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Abstract Accurate detection of certain chemical vapours is
important, as these may be diagnostic for the presence of
weapons, drugs of misuse or disease. In order to achieve this,
chemical sensors could be deployed remotely. However, the
readout from such sensors is a multivariate pattern, and this
needs to be interpreted robustly using powerful supervised
learning methods. Therefore, in this study, we compared the
classification accuracy of four pattern recognition algorithms
which include linear discriminant analysis (LDA), partial least
squares-discriminant analysis (PLS-DA), random forests (RF)
and support vector machines (SVM) which employed four
different kernels. For this purpose, we have used electronic
nose (e-nose) sensor data (Wedge et al., Sensors Actuators B
Chem 143:365-372, 2009). In order to allow direct compar-
ison between our four different algorithms, we employed two
model validation procedures based on either 10-fold cross-
validation or bootstrapping. The results show that LDA
(91.56 % accuracy) and SVM with a polynomial kernel
(91.66 % accuracy) were very effective at analysing these e-
nose data. These two models gave superior prediction accura-
cy, sensitivity and specificity in comparison to the other

Electronic supplementary material The online version of this article
(doi:10.1007/s00216-014-8216-7) contains supplementary material,
which is available to authorized users.

P. S. Gromski - E. Correa - A. A. Vaughan - R. Goodacre (<)
School of Chemistry, Manchester Institute of Biotechnology,
The University of Manchester, 131 Princess Street,
Manchester M1 7DN, UK

e-mail: roy.goodacre@manchester.ac.uk

D. C. Wedge
Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton,
Cambridgeshire CB10 1SA, UK

M. L. Turner
School of Chemistry, The University of Manchester, Brunswick
Street, Manchester M13 9PL, UK

techniques employed. With respect to the e-nose sensor data
studied here, our findings recommend that SVM with a poly-
nomial kernel should be favoured as a classification method
over the other statistical models that we assessed. SVM with
non-linear kernels have the advantage that they can be used
for classifying non-linear as well as linear mapping from
analytical data space to multi-group classifications and would
thus be a suitable algorithm for the analysis of most e-nose
sensor data.

Keywords Linear discriminant analysis - Partial least
squares-discriminant analysis - Random forests - Support
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Introduction

According to the “no free lunch theorems” in search and
optimization [1], the application of an algorithm to different
types of data may result in diverse outputs, and in general, no
single algorithm is optimal for solving all problems. Each set
of chemical data therefore requires the choice of an optimal (or
a near-optimal) algorithm for that particular data set [1].
Hence, optimization in data analysis is essential, especially
in the analysis of data from electronic noses (e-noses) where
for real-time analysis, an algorithm must be able to classify
data rapidly. This realisation that chemical sensing on the fly
in real time is a distinct possibility has led to the increased
popularity of e-noses in recent years [2].

Due to the complexity of the output from chemical sensor
pattern recognition is an essential part of the analysis and has
been used previously for characterisation of data from e-noses
[3]. For example, several studies have employed
chemometrics such as discriminant analysis which is a super-
vised statistical tool for studying the association between a set
of chemical descriptors (inputs) and categorical response (the
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output(s) or target(s)) and is commonly used as a dimension-
ality reduction technique and for classification [4]. Linear
discriminant analysis (LDA) [4] has been used successfully
for the analysis of the data from chemical sensors applied to
volatile analytes [5], the analysis of data from e-nose sensors
used for the detection of explosives and flammable vapours
(toluene, acetone and ethanol) [6], and for discrimination
between patients with asthma from healthy controls [7].
Partial least squares-discriminant analysis (PLS-DA) [8]
has been used previously in combination with e-noses
for the classification of wines [9], in the diagnosis of lung
cancer by breath analysis [10] and for the diagnosis of
urinary tract cancers [11].

