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Abstract The stereoisomers of 1,2,3,4-tetrahydroisoquinoline
analogs were resolved for the first time by applying a polar
ionic mobile phase on a quinine or a quinidine moiety fused
with a chiral sulfonic acid-type chiral selector immobilized on
silica [Chiralpak ZWIX(+)™ and Chiralpak ZWIX(−)™]. The
effects of the nature and concentrations of the mobile phase
components and additives and temperature on the retention and
enantioseparation on the investigated chiral columns were
studied. Experiments were performed in the temperature range
10–50 °C. Thermodynamic parameters were calculated from
plots of ln α versus 1/T. The separations were generally enthal-
py-controlled, but entropy-controlled separation was also ob-
served below 30 °C. The enantiomer elution order was deter-
mined in some cases and was observed to be opposite on the
ZWIX(+)™ and ZWIX(−)™ columns. Our results contribute
to a better understanding of the enantiorecognition mechanism
of chiral bases with chiral zwitterionic selectors.
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Introduction

Compounds containing a 1,2,3,4-tetrahydroisoquinoline (Tiq)
skeleton (Fig. 1) are important building blocks of naturally
occurring alkaloids [1] and are of great importance in synthet-
ic chemistry and drug research for their potential pharmaceu-
tical activity [2]. Some commercially available drugs such as
the antitussive noscapin and the antitumor agent trabectedin
(as Yondelis®) contain enantiomerically pure Tiq as a key
structural unit. Lee et al. [3] reported the anti-HIV effects of
(1R)-coclaurine and (1S)-norcoclaurine, naturally occurring
alkaloids isolated from Nelumbo nucifera. Trimetoquinol
and its 3′,5′-diiodo derivative are β-adrenoceptor agonists
and the (S)-trimetoquinol is in use as a bronchodilatory agent
[4]. Tiq compounds, e.g., [(R)-salsolinol], have been detected
in the human brain and intraventricular fluid, and their possi-
ble roles in the pathogenesis of Parkinson’s disease have been
discussed [5]. 1-Methyl- and 1-phenyl-Tiq are of importance
in the prevention of Parkinson’s and other neurological dis-
eases [6]. Analyte 9 (Fig. 1) is an important intermediate in the
preparation of the expectorant emetin [7], and 10 is a potential
intermediate for the preparation of crispine A, which displays
high biological activity against the human cancer cell lines
SKOV3, KB, and HeLa [8].

As the behavior of Tiq derivatives in biological systems
depends strongly on their stereochemistry, there is a clear need
for precise separation and identification methods through
which the enantiomeric excess can be analyzed and the abso-
lute configurations can be assigned.

Chiral separations of Tiq analogs have been performed by
both indirect and direct analytical methodologies. The gas
chromatographic (GC) indirect separation of salsolinol enan-
tiomers has been achieved through the application of N-meth-
yl-N-trimethylsilyl trifluoracetamide [9] and (R)-(−)-2-
phenylbutyryl chloride [10] as chiral derivatizing agents
(CDAs), while high-performance liquid chromatography
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(HPLC) has been carried out with isothiocyanate-based CDAs
[11].

The direct separation in HPLC involved the application of
β-cyclodextrins or sulfated β-cyclodextrins as chiral mobile
phase additives (CMPAs) [12–14]. CMPAs have also been
applied in capillary electrophoresis (CE) methods with
hydroxypropyl-β-cylodextrin as chiral selector for the
enantioseparation of (R,S)-salsolinol [15] or with β-
cylodextrin for enantioseparation of dopamine-derived neuro-
toxins [16] or for the separation of the diastereomers of (R,S)-
Tiq-3-carboxylic acid derivatized with (R)-4-nitro-7-(3-
aminopyrrolidin-1-yl)-2,1,3-benzoxadiazole [17]. A CE
method and a computational modeling study have been used
to investigate the complex formation of Tiq analogs with β-
cyclodextrin [18]. Salsolinol enantiomers were separated
through the application of chiral stationary phases (CSPs)
containing β-cyclodextrin-type chiral selectors in GC [19]
and in HPLC [20–24]. The normal-phase separation of
phenyl- and naphthol-substituted Tiq analogs was accom-
plished by using polysaccharide-based CSPs [25].
Macrocyclic antibiotics [26, 27] and crown ether-based
CSPs [28] were also applied for the enantioseparation of Tiq
analogs.

