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Abstract Multi-analyte immunoassays on microarrays and
on multiplex DNAmicroarrays have been described for quan-
titative analysis of small organic molecules (e.g., antibiotics,
drugs of abuse, small molecule toxins), proteins (e.g., anti-
bodies or protein toxins), and microorganisms, viruses, and
eukaryotic cells. In analytical chemistry, multi-analyte detec-
tion by use of analytical microarrays has become an innova-
tive research topic because of the possibility of generating
several sets of quantitative data for different analyte classes in
a short time. Chemiluminescence (CL) microarrays are pow-
erful tools for rapid multiplex analysis of complex matrices. A
wide range of applications for CL microarrays is described in
the literature dealing with analytical microarrays. The moti-
vation for this review is to summarize the current state of CL-
based analytical microarrays. Combining analysis of different
compound classes on CL microarrays reduces analysis time,
cost of reagents, and use of laboratory space. Applications are
discussed, with examples from food safety, water safety, en-
vironmental monitoring, diagnostics, forensics, toxicology,
and biosecurity. The potential and limitations of research on
multiplex analysis by use of CL microarrays are discussed in
this review.
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Introduction

Microarray technology is an emerging field of analytical
chemistry and a powerful analytical tool for simultaneous
detection of several analytes in a single sample. A microarray
consists of a matrix of reactive spots on a supporting material.
(Bio)chemically selective receptors (e.g., antibodies, DNA,
aptamers, lectins, membrane receptors, enzymes, cells, or
molecularly imprinted polymers) can be deposited by
microdispensing and can be immobilized on a surface by
physical or chemical interactions. The spots generated have
diameters in the micrometer range. Hundreds or more
(bio)analytical reactions can be performed on an area of one
square centimeter. The reaction on each spot is traceable by
knowing the position of each selective receptor. Multi-
analysis by use of analytical microarrays has become an
innovative research topic in analytical chemistry, because of
the possibility of generating several sets of quantitative data
for different classes of analyte in a short time. Applications
described in the literature deal with pharmaceuticals, drugs of
abuse, toxins, allergens, proteins, and (pathogenic) microor-
ganisms and viruses. Multi-analyte quantitative methods are
important if a group of analytes must be quantified. For many
different analytes, critical levels in food and water safety are
defined. Forensics, diagnostics, and biosecurity are other
fields in analytical chemistry in which multiplex analysis is
valuable. Small organic molecules, proteins, microorganisms,
and viruses can be quantified by use of microarray immuno-
assays (MIAs). Nucleic acids of microorganisms, viruses,
or eukaryotic cells can be analyzed by use of nucleic
acid amplification tests (NATs). For multiplex measure-
ment, hybridization assays on DNA microarrays can be
performed. The principle of the test, i.e. combined
nucleic acid amplification and DNA microarray analysis
can be abbreviated to NAMA (nucleic acid amplifica-
tion and microarray analysis).

Published in the topical collection Analytical Bioluminescence and
Chemiluminescence with guest editors Elisa Michelini and Mara
Mirasoli.

M. Seidel (*) :R. Niessner
Chair for Analytical Chemistry and Institute of Hydrochemistry,
Technische Universität München, Marchioninistraße 17,
1377 München, Germany
e-mail: michael.seidel@ch.tum.de

Anal Bioanal Chem (2014) 406:5589–5612
DOI 10.1007/s00216-014-7968-4



Analytical microarrays have been refined in different ways
in the last 20 years. Static-incubated segmented microarrays
and flow-injection-based microarrays have been investigated.
Techniques are available for automated processing of analyt-
ical microarrays [1]. Analytical microarrays can be differenti-
ated by the readout system used, and fluorescence [2], elec-
trochemical [3, 4], chemiluminescence (CL) [5–8], or label-
free microarray readout systems [9–11] have been used. This
review focuses on CL microarrays. CL is based on generation
of photons by a chemical reaction. Photons produced on each
spot of the microarray are detected with appropriate spatial
resolution by use of optoelectronic imaging sensors.