Although LDA and PLS-DA are very powerful classifiers,
they generally only permit linear mapping from inputs to
outputs [12], and therefore there is a desire to employ more
sophisticated machine learning algorithms. Random forests
(RF) are a technique used for classification and for the esti-
mation of variable importance based on multiple decision
trees [13] and have been used previously in e-nose data
analysis for food quality control [14]. Another popular ma-
chine learning technique is based on support vector machines
(SVM). These are kemel-based classification methods that
determine the optimum boundaries (support vectors) that ac-
curately separate classes with the maximum margin between
them [15]. These methods have also been effectively used in
the classification of e-nose data [16], for the measurement of
vapour mixtures by using metal oxide gas sensors [17], in the
detection of lung cancer [18], for the assessment of lymph
nodes in the course of breast cancer diagnostics [19] and in
olfactory signal recognition [20].

Wedge and colleagues [21] employed genetic program-
ming (GP) for vapour classification and reported an average
sensitivity and specificity of 0.91 and 0.96 for acetone, 0.86
and 0.88 for dimethyl methylphosphonate (DMMP), 0.79 and
0.87 for methanol, and 0.79 and 0.83 for propanol [21].
However, GP requires a high of expertise in programming,
as the relevant cross-over and mutation rates need to be
selected and the models constrained in order to reduce bloat,
and thus cannot be widely used by non-experts [22, 23].
Therefore, in the present study, we have programmed four
different chemometric approaches using the same data as a
tool to compare more accessible chemometrics methods for
the analysis of e-nose data. These included two discriminant
analysis approaches (viz. LDA and PLS-DA), random forests,
as well as four SVM which were employed with different
kernel-based functions [24]. In order to allow objective com-
parisons, we used k-fold cross-validation [25] and
bootstrapping with replacement [26], and for the test sets only,
we compute classification prediction accuracy, sensitivity and
specificity from all methods. Prediction accuracy (not to be
confused with precision) corresponds to the proportion of the
total number of correct predictions as calculated from
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confusion matrix (for further details, please see Table S1 and
its descriptive statistics as shown in the Electronic Supple-
mentary Material (ESM)).

Materials and methods
Data

In a previous study by Wedge et al., an e-nose sensor com-
posed of arrays of organic field-effect transistors (OFETs) had
been developed for vapour sensing [21]. As a result of diffi-
culties in the fabrication of sensing materials that are essential
for universal sensing [27], the authors focus only on four
chemicals: acetone, DMMP, methanol and propan-1-ol.
Additionally, these authors indicated that significant en-
hancement of sensitivity and specificity was accomplished
by coating multiple transistors with different semiconduct-
ing polymers. Therefore, four OFETs based upon amor-
phous polytriarylamines (PTAA) were used, and these
comprised three terminals (source, drain and gate) based
on organic semiconducting polymers in their conductive
channel. These were chosen to deliver materials with
different electron-donating properties and flexibilities and
hence chemical-sensing abilities [21].

Upon exposure to the different vapours to the OFETs, data
were collected for 4 s. The main characteristics of these
OFETs are the “threshold voltage,” reflecting the lowest gate
voltage essential to produce an accumulation layer, where the
value above indicates that the OFETs is “on” whereas the
values below the threshold means that the sensor is “off.”
The main data collection characteristics that have been mea-
sured from these four OFETs are the following: (1) off current
shows the bulk conductivity of the polymer; (2) on resistance
shows conductivity in the presence of field effect; and finally, (3)
mobility calculated from a series of on current values acquired at
altered stepped voltages. This resulted in 12 measurements per
sample [21], and these were used for chemometrics analysis in
the current study.

As explained above three measurements—on resistance,
off current and mobility—were aggregated from each of four
transistors coated with different semiconducting polymers
based upon amorphous polytriarylamines. The four sensors
are abbreviated to J49, IM116, OMe and PTAA and are
described in full detail in a previous publication. In summary,
the complete data matrix consists of 127 observations and 12
variables (4 sensors x 3 measurements) [21].

Modelling process
The R 2.15.0 software environment (http://cran.r-project.org/)

was used for data analysis. This environment contains a
variety of packages useful for data analysis and is a free
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open-source program [28]. Data analysis techniques were
evaluated in terms of their ability to discriminate between
the four different classes (viz. acetone, DMMP, methanol
and propanol), and full details of the statistics we used are
provided in the Electronic Supplementary Material. All R
scripts are freely available from the authors on request.