Enantioselective retention and separation are usually influ-
enced by temperature [29–33]. To determine the enthalpic and
entropic contributions to the retention, van’t Hoff plots are
generally applied [34]. Without information concerning the

phase ratio, the standard enthalpy and entropy cannot be
determined [34], but if both enantiomers have access to the
same stationary phase volume, the Δ(ΔH°) and Δ(ΔS°)
values for the separated enantiomers can be determined from
the relationship

lnα ¼ −
Δ ΔH∘ð Þ

RT
þ Δ ΔS∘ð Þ

R
ð1Þ

where α is the selectivity factor (α=k2/k1), Δ(ΔH°) is the
difference of standard enthalpy change, Δ(ΔS°) is the differ-
ence of standard entropy change for the two enantiomers, R is
the gas constant, and T is temperature in Kelvin.

The present paper first time describes HPLC methods for
the enantioseparation of basic Tiq analogs (Fig. 1) on
Cinchona alkaloid-based zwitterionic selectors (SOs), which
also act as enantioselective cation exchangers (Fig. 2).

The effects of the mobile phase composition, the nature and
concentrations of various mobile phase additives, the specific
structural features of the Tiq analytes (selectands, SAs) and
SOs, and temperature on the retention and stereoselectivity are
discussed on the basis of the experimental data. Our objective
was to elucidate the effects of structural changes in Tiq ana-
logs on their chromatographic behavior on the ZWIX chiral
columns. For the purposes of this study, the classical van’t
Hoff approach assuming only one site interaction was used.
For a more realistic approach to the thermodynamic

Fig. 1 Structures of analytes 1, 1-methyl-1,2,3,4-tetrahydroisoquinoline;
2, 6,7-dimethoxy-1-methyl-1,2,3,4-tetrahydroisoquinoline; 3, 6,7-
dimethoxy-1-(propan-2-yl)-1,2,3,4-tetrahydroisoquinoline; 4, 6,7-
dimethoxy-1-(2-methylpropyl)-1,2,3,4-tetrahydroisoquinoline; 5, 1-tert-
butyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline; 6, 3-methyl-1,2,3,4-
tetrahydroisoquinoline; 7, 6,7-dimethoxy-3-methyl-1,2,3,4-

t e t r a h y d r o i s o q u i n o l i n e ; 8 , ( 6 , 7 - d im e t h o x y - 1 , 2 , 3 , 4 -
tetrahydroisoquinolin-1-yl)methanol; 9, 2-(6,7-dimethoxy-1,2,3,4-
tetrahydroisoquinolin-1-yl)ethanol; 10, 3-(6,7-dimethoxy-1,2,3,4-
tetrahydroisoquinolin-1-yl)propan-1-ol; and 11, 4-chloro-N-methyl-
2-(1,2,3,4-tetrahydroisoquinolin-1-yl)aniline
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calculations, the contributions of enantioselective and nonse-
lective sites should be distinguished. This can be achieved
through the application of nonlinear characterization methods
[35, 36]. The elution sequence was determined for analytes 2,
8, 9, and 10.

Materials and methods

Chemicals and reagents

(S,R)-1—(S,R)-7 (Table 1) were synthesized by standard
literature protocols, from the corresponding phenylethyl-
amine, through acylation and then Bischler–Napieralski
cyclization [37]. The dihydroisoquinolines obtained were
reduced to tetrahydro derivatives with sodium borohy-
dride [38]. (R)-2 was prepared from racemic-2 with
(R,R)-dibenzoyltartaric acid. The racemic (S,R)-8, (S,R)-
9, and (S,R)-10 were obtained by known literature
methods [36–40]. Calycotomine, (S,R)-8, was prepared
from β-(3,4-dimethoxyphenyl)ethylamine, which was
reacted with diethyl oxalate. The product amide was
cyclized in a Bischler–Napieralski reaction and the
resulting ethyl 6,7-dimethoxy-3,4-dihydroisoquinoline-1-
carboxylate was reduced on Pt/C, followed by reduction
with LiAlH4 [38, 39]. Homocalycotomine, (S,R)-9, was
prepared via the reaction of homoveratrylamine and
formic acid. The resulting formamide was ring-closed in
a Bischler–Napieralski reaction. The 6,7-dimethoxy-3,4-
dihydroisoquinoline obtained was then transformed into
an amino acid by reaction with malonic acid, and the
product was reduced to the desired (S,R)-9 with LiAlH4

[39, 40]. (S,R)-1-(3-hydroxypropyl)-6,7-dimethoxy-Tiq,
(S,R)-10 , was prepared through the reaction of
homoveratrylamine and γ-butyrolactone. The correspond-
ing amide was cyclized in a Bischler–Napieralski reaction
and the resulting 1-(3-hydroxypropyl)-6,7-dimethoxy-3,4-
dihydroisoquinoline was reduced with sodium borohy-
dride to furnish the desired (S,R)-10 [41, 42]. The enan-
tiomers of (S)-8, (R)-9 and (R)-10 were prepared through
enzyme-catalyzed O-acylation of N-Boc-protected

racemic 8–10 [41–43]. (S,R)-4-Chloro-N-methyl-2-Tiq-1-
yl)aniline [(S,R)-11] was purchased from Sigma-Aldrich
(St. Louis, MO, USA).