As depicted in Fig. 1, microarray technology covers the
entire process used for quantitative analysis by use of CL
microarrays, including microarray manufacturing, measure-
ment techniques for microarray readout, establishment of
multi-analyte assays, and processing of several sets of quan-
titative data.

Establishment of CL-based analytical microarrays has in-
volved research in engineering, analytical chemistry, and bi-
ology. Current research on multi-analyte applications using
CL microarrays is reviewed. Applications in a variety of end-
user industry is envisaged, for example, use by veterinarians,
physicians, food chemists, pharmacologists, toxicologists,
quality-control inspectors, in the pharmaceutical, food, and
water industries, and in diagnostic applications.

Detection principle for CL microarrays

The generation of photons by chemical reaction is called
chemiluminescence (CL). A metastable intermediate is pro-
duced by the reaction and CL molecules are chemically ex-
cited. On return to the ground state, some of the chemical
energy is converted to electromagnetic energy. The reaction
can be initiated by enzymes or purely chemical [12]. The
intensity of CL (ICL) emission depends on the rate of the
chemical reaction and on the overall efficiency of the CL
reaction (ΦCL) [13]. The direct proportionality of ICL to the
concentration of a limiting reactant is used for analytical
purposes. CL microarrays use a CL reaction that is localized
on each spot of the microarray [14]. A limiting reagent (the
“label”) on each spot of the CL microarray produces a CL

signal that correlates quantitatively with the amount of label.
Analytes can be quantified after calibration with multiplex
standards. The CL readout process is illustrated in Fig. 2 as
an example of flow-based microarrays.

A limited number of CL microarrays using alkaline phos-
phatases, luciferase, or β-galactosidase as alternative CL la-
bels for CL microarrays have been described in the literature
[7]. Horseradish peroxidase (HRP) is the most widely used
enzyme [15]. HRP-conjugated receptors, for example anti-
bodies or streptavidin, bind specifically on each immobilized
antigen spot of the CL microarray. The CL substrate luminol
reacts with H2O2 and hydroxide ions in the presence of HRP
as catalyst. Luminol reagents and hydrogen peroxide are
mixed before the microarray is incubated for CL measure-
ment. The light emitted by the unstable CL product is related
to the diffusion coefficient and CL occurs when HRP is very
close to the enzyme label. To obtain sharp, rounded microar-
ray spots the liquid must remain stationary during the mea-
surement. Light is emitted at 425 nm and is imaged over a
defined decay time between 1 s and some minutes by use of a
digital imaging system, for example a CCD camera. The
chemical reaction yields 6-aminophthalate (6-APA) in a sin-
glet excited state that decays to the ground state by emission of
photons. The overall quantum yield of the CL reaction is
between 0.001 and 0.1 [16] and can be increased by use of
luminol analogs and enhancers, for example p-iodophenol
(PIP) [17], 4-(1-imidazolyl)phenol [18], or other p-phenol
derivatives [19]. The compounds p-phenylphenol and sodium
tetraphenyl borate are used as synergistic enhancers [20], and
K3Fe(CN)6 is used as an electron mediator [21]. Costly com-
mercial CL reagent kits are available with defined mixtures of
enhancers and stabilizers. Compared with other microarray
readout principles, the highest measurement cost is that of the
CL reagent. The sensitivity of an HRP-based CL reaction is
increased by higher temperatures [22]. Multi-HRP labels are
more effective initiators [23, 24]. Rough gold surfaces pre-
pared by pulsed-laser deposition enhance the HRP-dependent
CL reaction as a result of optical and catalytic effects [25, 26].
High-reproducibility CL-based multi-analyte methods can be
achieved only by use of an invariant CL reaction. Stabilizers
are therefore added so the CL reagent can be stored at room
temperature in dark vessels for a full working day without loss
of CL efficiency (ΦCL) [27]. Reproducibility depends on

Fig. 1 The procedure for
analytical microarrays includes
microarray manufacture,
measurement techniques for
microarray readout, establishment
of multi-analyte assays, and
processing of multiple sets of
quantitative data
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enzyme activity. Constant temperatures on the microarray
chip are therefore necessary for constant enzyme activity
and reproducible CL signals. This is especially important if
portable measurement systems are developed for use in the
field.