A flow chart showing the overall data analysis is shown in
Fig. 1. Additionally, data pre-processing (auto-scaling) was
performed to place all the variables on a single comparable
scale. This process was used as it reduces the influence of large
values that may overtly dominate the chemometric analysis [29].

Data preparation

The SVM, RF and PLS-DA algorithms are governed by
certain parameters which for SVM depend on the kernel type
used for training and prediction [24]; for RF, it will be the
number of variables included in each tree and the number of
trees in the forest [13]; and, finally, for PLS-DA, the number
of non-zero components used in classification [30]. Due to the
no free lunch theorems [1] discussed above, it is inadvisable to
use the default parameters, as these are not guaranteed to be
optimal. In order to assess the most optimal method, we used
cross-validation methods. Whilst methods such as leave-one-
out (LOO) cross-validation have been used previously to
determine the optimal parameters for SVM [31], this may be
more biased as only a single sample is removed before the
model is constructed with the rest of the samples, and this
often provides an overoptimistic impression of model accura-
cy as the class distribution is kept constant and hence unreli-
able predictions [32]. Jain et al. reported that statistical confi-
dence intervals constructed for models using bootstrapping
are more robust compared to LOO cross-validation [33]. In

Fig. 1 Flow chart showing data
preparation steps prior to
classification with supervised
learning. This classification
process also included two
different validation methods, and
these are detailed within this flow
chart. The superscript letter a
denotes the seven models that
were used for supervised learning
which include LDA, PLS-DA, RF
and SVM with four different
kernel functions

(100 random
iterations)

addition, if one wants to use an experimental design to set up
the calibration, bootstrapping is necessary to avoid the posi-
tion where a single validation split of the training and test sets
may inadvertently not reflect the overall data structure and
thus may significantly influence the validation process. There-
fore, in this study, we estimated these parameters for each of
the methods by using bootstrapping which tests several ran-
dom class distributions as proposed by Efron and Tibshirani
[32], and as this gives more representative estimates of the
“average” model, it is thus likely to be less biased [12, 32, 33].

The optimisation of the most appropriate parameters for
SVM and RF was based on model accuracy from these
bootstraps calculated using grid search. This involved (1)
setting up the range for each parameter in a two-step grid
search as proposed by Xu et al. [34] where, in the first stage,
the analyses were conducted in large ranges and distances
between parameters values to group possible targets and then
in a second stage the analyses were performed on narrower
search intervals (by way of example for a polynomial kernel,
this varies from 0 to o (or for practical reasons at least a
reasonable and sensible number that avoids redundant com-
putation; see below) for the cost parameter [35]); (2) creating a
table with a coarse search of each parameter; for the above
example, this would be 0-10 in steps of 0.1 to narrow the
search area, where for instance, gamma with large values may
lead to overfitting as shown by Ben-Hur and Weston [36]; (3)
measuring the classification accuracy for the coarse search
using 100 bootstraps to evaluate each combination of param-
eters and approximate a suitable, narrower range of parame-
ters; and finally (4), analysing this reduced range of parame-
ters in more depth by shrinking the step size. The results of
grid search for SVM can be found in the Electronic Supple-
mentary Material (Table S2).

Raw data
The data matrix: 127 observations
(including 4 vapours as 4 classes) and
12 variables

Model validation methods

(For each of the 7 models®:
multiple related data sets were
generated and used to evaluate

prediction accuracy)

Ten-fold cross-
validation.

Bootstrapping
with replacement

(1000 iterations)

9/10 data set was
used for training

Validation data set

(on average 36.8%
of all observations)

Training data set
1/10 data set was

used for validation (on average 63.2%

of all observations)
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Discriminant analysis