Acetonitrile (MeCN) and methanol (MeOH) of HPLC
grade were purchased from VWR International (Arlington
Heights, IL, USA), while NH3, ethylamine (EA),
diethylamine (DEA), triethylamine (TEA), propylamine
(PRA), formic acid (FA), glacial acetic acid (AcOH), and

Fig. 2 Structures of Cinchona
alkaloid-based CSPs

Table 1 Chromatographic parameters, retention factors (k), selectivity
factor (α), resolution (RS), and elution sequence of Tiq analogs on
ZWIX(+)™ column

Compound Eluent k1 k2 α RS Elution sequence

1 a 6.50 7.82 1.20 2.22 n.d.

c 3.07 3.43 1.12 1.25 n.d.

2 a 8.02 9.99 1.25 4.17 R<S

c 3.46 3.95 1.14 2.17 R<S

3 a 4.04 4.39 1.09 1.50 n.d.

c 2.57 2.67 1.04 0.53 n.d.

4 a 6.25 6.53 1.04 0.87 n.d.

c 3.18 3.42 1.08 1.27 n.d.

5 a 3.85 4.12 1.07 1.17 n.d.

c 2.50 2.60 1.04 0.71 n.d.

6 a 5.93 6.10 1.03 0.53 n.d.

c 3.11 3.14 1.01 <0.20 n.d.

7 a 7.14 7.21 1.01 <0.20 n.d.

c 3.14 3.24 1.03 0.53 n.d.

8 a 5.51 5.96 1.08 0.40 R<S

c 3.16 3.32 1.05 0.67 R<S

9 a 4.85 5.96 1.23 3.31 R<S

c 2.81 3.05 1.09 1.45 R<S

10 a 5.33 5.74 1.08 1.29 R<S

c 3.06 3.24 1.06 0.86 R<S

11 a n.r. n.r. – – n.d.

c 1.16 1.33 1.15 1.80 n.d.

Chromatographic conditions: column, Chiralpak ZWIX(+)™; mobile
phase, a, MeOH/MeCN (25/75 v/v) containing 12.5 mM TEA and
25 mM AcOH; c, MeOH/MeCN (75/25 v/v) containing 12.5 mM TEA
and 25 mM AcOH; flow rate, 0.6 ml min−1 ; detection, 215 or 230 nm

n.d. not determined, n.r. no retardation
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other reagents of analytical reagent grade were from Sigma-
Aldrich. The Milli-Q water was further purified by filtration
on a Millipore 0.45-μm filter, type HV (Molsheim, France).

Before use, all eluents were degassed in an ultrasonic bath,
and gaseous helium was purged through them during the
HPLC analyses. Stock solutions of analytes (1 mg ml−1) were
prepared by dissolution of the samples in MeOH.

Apparatus

Chromatographic measurements were carried out on a 1100
Series HPLC system from Agilent Technologies (Waldbronn,
Germany), consisting of a solvent degasser, a pump, an
autosampler, a column thermostat, and a multiwavelength
UV–VIS detector. Data acquisition and analysis were per-
formed with ChemStation chromatographic data software
from Agilent Technologies. As alternative, a Waters HPLC
system consisting of an M-600 low-pressure gradient pump,
an M-2996 photodiode-array detector, and an Empower 2
Chromatography Manager da ta sys tem (Waters
Chromatography, Milford, MA, USA) equipped with a
Rheodyne Model 7125 injector (Cotati, CA, USA) with a
20-μl loop was employed. A SparkMistral column thermostat
(Spark Holland, Emmen, The Netherlands) with a temperature
adjustment precision of ±0.1 °C was used to thermostat the
columns.

The Chiralpak ZWIX(+)™ and ZWIX(−)™ columns
(150×3.0 mm I.D., 3-μm particle size) were gifts from
Chiral Technologies Europe (Illkirch, France). As a void
volume (t0) marker, a methanolic solution of acetone was
injected at each investigated temperature and eluent
composition.

Results and discussion

Mobile phase selection

The zwitterionic ZWIX(+)™ and ZWIX(−)™ columns have
been used for the enantiodiscrimination of hydroxy acids [44],
small peptides [45, 46], chiral acids, and bases [47], and have
previously mostly been applied for the resolution of diverse
ampholytic non-cyclic and cyclic amino acids [48–54].
However, in view of the chemical nature and ampholytic
property of the ZWIX selector, it can also be used as a chiral
anion and cation exchanger. In the following, we concentrate
on the latter use.