Two-dimensional imaging systems for CL microarrays are
usually based on CCD camera observation [28, 72]. The
sensitivity of these microarrays depends on reaction time,
surface chemistry, the sensor chip of the digital camera used,
and the construction of the microarray readout system. As for
any enzyme reaction, product formation depends on reaction
time. If the background signal is zero, greater sensitivity can
be achieved by use of a longer incubation time, because of
increased light integration by the CCD camera. However,
longer integration times increase the background signal
caused by dark current noise. Cooled CCD cameras with
low dark current are therefore needed. Construction of the
CLmicroarray readout systemmust be optimized to minimize
the number of photons entering the CCD chip from outside.
Optical lenses are used to achieve high spatial resolution.
However, the efficiency of collection of the photons is limited
by optics.

Rapid multiplex on-site analysis for patients (point-of-care
diagnostics), suspect persons (forensics), or for quality control
of food and water are important research topics in analytical
chemistry. Low-cost and miniaturized readout systems are
needed with portable and inexpensive instrumentation. The
possibility of constructing simple optics for a CL microarray
readout encourages research on alternative CL imaging sys-
tems. A lensless imaging system for CCD and CMOS sensors
has been investigated [29]. A fiber optic taper was placed in

contact with the CCD camera, resulting in efficient light
collection. The differences between CCD-based lensless im-
aging and conventional imaging were analyzed on the basis of
the detection limit of HRP in solution; LODs were 2.3 and 5.7
pmol L−1, respectively. The sensitivity was lower, LOD 28
pmol L−1, for the CMOS sensor in the lensless configuration.
A photodiode array with 32 photodiodes on a 4×8 grid was
investigated for an integrated CL microarray readout [30].
Small portable instruments can be built by integration of the
readout system on CL microarrays. Limitations are the flexi-
bility of multi-analyte assay design and the cost of disposable
components of the microarray chip. Organic photodiodes
(OPDs) are a solution for cheap readout layers for hand-held
CL-microarray instrumentation [31].

Microarray technology for CL microarray chips

Microarrays are produced by using microdispensing devices to
deposit small volumes in the range between picoliters and
nanoliters, creating a matrix of spots on a micrometer scale
[32]. Besides many other microdispensing principles, contact
and ink-jet printers are primarily used [33]. The pins or nozzles
are moved very precisely by use of a robot system. Contact
printers are more robust than ink-jet printers, but slower. Contact
printers are more useful for research applications with small
numbers of microarrays. Ink-jet printers are faster but suscepti-
ble to clogging of the nozzle. The spotting solution contains the
capturing molecules (e.g., antibodies, DNA, or haptens) and
supplements for yielding homogeneous signals per spot, possi-
ble only if the immobilizing molecules in the droplet at each
spot are uniformly dispersed. For proteins, such additives as
trahalose and sorbitol are important to prevent dried spots. DNA
is dissolved in aqueous solutions, and haptens are dissolved in
mixtures of water and organic solvents. Both classes of mole-
cule should dry on the microarray substrate. For the spotting
process, defined humidity between 40 and 70 % is important.

The simplest method of immobilization of proteins, for
example antibodies, on CLmicroarrays is by use of adsorption
mechanisms. Different supporting material, for example
nitrocellulose-coated glass slides [34], polystyrene [35], or
other plastic materials [36], are used as substrates for CL
microarrays. The advantage of this method is that limited
surface chemistry is needed. If sensitivity and reproducibility
are not the limiting factors, direct immobilization of capturing
agents could be favorable for multiplex assays. Sera or food
matrices often produce a CL signal with a large offset [37].
Therefore, intensive surface blocking steps, by use of adsorp-
tion, are necessary to minimize unspecific binding of assay
reagents and CL labels.