In this study, two discriminant analysis approaches have been
used, namely LDA and PLS-DA which try to find linear
combinations of features that aim to separate two or more
groups of samples [4, 30]. Although the aim of these
supervised methods is classification, certain differences
can be observed as described by Brereton and Lloyd
[30]. For PLS-DA, when two groups are to be classified
a single output (Y vector) is used and PLS1 is used to
predict whether a sample belongs to group A (coded “17)
or group B (coded “0” or “—1”). By contrast, when
multiple groups are analysed, the same number of multiple
outputs are used and PLS2 is applied. It is strange that in
many analytical areas, people still use the PLS scores
plots for interpretation rather than the values on the Y
vector. This happens despite the fact that (amongst others)
Westerhuis and colleagues suggested that PLS-DA scores
plots should not be used for interpretation of class differ-
ences, as it present an overoptimistic understanding of the
separation between two or more classes, and they show
that without suitable validation, similar results can be
accomplished when random data are classified [37]. For
LDA, in this paper, we use discriminant function analysis
(DFA; also known as canonical variate analysis (CVA)
[4]), which simultaneously rotates and scales input space
to reduce within-group variance and maximise between-
group variance [4]. However, unlike PLS, LDA is highly
sensitive to collinearity and can be only used with the
data where the number of features is smaller than the
number of observations [38]. This can, of course, be
overcome using PCA, and care needs to be taken to select
the most appropriate number of PCs to feed into LDA [4,
30, 39]. The following R packages were employed for
discriminant analysis:

(1) MASS “Support Functions and Datasets for Venables and
Ripley’s MASS” version 7.3-19 [40] was used for LDA.

(2) CARET “Classification and Regression Training” version
5.15-023 [41] was used for PLS-DA.

Random forests

In RF, a collection of trees is generated and the ensemble is
used for prediction [13, 42]. This approach relies on construct-
ing a series of tree-based “learners” which use a subset of the
input space and so can also be used for variable selection, or to
understand the important features that are used for prediction.
As the subset selection can be random, it is important to allow
judicious input selection. See ESM Fig. S1 for a diagrammatic
representation of RF and ESM, and Fig. S2 illustrates an
example of RF used for variable selection [13, 42]. For RF,
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we employed “Breiman and Cutler’s random forests for clas-
sification and regression” version 4.6-6 [42].

Support vector machines

SVM is a machine learning approach that can deal with linear
and non-linear classification problems [15, 24]. SVM are
computed to only separate two classes, and therefore for
multi-classification tasks, several SVM are used where one
particular class is compared to all. The performance of SVM
relies upon the kernel selection and on the parameters that
each of these uses during calibration. In this study, four types
of kernel were used: (1) linear—the simplest and most com-
monly used kernel function used to map data into a space
where the classes are linearly separable; (2) polynomial—for
non-linearly separable classes; (3) radial—based on class-
conditional Gaussian probability distribution which maps data
into a different space where linear separation can occur; and
finally (4), sigmoid—usually used when the structure of the
data is unknown [15, 24]. SVM analysis used four different
kernels (vide infra), and these were implemented using €1071
“Misc Functions of the Department of Statistics (e1071), TU
Wien” version 1.6 [43].

Model validation

To develop a good classifier and to obtain an appropriate
estimation error, it is essential to use as much of the data as
possible for training and testing and to ensure that the data are
correctly organised for analysis. Hence, in order to compare
accurately the classification ability of all four techniques, it is
crucial to assess these procedures with robust validation. In
this process, a separate preliminary data set is analysed by the
algorithm before it is applied into common usage, i.e. out in
the field. The basic concept of validation is to assess the
performance of the algorithm on these preliminary data so
that confidence can be had on the ability of the sensor
chemometrics approach on real-world “unseen” data. For
model validation, the idea is to take a certain number of
samples that are not used in training (that is to say the cali-
bration phase of the analysis), and samples that are not used in
this phase are used to validate the algorithm [25].

In this study, model validation methods such as £-fold cross-
validation (where k=10) [32] and bootstrapping with replace-
ment (1000 bootstraps) were used to generate multiple training
and test data sets [26]. In this study, we applied 1000 bootstrap
replicates to approximate estimations of accuracy. In initial
experiments (data not shown), we used fewer (e.g. 100 boot-
straps) and excessive numbers of bootstrap iterations (10,000
and 100,000) and found that the shape of the correct classifi-
cation results (CCR) for the 1000 iterations approximated
those of the larger iteration numbers well, whilst with 100
iterations within the bootstrap the CCR distributions were not
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very smooth. These two model validation processes are fully
detailed in the Electronic Supplementary Material. After clas-
sification, the test sets were used to estimate prediction accu-
racy for each of the models. The statistical terms for this are
also fully defined in the Electronic Supplementary Material.