ZWIX(+)™ and ZWIX(−)™ columns are most frequently
used with MeOH as protic polar bulk solvent (which can
modify H-bonding interactions) and MeCN as an aprotic,
but polar bulk solvent (which can support ion-pair formation,
but interferes with π-π-type interactions), in combination with

base and acid additives leading to the polar-ionicmobile phase
mode, PIM. The effects of the composition of the bulk solvent
on the chromatographic parameters in the case of Tiq analogs
were investigated on ZWIX(+)™ and ZWIX(−)™ CSPs,
which behave pseudo-enantiomerically. (Quinine and quini-
dine and their corresponding derivatives are under C9 stereo-
chemical control where they exhibit opposite configurations.
Hence, the selectors applied in this study frequently reveal
pseudoenantiomeric characteristic which is chromatographi-
cally materialized in reversed elution orders [55].) The chro-
matographic data determined for 8, 9, and 10 with mobile
phase systems of MeOH/MeCN (75/25, 50/50, or 25/75 v/v)
containing 25 mM AcOH and 12.5 mM TEA or 25 mM FA
and 12.5 mM TEA, the acid-to-base ratio being maintained
constant at 2:1, are depicted in Fig. 3a, b and are listed for the
other analogs in Tables 1 and 2.

The retention of the Tiq analogs increased substantially
with increasing MeCN content in the mobile phase, which is
accompanied by two effects: the ionic interactions become
stronger and the solvation effect may decrease. Furthermore, a
marked increase in separation performance was observed at
75 % MeCN content. This observation is in contrast with the
results obtained for α-amino acids, where the presence of a
higher MeCN content usually led to decreases in
enantioselectivity [48, 49], where as it is in accordance with
the results obtained for secondary and β-amino acids, where
increasing k, α, and RS were found with increasing MeCN
content [50–54]. These results indicate that the MeCN-to-
MeOH ratio is a fine-tuning variable for optimization of the
performance of the zwitterionic CSPs that we used as cation
exchangers to resolve chiral bases.

The chargeable secondary amino group of the investigated
Tiq analogs can be identified as the site of primary interaction,
with the chiral sulfonic acid group (cation-exchanger site) of
the SOs. The ionization state of the SO and SA as a function of
the mobile phase composition will evidently influence the
retention and enantioseparation, although the sulfonic acid
group will be permanently charged as it is a strong acid. The
effects of the ionization state of the SO, SA, and mobile phase
were investigated on ZWIX(−)™ CSP for SAs 8–10, with
applyingMeOH/MeCN (50/50 v/v) as bulk solvent containing
10, 25, or 50 mM AcOH and 5, 12.5, or 25 mM TEA (the
same concentrations were used in the FA-TEA system; the
acid-to-base ratio was kept constant at 2:1). The pKa values of
the secondary amino group within the Tiq and TEA and the
carboxy group in FA and AcOH are ca. 9.1, 10.75, 3.75, and
4.76, respectively [56, 57]. The pKa values of the quin uclidine
nitrogen and of the sulfonic acid group of the SOs are ca. 9.8
and 1.0, respectively [58]. (It should be noted that pKa values
are defined for aqueous conditions; in pure organic media,
they may shift considerably to higher values [59].) The results
depicted in Fig. 4 show that a decrease of the amount of acid
and base additives in the mobile phase (a decrease of the
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“ionic strength”) is accompanied by an increase in the extent
of retention.

It is noteworthy that this increase was more pronounced
with AcOH than with FA. Under slightly acidic mobile phase
conditions, the Tiq moiety and TEA are in protonated form
(“ammonium ion”), while the equimolar amounts of FA and
AcOH are deprotonated. The excess of FA and AcOH is
formally protonated, but can also act as a displacer in this
form also. On increase of the salt concentration in the mobile
phase, the increased amount of “ammonium ions” resulted in a
decrease in retention, typically observed in ion-exchange
chromatography and in accordance with the stoichiometric
displacement model. FA is a stronger acid than AcOH, and
its application led to a decreased retention. The effects of
different strengths of FA and AcOH are seen in terms of
retention, but as concerns the overall observed effect on
retention, a smaller increase was observed for FA than in the
case of AcOH. The different effect by AcOH and FA can be
readily explained on the basis of their pKa value and the
dominant ion-exchange mechanism. As regards the change
of enantioselectivity, the influence of the nature of the acidic
additives was minor.

