds

at four different temperatures between 4 and 26 °C. The au-
thors performed a linear regression analysis based on the data
from eight metabolites (acetate, alanine, aspartic acid, buty-
rate, γ-aminobutyric acid, myoinositol and glycine, succinic
acid, and valine) and showed a high correlation between the
estimated and true postmortem times at the investigated tem-
peratures [22]. Hirakawa et al. investigated the metabolic
changes in rat femoral muscles using 1H-NMR pattern recog-
nition. Rats killed by suffocation, cocaine overdose, and

Table 1 Seventy metabolites
identified in plasma by GC-MS/
MS

aMetabolites used for PLS
regression test

1,5-Anhydro-D-glucitol Glutamic acida L-Prolinea

2-Aminoadipic acid Glutamine Psicose

2-Aminoisobutyric acid Glutaric acid Pyrogallol

2-Hydroxybutyric acid Glycerol Pyruvic acid

3-Hydroxybutyric acid Glycine Ribosea

Adipic acid Glycolic acid Ribulose

Alaninea Heptadecanoate L-Serinea

Allose L-Histidinea Sorbitol

Arabinosea Inositola Succinic acid

Arabitola Isoleucinea Sucrose

L-Asparaginea Kynurenine Taurine

L-Aspartic acida Lactic acid Threitola

β-Alaninea Lauric acid L-Threoninea

Benzoic acid L-Leucinea trans-4-Hydroxy-L-proline

Citric acid L-Lysinea L-Tryptophan

Citrulline Malic acid L-Tyrosinea

Creatinine Mannose Uracil

Cystathionine L-Methioninea Urea

Cysteinea N-Acetyl-L-aspartic acid Uric acid

Cystine Nonanoic acid L-Valinea

Elaidic acid Octadecanoate

Fructose L-Ornithinea

Fumaric acid p-Hydroxybenzoic acid

Gluconic acida Phenylalaninea

Glucose Phosphatea

t[2
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Fig. 1 PCA score plots of the
training set. Six groups were
separated from each other with
the exception of a considerable
overlap of time points 3 and 6 h
and a minor overlap of 12 and
24 h on the PCA score plot. The
ellipse was given by Hotelling’s
T2 (0.95)
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induced respiratory failure were classified into three groups
according to the time of sampling (within 15 min, after 1–4 h
and ≥8 h after death). As the principal component scores of
each group clustered in discrete regions, the authors conclud-
ed that the metabolic profiles correlated with PMI [23]. How-
ever, compared with 1H-NMR, MS yields relatively high sen-
sitivity measurements and allows for reliable metabolite iden-
tification [26, 30].

In our study, we detected 70 metabolites and found that
among these, 25 metabolites had a statistically strong correla-
tion with PMI. The metabolites enabled us to collect more
detailed information about the metabolites concerning PMI
relative to previous reports using 1H-NMR. The levels of 25
metabolites continuously increased over time. As a cadaver
generally begins to dry over time after death, we placed the
rats individually in bags to prevent drying. Weight in grams at
the times of sacrifice and sample collection (3, 6, 12, 24, and
48 h after death) changed from 304.6±11.9, 297.4±7.6, 305.5
±10.9, 300.4±10.6, and 291.4±6.0 to 304.4±11.9, 297.3±

7.6, 305.4±10.9, 300.1±10.6, and 291.1±5.9, respectively.
This result suggested that the concentrations of metabolites
in plasma were not affected by evaporation. In addition, lactic
acid is known to increase with time elapsed after death for
anaerobic metabolism. We found that lactic acid level in-
creased at the 6 h point, as previously reported (Fig. 3) [31].
Therefore, we believe that the levels of these 25 metabolites
increased because of the influence of PMI.

The 25 metabolites consisted of 18 amino acids, 5 sugars, a
carboxylic acid, and a phosphate. Usually, processes accruing
at postmortem such as the following should be considered:
metabolic processes relating to enzyme activities, autolysis,
and microbial processes. Among the 18 amino acids detected
in our study, eight were essential amino acids that are
suspected to be produced by autolysis or microbial cell me-
tabolism [32]. With regard to sugars, L-arabinose is released
by fungi from plant polymers [33]. Thus, we speculate that the
metabolites may have been partly affected by microbial
processes.

y = 1x + 5.92272e-008
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Fig. 2 (a) Two-component PLS
regression line of time after death.
The performance of the
regression model was satisfactory
(R2=0.98, Q2=0.96). (b) The
model was validated by
permutation tests, whose results
indicated it was acceptable
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In the regression model, the R2 and Q2 values were 0.98
and 0.96, respectively. The R2 value reflects the goodness of
fit and measures the strength of the regression model. The Q2

value indicates the predictive ability of the model. The R2 and
Q2 values are considered to be goodwhen the values are closer
to unity. Thus, the performance of the two-component regres-
sion model was considered to be satisfactory. In the permuta-
tion test plot, the y-intercept values of the regression line were
0.11 for R2 and −0.21 for Q2. The y-intercept of the regression
line shows a measure of the overfit; a near-zero slope of the
regression line and a high y-intercept value suggest the

inadequacy of the model. Therefore, this result indicated that
the two-component regression model was sufficient to predict
PMI.

Our data are currently preliminary, as most postmortem
parameters are influenced by several influencing factors of
ambient conditions (i.e., temperature, humidity). Furthermore,
there may be additional differences depending on the kinds of
microorganisms existing in the body. However, it is notable
that we performed the validation analysis using another vali-
dation set and confirmed the satisfactory prediction accuracy
of the regression model. We thus expect that the collected
metabolites in our study would be informative for further
progress in detecting PMI in combination with the various
postmortem parameters already reported.

In conclusion, this is the first report to investigate the PMI
of suffocated rat models by MS-based metabolic profiling.
The plasma metabolic profiling demonstrated its ability to
successfully estimate PMI under a certain condition. Although
further experiments are needed for future routine forensic
casework, this result can be considered to be the first step
for using the metabolomics method for PMI estimation.
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