Results and discussion

As discussed above, in order to classify the four chemical
vapours under study, based on the response of the four sen-
sors, we programmed and applied a variety of supervised
learning algorithms and compared their performance in terms
of prediction accuracy and time taken for calculations. Fur-
thermore, some of these classification methods can be used for
variable selection, rather than for prediction only as shown in
our recent study on the Gram-positive bacteria Bacillus [44].
In this study, different variable selection methods such as
stepwise forward variable selection for LDA, variable impor-
tance for projection (VIP) coefficient for PLS-DA, mean
decrease in Gini, and accuracy for RF and finally recursive
feature elimination (a method related to stepwise backward
variable selection) for SVM have been used to reduce dimen-
sionality and select relevant variables. Hence, the number of
variables can be reduced to only include those that are impor-
tant, thereby decreasing computation time. For instance, in RF
analysis, Fig. S2 in the ESM shows variable importance or-
dered according to their importance by mean decrease in accu-
racy and mean decrease in Gini index. Moreover, loadings plots
from LDA and PLS-DA (see ESM Fig. S5b) can be used to
estimate which variables are important and thus influence class
separation. Therefore, if one wants to analyse high-dimensional
e-nose data, it is recommended that one of the above-mentioned
approaches be applied in order to reduce dimensionality. Fur-
ther explanation of these variable selection methods can be
found in the Electronic Supplementary Material.

Figure 2a shows the LDA scores plot of the first two LDs
for the classification of both the training and test sets. In this
model, an equal split of the samples was used and the LDA
model was formed with the training data set pairs only; these
pairs are the chemical data and the corresponding class (four
in total—one for each of the different vapours). Subsequently,
the test set samples were projected into this LDA scores place
and plotted. The separation between the four classes is quite
clear. Although there is some overlap between the propanol
samples and the methanol and DMMP samples, propanol is
clearly separated from the other samples in the LD3 (data not
shown). The validation observed is very good, as the test
samples (open symbols) are coincident with their respective
training data sets (closed symbols). The LDA loadings plot
(Fig. 2b) was used to identify the variables with the greatest
influence on discrimination. This plot clearly indicates that the
most important inputs in this classification method are on

resistance J49, on resistance JM116, on resistance OMe and
off current J49. These variables were also identified by the
other chemometric techniques as being important for class
discrimination (see ESM Figs. S2 and S5).

To measure the prediction accuracy (including standard
deviation, sensitivity and specificity), for each chemometric
technique, 10-fold cross-validation and bootstrapping with
replacement were employed. For these studies, 100 runs were
performed for 10-fold cross-validation and 1000 repetitions
for bootstrapping with replacement. As it is important to
enable a direct comparison between the four different classi-
fication methods, we ensured that the same data set splits were
employed. The classification models used on both methods
were validated with the test samples, and the statistical metrics
on the ability of each of the models to classify the vapours
correctly were calculated and these are summarised in Tables 1
and 2. These include the computation time, prediction accu-
racy and its standard deviation (sd), and sensitivity and spec-
ificity for each vapour. The standard deviation for each meth-
od used both for sensitivity and specificity varied between
0.01 and 0.03 for cross-validation sampling and 0.01-0.08 for
bootstrapping with replacement (data not shown). It can be
seen that all methods show similar classification ability in
terms of prediction accuracy, although these were always
slightly higher for the 10-fold cross-validation model com-
pared with the more rigorous bootstrap analysis.

Table 1 shows the comparison of different classifier
methods based on 10-fold cross-validation. In general, all four
methods used here were better than the GP (see ESM
Table S3), although we do note that the GP will not have used
the same validation splits that are used here and did not
include bootstrapping with replacement. For all methods, the
accuracy was between 81.74 and 91.66 %, the latter from the
SVM with polynomial kernel. This may be related to the
classification rule which is determined by only a small number
of training set samples called support vectors (SVs), which lie
close to the decision boundary and the specific kernel
employed [24]. Additionally, the SVM with polynomial ker-
nel approach demonstrated more consistency across each of
the vapours than LDA (the next most accurate method) and
generally resulted in a higher specificity and sensitivity in
detecting propanol. This may be related to the non-linear
mapping provided by this particular type of kernel function
used in the SVM. By contrast, it can be seen that LDA
outperforms SVM (polynomial) with respect to sensitivity
for acetone, DMMP and methanol, because these classes are
well-separated (Fig. 2a); therefore, a linear boundary appears
to be sufficient. Propanol is a little harder to predict, and it
seems that SVM with a polynomial function is better at
classifying this vapour compared to the other methods.