The nature of the amine component in the mobile phase
influences the retention of SAs through their competition for
the acidic sites of the SO. An amine added to the acidic mobile
phase will be ionized (protonated) and may take part in a
strong electrostatic interaction with the deprotonated sulfonic
acid moiety of SO via displacement. Five different bases
(NH3, EA, DEA, TEA, and PRA; pKa values of 9.25, 10.70,
10.84, 10.75, and 10.60, respectively) and two acids (FA and
AcOH) were selected to study the effects of base and acid
additives. The bases differed in the degree and nature of their
alkyl substitution (lipophilicity), while the acids differed by

Fig. 3 Effects of the bulk solvent composition of the mobile phase on the
chromatographic parameters, retention factor (k1), selectivity factor (α),
and resolution (RS) of SAs 8, 9, and 10 on ZWIX(−)™ column. Chro-
matographic conditions: column, Chiralpak ZWIX(−)™; mobile phase,
a, MeOH/MeCN (25/75 v/v) containing 12.5 mM TEA and 25 mM
AcOH; b, MeOH/MeCN (50/50 v/v) containing 12.5 mM TEA and

25 mM AcOH; c, MeOH/MeCN (75/25 v/v) containing 12.5 mM TEA
and 25 mM AcOH; d, MeOH/MeCN (25/75 v/v) containing 12.5 mM
TEA and 25 mM FA; e, MeOH/MeCN (50/50 v/v) containing 12.5 mM
TEA and 25 mM FA; f, MeOH/MeCN (75/25 v/v) containing 12.5 mM
TEA and 25 mM FA; flow rate, 0.6 ml min−1; detection, 230 and 258 nm

Table 2 Chromatographic parameters, retention factors (k), selectivity
factor (α), resolution (RS), and elution sequence of Tiq analogs on
ZWIX(−)™ column

Compound Eluent k1 k2 α RS Elution sequence

1 a 4.44 6.12 1.38 2.07 n.d.

c 1.45 1.79 1.24 1.26 n.d.

2 a 6.73 9.99 1.48 3.10 S<R

c 1.80 2.09 1.17 0.83 S<R

3 a 2.66 3.14 1.18 1.14 n.d.

c 1.27 1.41 1.11 0.55 n.d.

4 a 5.18 6.30 1.22 1.53 n.d.

c 2.04 2.51 1.23 1.50 n.d.

5 a 2.24 2.50 1.12 0.50 n.d.

c 1.25 1.25 1.00 0.00 n.d.

6 a 2.24 2.50 1.12 0.50 n.d.

c 1.56 1.56 1.00 0.00 n.d.

7 a 4.73 4.73 1.00 0.00 n.d.

c 1.70 1.70 1.00 0.00 n.d.

8 a 3.55 4.13 1.16 1.55 S<R

c 1.29 1.29 1.00 0.00 n.d.

9 a 2.99 3.85 1.29 2.82 S<R

c 1.09 1.22 1.13 0.80 S<R

10 a 4.04 4.39 1.09 1.00 S<R

c 1.49 1.56 1.05 0.30 S<R

11 a n.r. n.r. – – n.d.

c 0.61 0.72 1.19 1.00 n.d.

Chromatographic conditions: column, Chiralpak ZWIX(−)™; mobile
phase, a, MeOH/MeCN (25/75 v/v) containing 12.5 mM TEA and
25 mM AcOH; c, MeOH/MeCN (75/25 v/v) containing 12.5 mM TEA
and 25 mM AcOH; flow rate, 0.6 ml min−1 ; detection, 215 or 230 nm

n.d. not determined, n.r. no retardation
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one methylene group. Figure 5 illustrates the chromatographic
parameters for SA 8 on ZWIX(+)™ and ZWIX(−)™ with a
mobile phase of MeOH/MeCN (50/50 v/v) containing
12.5 mM base and 25 mM acid.

In genera l , the more bulky and hydrophobic
triethylammonium ion ensured the largest retention, and the
smallest ammonium ion the lowest retention [an exception
was eluent e on ZWIX(−)™], although the pKa values differ
by more than 1 unit. If the competing ionic interactions in the
mobile and stationary phases are taken into account, the more
polar and smaller ammonium ion can form more stable com-
plexes than the protonated Tiq moiety with the cationic bind-
ing site of the SO, ensuring low retention, while the complex
formation of the triethylammonium ion with the SO is prob-
ably less favorable. However, it is worthy of mention that
some of the amine additives (NH3 and TEA) used in the study

are characterized by a different ability to participate in H-bond
interactions influencing the retention behavior. The slight
changes in α observed with variation of the nature of the
amines (and also with acids) reveal a moderate effect on the
overall selectivity. However, SA 8 was not separable on
ZWIX(−)™ with the application of FA as additive (α=1;
Fig. 5). In most cases, the resolution was larger when DEA
or TEAwas applied as compared with ammonia, EA, or PRA,
independently of the nature of the acid used. In a discussion of
these observations, the ionic radius of the solvated ionic
species should also be considered, leading to the assumption
that the electrostatic interaction responsible for retention is
stronger overall for a smaller counter ion.