Analytical applications place severe demands on the man-
ufacture of microarray chips. Intra-assay variance is deter-
mined by redundant measurements of one analyte species on

Fig. 2 Principle of CL imaging by measurement of a localized HRP-
catalyzed reaction by use of a CCD camera
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one microarray chip. The homogeneous distribution of
immobilized molecules on each spot must therefore be char-
acterized and optimized by 2D imaging, for example the
method published by Wolter et al. for CL antibody microar-
rays against HRP [38]. CL signals detected beside the spot
area should be minimized to achieve high signal-to-noise
ratios. Nonspecific bound CL labels on the surface of the
microarray can result in background signals and must be
avoided. Therefore, more complex surface chemistry is nec-
essary for CL-based analytical microarrays. An effective link
between the substrate and the recognition element should be
implemented for each microarray-supporting material. Glass-
based microarray chips are silanized with, e.g., 3-
glycidyloxypropyltrimethoxysilane (GOPTS) as an initial
stage of functionalization [39]. A shielding layer is introduced
to minimize nonspecific binding outside the microarray spots.
Intensive research on polymer brushes [40], hydrogels [41,
42], and dendrimers [43, 44] has therefore been performed by
many research groups. For CL flow-based microarrays,
Jeffamine 2000 was found by our group to be the best
shielding layer for producing high signal-to-noise ratios.
Polyoxypropylenediamine (diamino-PEG) surfaces on glass
slides have been shown to be enable signal-to-noise ratios of
mo r e t h an 600 : 1 f o r HRP as CL l ab e l [ 38 ] .
Polyoxypropylenediamine is a diamino-PEG consisting of a
bifunctional primary amine of average molecular weight ap-
proximately 2000 gmol−1. The amine groups of diamino-PEG
are located on the secondary carbon atoms at the ends of an
aliphatic polyether chain. The terminal amine groups serve as
functional groups. The last functionalization step is necessary
for cross-linking of recognition elements. Aldehyde, epoxy, or
NHS-activated microarray chips are used mainly for the co-
valent linkage [45, 46]. Diamino-PEG surfaces are either
activated by the homobifunctional crosslinker poly(ethylene
glycol)diglycidyl ether (diepoxy-PEG) or (N ,N -
disuccinimidyl) carbonate (DSC). DSC-activated microarray
chips are highly suitable for DNA [47] or antibody [48]
immobilization, because of the terminal primary amines pres-
ent in both types of biomolecule.

Microscope glass slides are the cheapest available substrate
material. In contrast with fluorescence microarrays, no back-
ground signal from the microscope glass slide substrate can be
tolerated. The quality of the glass slides is, therefore, highly
significant for the surface chemistry. Another important point
is flexible chemical treatment of glass slides by use of layer-
by-layer surface chemistry. Different linkers and coating poly-
mers in solvents or water can be chosen for development of
optimum surface chemistry. A disadvantage is the cost-
intensive manufacturing process by wet-chemical surface
chemistry. Regarding production costs of CL microarrays,
costs of pure organic solvents and labor are the main factors
in the final price. For fully automated fabrication of microar-
ray chips, research on alternative surface chemistry, for

example chemical vapor deposition would be necessary
[49]. Aluminium oxide and plastic material could be an alter-
native to glass [50]. However, the possibility of achieving
greater sensitivity on glass slides for CL microarray analysis
as a result of the high signal-to-noise ratio should not be
neglected.

Marquette and Blum have mentioned that, besides fluores-
cence, CL microarrays have greater sensitivity and dynamic
ranges than colorimetric and label-free multiplex immunoas-
says [6]. For example, a study was conducted to compare the
sensitivity of CL microarrays on PEGylated microarray glass
slides with 96-well polystyrene plates and nitrocellulose test
strips for colorimetric readout. The same antigens were
immobilized on each substrate. An antibody-capturing assay
was conducted for an antibody against infectious diseases in
swine sera. CLmicroarrays were shown to be more sensitivity
and have wider dynamic ranges than ELISA or lineblot im-
munoassays (LIAs), as shown in Fig. 3 [51].