A closer inspection of the confusion matrices (see ESM
Fig. S3-S3) reveals that the misclassified propanol samples
are in general more likely to be assigned to the methanol class
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(and vice versa), which may be expected, as they are both
alcohols and therefore the —OH group interacts with the
chemical sensor in a similar fashion.

PLS-DA gave better results than those obtained using GP
(see ESM Table S3) with the exception of methanol sensitiv-
ity. Compared with SVM (polynomial) and LDA, PLS-DA
resulted in slightly poorer prediction accuracy but with similar
analysis speed. However, when PCA has been applied
prior to LDA following the same pre-processing procedure
as for PLS-DA, similar results have been achieved (data
not shown). This only confirms the arguments of Brereton
and Lloyd [30] that, in many cases, simpler algorithms
may provide better results and there is no need to use
more complicated techniques.

Random forests improved upon the results obtained using
GP in all areas with the exception of propanol sensitivity and
acetone specificity. However, the analysis times were much
longer (>10 times) in comparison to the other methods, and
this is due to the fact that 500 trees were computed within each
RF. The lower prediction accuracy for RF compared to SVM
and LDA may be due to the fact that RF performs better with a
larger number (typically 1000s) of input variables than with a

smaller number of variables (12 in this study), but there is no
direct evidence for this.

Table 2 shows a comparison of the classification ability of
the same four classification methods based on bootstrapping
for model validation. We believe that bootstrapping is a more
robust validation procedure, as it involves more configura-
tions of the training and test set splits (1000 in our case) and
therefore the statistics on these 1000 test set are closer to a
random selection of training test set and thus reflect the
underlying classification performance better.

The sensitivity and specificity of the models were all above
0.73, except for SVM with a sigmoid kernel which resulted in
a sensitivity of 0.64 for propanol. Yet again, SVM with
polynomial kernel and LDA display the highest prediction
accuracy of 86.39 and 88.60 %, respectively. Nonetheless, the
difference between both is much larger than that in the previ-
ous analysis based on 10-fold cross-validation, where it dif-
fered only by the first decimal place. Moreover, LDA seems to
be more consistent across all of the chemicals than SVM with
polynomial kernel, whereas for 10-fold cross-validation, it
was vice versa. For the other methods such as PLS-DA and
RF, we observe a small decrease in accuracy for all vapours,

Table 1 Comparison of the result of the different classifier methods based on 100 runs which employed 10-fold cross-validation

Method Time (s) % Accuracy (sd)  Sensitivity Specificity
Acetone DMMP  Methanol  Propanol  Acetone DMMP  Methanol  Propanol

LDA 21.59 91.56 (0.01) 1.00 0.98 0.95 0.78 0.99 0.96 0.96 0.98
PLS-DA 22.49 86.28 (0.02) 0.97 0.83 0.83 0.81 1.00 0.96 0.96 0.90
Random forests 39391 87.05 (0.01) 1.00 0.87 0.87 0.78 0.95 0.97 0.95 0.96
SVM (linear) 21.79 89.57 (0.02) 0.98 0.90 0.90 0.82 1.00 0.96 0.96 0.95
SVM (polynomial) 22.35 91.66 (0.02) 0.98 0.92 091 0.86 0.99 0.96 0.97 0.96
SVM (radial) 28.99 87.50 (0.02) 0.94 0.94 0.85 0.79 0.98 0.93 0.96 0.96
SVM (sigmoid) 28.94 81.74 (0.01) 1.00 0.88 0.83 0.64 0.95 0.94 0.94 0.92