From the aspect of the chromatographic performance of the
two investigated CSPs, it should be mentioned that use of the
ZWIX(−)™ column in most cases led to lower retention times

Fig. 4 Effects of the concentration of acid and base additives on the
chromatographic parameters, retention factor (k1), selectivity factor (α),
and resolution (RS) of SAs 8, 9, and 10 on the ZWIX(−)™ column.
Chromatographic conditions: column, Chiralpak ZWIX(−)™; mobile
phase, MeOH/MeCN (50/50v/v) containing g, 25 mM TEA and

50 mM AcOH; b, 12.5 mM TEA and 25 mM AcOH; h, 5 mM TEA
and 10 mMAcOH; i, 25 mMTEA and 50 mM FA; e, 12.5 mM TEA and
25 mM FA; j, 5 mM TEA and 10 mM FA; flow rate, 0.6 ml min−1;
detection, 230 and 258 nm

Fig. 5 Effects of nature of acid and base additives on the chromato-
graphic parameters, retention factor (k1), selectivity factor (α), and reso-
lution (RS) of 8 on the ZWIX(+)™ and ZWIX(−)™ columns. Chromato-
graphic conditions: column, ZWIX(+)™ or ZWIX(−)™; mobile phase,
MeOH/MeCN (50/50 v/v) containing k, 12.5 mMNH3 and 25 mM FA; l,
12.5 mM EA and 25 mM FA; m, 12.5 mM DEA and 25 mM FA; e,

12.5 mM TEA and 25 mM FA; n, 12.5 mM PRA and 25 mM FA; o,
12.5 mMNH3 and 25 mMAcOH; p, 12.5 mMEA and 25 mMAcOH; q,
12.5 mMDEA and 25 mMAcOH; b, 12.5 mM TEA and 25 mMAcOH;
r, 12.5 mM PRA and 25 mM AcOH; flow rate, 0.6 ml min−1; detection,
230 and 258 nm
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and higher enantioselectivities (Tables 1 and 2). Similar phe-
nomena were observed earlier for various unusual α- and β-
amino acids [50–54].

Structure–retention (selectivity) relationships

The sterically demanding structures of the constrained SAs
(Fig. 1) influence the retention and the chiral recognition.
Tables 1 and 2 report the k and α values observed with the
most frequently applied mobile phases on the ZWIX(+)™ and
ZWIX(−)™ columns in this study. At the same mobile phase
composition, the methoxy substitution in 2 as compared with
1 resulted in higher k and α values, similarly as in the case of 6
and 7, but 7 was not separable on ZWIX(−)™. The increased
π-basicity and molecular size of the analytes, together with a
possible H-bond interaction of the methoxy group with the
SO, may explain the increased retention and selectivity. For
analytes 2–5, k1 varied with the length of the alkyl chain in the
molecule; increasing chain length and a bulkier molecular
structure probably sterically hinder the stabilization of the
SO-SA complex, and therefore k1 decreased in parallel with
the selectivity. Comparison of the chromatographic behavior
of 8–10 with that of 2 reveals that hydroxyalkyl substitution,

especially in eluent a, weakens the SA-SO complexation,
resulting in decreases in both k and α. The chain length of
the hydroxyalkyl group has a small effect on the chromato-
graphic behavior, but 9 undergoes the best steric fit to the SO,
resulting in higher k and α values on both CSPs.

Elution sequence

The chiral SOs of Chiralpak ZWIX(+)™ and ZWIX(−)™
CSPs are actually diastereomeric to each other (Fig. 2), but
in most cases behave like pseudo-enantiomers [48, 49]. As a
consequence, on change from the quinine-based CSP
[ZWIX(+)™] to the quinidine-based CSP [ZWIX(−)™], re-
versal of the elution sequence of Tiq analogs may be expected.
In several cases, it was in fact observed (Tables 1 and 2).