CL microarray analysis techniques and applications

Depending on the analysis, either segmented CL microarrays
or flow-based CL microarrays are used. Static-incubated CL
microarray analysis uses open reaction wells. Reagents are
placed on top of the CL microarray. Between assay processes,
intensive washing steps needed to reduce background signals.
The equilibrium state should be achieved in each reaction
vessel for each incubation process. This is the time-limiting
process in static incubated CL microarrays. Microarrays are
imaged either through the CL reagent solution or from beneath
the well. Open systems, for example CL microarrays in
microwell plates, have the potential for high-throughput

Fig. 3 Comparison of antibody-capturing immunoassay based on CL-
MIA on diepoxy-PEG-activated, diamino-PEG-coated glass slides, LIA
on nitrocellulose test strips, and colorimetric ELISA on 96-well polysty-
rene plates
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analysis [16] if fluid handling is performed in parallel by use
of relatively large pipetting robots (Fig. 4).

Static MIAs need a longer incubation time than flow-based
microarrays because equilibrium must be achieved in each
well. For rapid analysis in flow-based configurations, only a
short incubation is performed in solution and at the spot.
Measurements are conducted without reaching an equilibrium
state, only possible with automated processes because the
velocity and volumes should be recorded very accurately. A
stop–flow mode could be chosen if a longer reaction time is
needed [53]. In both configurations, endpoint measurements,
only, are possible, because washing steps are necessary be-
tween the affinity reaction on the microarray and the CL
readout.

In general, any test format suitable for single-analyte
applications can be converted for use with multi-analyte
CL microarray assays. Assay formats are discussed for
flow-based microarrays because applications are pub-
lished for all of the test formats. Small organic mole-
cules are quantified by competitive MIA. The analyte
itself or a derivative is immobilized. Small molecule
microarrays have the advantage that regenerable MIAs
can be performed, reducing the cost per microarray chip
because each CL microarray can be calibrated and used
for several measurements. Protein-conjugated haptens
are immobilized, however, so the microarray is non-
regenerable and useable for a single measurement only.

Directly competitiveMIAs use immobilized antibodies and
labeled hapten derivatives. The antibody microarrays are
single-use microarrays. The advantage is that the immobiliza-
tion procedure for each analyte is not changed, and data
processing is easier. However, for automated and continuous
analysis of samples, regenerable CL microarrays are
preferable.

Antibody capture or indirect non-competitive MIA is a
common assay format for quantification of antibodies in blood
serum [54]. This format is transferred to multiplex microarray
analysis by production of antigenmicroarrays. For this format,
species-specific HRP-conjugated secondary antibodies are
needed.

Analytes that contain more than one binding site for anti-
body detection (e.g., microorganisms and proteins) are quan-
tified by sandwich immunoassays. This assay format is trans-
ferred to multiplex microarray analysis by creation of anti-
body microarrays. The capturing antibodies are immobilized
on the microarray chip to bind the analytes selectively. Detec-
tion antibodies are used to create a sandwich of antibodies and
analytes on each spot. Detection antibodies are directly con-
jugated to HRP or biotinylated antibodies are used, requiring a
second assay step with streptavidin-labeled HRP.

For molecular biological multi-analyte detection, quantita-
tive analysis of DNA is performed by using oligonucleotide
microarrays and the NAMA principle. DNA probes are
immobilized for hybridization of the complementary DNA
of labeled single-stranded target DNA sequences. Hybridiza-
tion products on each spot of the microarray are detected by
antibodies against the label used.

Static-incubated MIAs

Static-incubated CL-MIAs on flat microarray substrates were
introduced by Joos et al. for multi-analyte detection in clinical
diagnostics [55]. Eighteen autoantigens were immobilized by
ink-jet microdispensing on nitrocellulose, poly-L-lysine, and
aldehyde-coated glass slides. Microarrays on nitrocellulose
provided the most sensitive assay; the lowest detectable
amount of microdispensed antigen was 8 fg per 0.25 nL, and
the detection limit was approximately 0.2 μmol L−1.