Values are rounded to the second decimal place

sd standard deviation estimated from loop
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Table 2 Comparison of the result of the different classifier methods based on 1000 bootstraps
Method Time (s) % Accuracy (sd)  Sensitivity Specificity

Acetone DMMP  Methanol  Propanol  Acetone DMMP  Methanol  Propanol
LDA 22.40 88.60 (0.05) 1.00 0.95 0.90 0.74 0.98 0.95 0.95 0.96
PLS-DA 26.83 84.04 (0.05) 0.97 0.84 0.82 0.73 0.99 0.95 0.95 0.90
Random forests 249.68 84.66 (0.05) 0.97 0.85 0.87 0.74 0.95 0.96 0.94 0.95
SVM (linear) 23.58 85.77 (0.05) 0.97 0.88 0.84 0.76 0.99 0.95 0.95 0.93
SVM (polynomial) 3220 86.39 (0.05) 0.96 0.88 0.86 0.76 0.99 0.95 0.95 0.94
SVM (radial) 51.30 82.10 (0.05) 091 0.86 0.80 0.73 0.97 0.92 0.94 0.93
SVM (sigmoid) 43.42 79.88 (0.06) 0.97 0.84 0.81 0.64 0.94 0.93 0.94 091

Values are rounded to the second decimal place

sd standard deviation estimated from loop

whereas for SVM, all kernels gave a noticeable decrease in
model performance with the exception of the sigmoidal func-
tion. It is important to highlight the fact that bootstrapping has
a slightly higher standard deviation in comparison to 10-fold
cross-validation where the difference along all methods is
~0.04, and this is because more training and test set splits
were used.

Table 3 summarises the comparison of the four classifica-
tion approaches from this study based on both general char-
acteristics and specific findings from our work. In the first part
of the table, we present some general characteristics, which
include the following:

(1) “Visualization” refers to pictorial interpretation and un-
derstanding of the results. For the LDA and PLS-DA
models, three pluses were given, as both methods display
visible separation in terms of scores plots which contain

Table 3 Comparison of the four pattern recognition algorithms used for
vapour prediction from the chemical sensor. These comparisons include
generally known common characteristics as well as specific findings from
this study

LDA PLS-DA RF SVM

General characteristics

(1) Visualization +++ -+ ++ +

(2) Variable selection A+ +++ . +

(3) Separation performance ~ ++ ++ A

(4) Impact of collinearity + + 4+ ++
Specific findings/perceptions from this study

(1) Visualization -+ A+ ++ +

(2) Speed FHE + Tt

(3) Predictive power - ++ ++ 4t

(4) Parameter selection et ++ T+ +

All characteristics are scored out of three. Full explanations of these
characteristics are expanded in the text

@

3

“

the information about the observations (samples) and
loadings plot which provides information about key
variables. RF has received two pluses, as this method is
difficult to visualise if we have a large number of vari-
ables due to the fact that its output is an assembly of
multiple decision trees [13]. Lastly, SVM is given the
lowest score, as the separation is rather demanding in
terms of visualization and interpretation due to the pro-
jection of sample locations into high-dimensional space.
This is certainly the case when non-linear kernels are
used, although for linear kernels, visualization interpre-
tation is achievable.

“Variable selection” refers to whether the method con-
tains enough information about the identification and
ranking of potentially relevant/important variables.
Therefore, LDA, PLS-DA and RF received the highest
results, as all provide an opportunity to extract relevant
information from the model in terms of variable impor-
tance. By contrast, SVM cannot be used on its own for
feature selection, unless it is combined with recursive
feature elimination [45].

“Separation performance” of the models has been scored
according to the ability of each of the supervised learning
algorithms to solve linear and non-linear problems;
therefore, LDA and PLS-DA scored two pluses, as both
techniques rely on linear mapping from inputs to outputs.
RF scored +++, as the procedure can be implemented
both for linear and non-linear problems. Finally, SVM
receives the same score (+++) as RF, as SVM apply
straightforward linear separation to the data after
projecting the input data to a high-dimensional feature
space wherein classes are now linearly separable. This
ability is especially useful when one has to deal with
e-nose data that include overlapping classes as shown
by Pardo and Sberveglievi [16].