On ZWIX(+)™, analytes with S configuration are more
strongly retained, obviously form more stable complexes
within the binding pocket associated with the 8S and 9R-
configurated chiral centers of the Cinchona-based backbone.
For ZWIX(−)™, the opposite is the case, the more strongly
retained enantiomers have the R configuration, which is an
indication that the change in the configuration of 8 and 9 chiral

Table 3 Thermodynamic parameters, Δ(ΔH°), Δ(ΔS°), T×Δ(ΔS°), Δ(ΔG°), and correlation coefficients (R2) of Tiq analogs on ZWIX(+)™ and
ZWIX(−)™ columns

Analyte Column −Δ(ΔH°) (kJ mol−1) −Δ(ΔS°) (J mol−1 K−1) Corr. coeff. (R2) −T×Δ(ΔS°)29 K (kJ mol−1) −Δ(ΔG°)298 K (kJ mol−1)

1 ZWIX(+)™ 1.9 5.2 0.9942 1.5 0.4

ZWIX(−)™ 2.4 5.6 0.9958 1.7 0.7

2 ZWIX(+)™ 2.0 5.2 0.9927 1.5 0.5

ZWIX(−)™ 3.0 7.2 0.9993 2.2 0.8

5 ZWIX(+)™a 0.1 <<0.1 0.9971 <<0.1 0.1

ZWIX(+)™b 1.2 3.6 0.9963 1.1 0.1

ZWIX(−)™a −0.3 −1.7 0.9996 −0.5 0.2

ZWIX(−)™b 0.3 0.2 0.9995 0.1 0.2

6 ZWIX(+)™a −0.6 −2.1 0.9901 −0.6 <<0.1

ZWIX(+)™b 1.0 3.1 0.9968 0.9 0.1

ZWIX(−)™ – – – –

7 ZWIX(+)™a <<0.1 −0.3 0.9954 −0.1 0.1

ZWIX(+)™b 0.4 1.1 0.9926 0.1 0.3

ZWIX(−)™ – – – – –

8 ZWIX(+)™ 0.4 0.8 0.9991 0.2 0.2

ZWIX(−)™ 0.8 1.8 0.9989 0.5 0.3

9 ZWIX(+)™ 1.0 2.1 0.9994 0.6 0.4

ZWIX(−)™ 1.5 3.4 0.9997 1.0 0.5

10 ZWIX(+)™ 0.7 2.0 0.9994 0.6 0.1

ZWIX(−)™ 0.8 1.9 0.9994 0.6 0.2

Chromatographic conditions: column, Chiralpak ZWIX(+)™ and ZWIX(−)™; mobile phase, b, MeOH/MeCN (50/50v/v) containing 12.5 mM TEA
and 25 mM AcOH; flow rate, 0.6 ml min−1 ; detection, 215 or 230 nm; R2 , correlation coefficient of van’t Hoff plot, ln α−1/T curves
a Temperature range: 10–30 °C
b Temperature range 30–50 °C
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centers of the SO leads to a change in the enantiorecognition
process.

Effects of temperature and thermodynamic parameters

The effects of temperature on the chromatographic parameters
for 1, 2, and 5–10 were studied on ZWIX(+)™ and
ZWIX(−)™ over the temperature range 10–50 °C.
Experimental data on both columns with a mobile phase of
MeOH/MeCN (50/50 v/v) containing 25 mM AcOH and
12.5 mM TEA are presented in Supplementary Material
Tables S1 and S2.

In several cases, the k values on ZWIX(+)™ decreased
with increasing temperature, as expected, but for 1, 2, 5, 7, and
9 in the range 10–30 °C, k increased with increasing temper-
ature, which is unusual. This quite unique behavior was
observed on the ZWIX(−)™ column throughout the entire
temperature range (10–50 °C): with increasing temperature,
k increased, but α decreased (the only exception was 5). Adlof
and List [60], Wu et al. [61], and Yogo et al. [62] earlier
registered increasing k and α values with increasing

temperature for non-chiral separations, and Matarashvili
et al. [63] and Ilisz et al. [52–54] recently described the same
phenomenon for chiral separations. Our observations relate
mainly to the quinidine-based ZWIX(−)™ column [49–51]. It
should be pointed out again that the configurations of the
selectors of the ZWIX(+)™ and ZWIX(−)™ columns
(Fig. 2) are not enantiomeric to each other, as the three chiral
centers of the quinuclidine ring (1, 3, and 4) are identical in
both chiral selectors, whereas the other four chiral centers (8,
9, 1″, and 2″) switch consequently. This certainly has an effect
on the accessibility of specific binding sites and their solva-
tion. Further studies are required for a better understanding of
this phenomenon.

The changes observed in selectivity with temperature were
inconsistent. As usual,α (andRS; Tables S1 and S2) decreased
with increasing temperature, but for 6 and 7 on ZWIX(+)™
and for 5 on ZWIX(−)™ in the temperature range 10–30 °C,α
increased with increasing temperature.