“Impact of collinearity” in this study indicates the
strength of the model towards collinearity in the data
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set. Collinearity refers to the event in which two or more
predictor variables in the analysed data set are highly
correlated, and therefore it is difficult to estimate which
of them influence the prediction accuracy. According to
the above characteristic, LDA was given one plus, as the
method is not the best approach when one needs to
analyse the highly collinear data set. However, this ob-
stacle as mentioned in the “Materials and methods”
section can be circumvented by application of PCA or
stepwise forward variable selection. These statistical
techniques reduce the problems of collinearity but can-
not entirely terminate them. PLS-DA, SVM and RF
received the highest scores (+++), as all are resistant to
collinearity of the data. Therefore, these approaches
should be favoured when analysing highly collinear e-
nose data set.

As for the second set of statements in Table 3, we review
specific findings/perceptions from this study. As a result, we
conclude the following:

(1) Visualization is where we evaluated the characteristics
based on visualisation and ease interpretation. Here, our
findings reflect general characteristics that have been
described above.

(2) “Speed” summarises the time that was needed for the
calculations. Here, LDA and PLS-DA receive the same
score (+++), as both are computationally fast (<5 s; see
Tables 1 and 2 for details). RF has received one plus, as
the time taken for calculations was the longest, and this is
because of the large number of trees (500) that need to be
grown in each forest. Finally, SVM scored ++, as the
method depends on different kernels and these affect
computational intensity (Tables 1 and 2).

(3) “Predictive power” scores are based on the prediction
accuracy, and these reflect the findings discussed in the
paper and summarised in Tables 1 and 2. Whilst all score
well as LDA generally performed better, we have given it
the highest score.

(4) Finally, a “parameter selection” characteristic is used to
indicate how easy or difficult it is to tune the internal
parameters within each model. Therefore, LDA is the
best approach for our data, as no parameters have to be
adjusted as all X data are used. The reason that PLS-DA
scores two pluses is due to the fact that we have to
optimize the number of latent variables (LVs), and these
LVs are optimised during each bootstrap iteration. Whilst
RF does include several parameters that need to be
optimised, it has been reported by Liaw and Wiener
[42] that the default RF parameters are generally suffi-
cient, and whilst we did alter these parameters, they did
not improve the prediction accuracy (data not shown).
Finally, SVM were given the lowest score, as these

@ Springer

methods require considerable optimization of several
parameters as performed within this studied.

Conclusions

We have compared four chemometrics methods with two
common model validation approaches—10-fold cross-
validation and bootstrapping with replacement—for the clas-
sification of data acquired from e-nose sensors. LDA, PLS-
DA, RF and the four SVM all generated very good predictions
for the four different vapours and, in general, outperformed
the GP. LDA and SVM with a polynomial kernel were found
to give the best overall model performance, whilst the SVM
with a sigmoidal kernel gave the worst prediction accuracy
results.

It has previously been shown that parameter selection for
SVM has a big influence on prediction accuracy [24, 43, 46].
We have confirmed this and have shown that careful param-
eter selection for the four SVM (see ESM Table S2) resulted in
a noticeable improvement in the prediction accuracy.

There is of course a subjective trade-off between get-
ting a model that works and assessing model performance.
The latter is usually more computationally expensive but
gives one credibility in the data generated and the chemo-
metric predictions based on such data. In this study de-
sign, we employed a sufficient number of training sets
(especially for bootstrapping) in order to gain confidence
in the performance of the models tested. Moreover, this
enabled direct and objective comparison between the four
different algorithms used for supervised learning.

Taking both validation methods into account for these
e-nose data, we conclude that LDA and SVM with poly-
nomial kernel provides the best overall results and can be
considered as a good choice when analysing these types
of data. In addition, the results show that the methods are
satisfactorily stable and the time taken for measurements is
relatively low. However, we do note, as discussed in [30,
39], that caution needs to be taken when applying LDA to
highly collinear data and that it may be appropriate to
remove this collinearity using PCA prior to LDA. In
addition, as demonstrated in this study, if one wants to
analyse the highly collinear or non-linear e-nose sensor
data, our findings recommend that SVM with a polyno-
mial kernel should be favoured as a classification method
over the other statistical models that we tested.
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