Since the effects of temperature on enantiomer sepa-
ration are complex, thermodynamic parameters were
established on the basis of the chromatographic data

Fig. 6 van’t Hoff plots for the separation factor (α) of 1, 2, and 5–10 on
ZWIX(+)™ and ZWIX(−)™ columns. Chromatographic conditions: col-
umn, ZWIX(+)™ or ZWIX(−)™; mobile phase, b, MeOH/MeCN (50/50

v/v) containing 12.5mMTEA and 25mMAcOH; flow rate 0.6 ml min−1;
detection 230 and 258 nm
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through the application of van’t Hoff plots [Eq. (1)].
The differences in the changes in standard enthalpy and
entropy, calculated from the ln α vs 1/T curves,
−Δ(ΔH°) and −Δ(ΔS°), are presented in Table 3.

The Δ(ΔH°) values ranged from −3.0 to 0.6 kJ mol−1 and
were slightly more negative on ZWIX(−)™ than on ZWIX(+
)™ [exceptions were 5 and 8; 6 and 7 were not separable on
ZWIX(−)™ under the condition applied in the thermodynam-
ic study]. The trends in the change in Δ(ΔS°) and Δ(ΔH°)
were similar. Under the conditions where Δ(ΔH°) has nega-
tive values,Δ(ΔS°) was also negative, and the largest positive
Δ(ΔH°) was accompanied by the largest positive Δ(ΔS°).
The interactions of 1 and 2 with ZWIX(+)™ and ZWIX(−)™
were characterized by the highest −Δ(ΔH°) and −Δ(ΔS°)
values.

As shown in Fig. 6, linear fits could generally be plotted,
but for 5, 6, and 7 on ZWIX(+)™ and for 5 on ZWIX(−)™,
the ln α vs 1/T plots could be divided into two linear regions,
which means that the linear van’t Hoff plots reflect different
overall binding situations in limited temperature ranges. (In
these cases, in Table 3 presents values calculated for the two
temperature ranges independently.)

In the temperature range 10–30 °C for 5 on ZWIX(−)™
and for 6 and 7 on ZWIX(+)™, the separations exhibited
relatively small −Δ(ΔH°) and larger −T×Δ(ΔS°) values,
i.e., a larger contribution of entropy to the enantioseparation
is observed in this temperature region.

The thermodynamic parameter −Δ(ΔG°)298 suggests that,
both on ZWIX(+)™ and on ZWIX(−)™ for 1 and 2 in mobile
phase b, the binding to the SO was induced more efficiently,

Fig. 7 Selected chromatograms of Tiq analogs. Chromatographic con-
ditions: column, ZWIX(+)™ for 1–3, 5, and 9–11, and ZWIX(−)™ for 4
and 8; mobile phase, for 1–4 and 8–10, MeOH/MeCN (25/75 v/v)
containing 12.5 mM TEA and 25 mM AcOH, for 11 MeOH/MeCN

(75/25 v/v) containing 12.5 mM TEA and 25 mM AcOH; flow rate,
0.6 ml min−1; detection, 230 nm and 258 nm; temperature, 25 °C; the
peaks in the chromatograms for 2 and 8–10 are those of mixtures of the
racemic compound and enantiomer
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as reflected by the largest −Δ(ΔG°) values. Apart from a few
exceptions (in the temperature range 10–30 °C), it can be
concluded from the −Δ(ΔH°) and −TΔ(ΔS°) data for all
the SAs that the enantioresolution is predominantly
enthalpically driven, and the selectivity increases with de-
creasing temperature. The −Δ(ΔG°)298 values were generally
slightly larger on ZWIX(−)™ than on ZWIX(+)™, which is in
accordance with results obtained for unusual α- and β-amino
acids [50–54].

Selected chromatograms of Tiq analogs are depicted in
Fig. 7.

Conclusions

The enantiomers of Tiq analogs representing a group of chiral
basic compounds were separated on Chiralpak ZWIX(+)™
and ZWIX(−)™ columns, containing quinine- or quinidine-
based zwitterionic selectors. The chromatographic parameters
depended on the mobile phase composition, the nature and
concentrations of the mobile phase additives, and temperature.
Baseline resolution was achieved in all cases, and the newly
commercialized zwitterionic CSPs therefore also behave as
chiral cation exchangers. The elution sequence was deter-
mined in some cases and revealed that these CSPs behave
pseudo-enantiomerically to each other, leading to a reversal of
the elution sequence on the quinine-based ZWIX(+)™ and on
the quinidine-based ZWIX(−)™ SOs. This is advantageous
from the aspect of the chiral separation of minor components
in the presence of a major one.

Results obtained in this study contribute to shed light on the
enantiodiscrimination process observed with zwitterionic se-
lectors and serve valuable data for the enantioseparation of
biologically important Tiq analogs.
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