Fig. 4 Evidence biochip array
analyzer (reprinted from Ref.
[52])
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However, dispensing such small volumes in routine diagnos-
tic laboratories is not practicable. A sandwich MIA on nitro-
cellulose membranes was evaluated for detection of 24 cyto-
kines in the serum of a patient [56]. Hybondmembranes could
be used to detect cytokines down to 5 pgmL−1. The sensitivity
was lower and the detection range greater than for colorimetric
ELISAs as references. In another study, a poly(vinylidene
difluoride) (PVDF) membrane was used for immobilization
of capture antibodies dissolved in methanol [57]. Thirty-five
cytokines were quantified in cell lysates and tissue lysates.
The author mentioned that nitrocellulose membranes produce
high background signals when cytokines are analyzed in cell
or tissue lysates. With PVDF membranes, the lowest detect-
able concentration was 0.1 pg mL−1 MIP-1δ, which was a
factor of 20 better than for conventional ELISA technology.
The detection limit of heat-killed pathogenic bacteria was
similar for sandwich MIAs and conventional sandwich
ELISAs [58]. The author stated that poly-L-lysine-coated glass
slides generated lower background signals than nitrocellulose-
coated glass slides. Use of flat microarray slides is not prefer-
able for practical analyses because the incubation and washing
steps are conducted manually in an undefined setup. Because
these procedures typically result in poor reproducibility, static-
incubated MIAs in wells or tubes were studied. A filtration-
assisted microarray in 96-well plates was introduced for
screening of autoimmune antibodies [59]. The wells contained
nitrocellulose and/or cellulose acetate membranes in the bot-
tom of the wells. Mass transport limitations should be over-
come by filtration-assisted processing of MIAs. The indirect
antibody-capturing MIA was processed by use of vacuum
pumps. The antibodies in sera were sucked into the membrane
filter. Protein microarrays were read with a CCD camera from
the underside of the 96-well plate after an assay time of
95 min. The results obtained for the filtration-assisted indirect
antibody-capturing MIA were in good agreement with con-
ventional ELISA. Moody et al. used the bottom of 96-well
polystyrene plates for a sandwich MIA with nine capture
antibodies against cytokines for high-throughput screening
of anti-inflammatory compounds [60]. Further applications
of the CL microarrays in 96-well plates have been reported
for serological diagnosis of autoantibodies from rheumatoid
diseases [61] and fromM. bovis infections in cattle [62] by use
of indirect antibody-capturing MIAs. In another study, six
cytokine biomarkers were analyzed by use of a sandwich
MIA in 96-well plates. The method was quantitative and
reproducible, with an intra and inter-assay accuracy between
70 % and 130 %, and assay precision of <30 % [63]. Sand-
wich MIA and conventional ELISA were compared. High
correlation coefficients (>0.9) were obtained for five mea-
sured analytes. A lower correlation coefficient was obtained
for one analyte. Cross reactivity between antibody pairs and
proteins other than the target proteins were responsible for
lowering the correlation coefficient. This result confirms that

measurement costs and time can be saved by multi-analyte
approaches. However, intensive research on a suitable group
of antibodies with low cross-reactivity in multiplex immuno-
assays is needed. Therefore, greater investment of both time
and money is necessary for development of multiplex immu-
noassays compared with assays for single-analyte
measurements.

A sandwich CL-MIA for detection of E. coli O157:H7,
Y. enterocolitica, S. typhimurium, and L. monocytogenes in
food was performed in a 96-multiwell plate with four subwells
in each well [35]. The standards for calibration and the sam-
ples were measured simultaneously. Bovine meat and fecal
samples were spiked with bacteria. The samples were culti-
vated for 9 h before the CL sandwich MIA was performed.
Four pathogenic bacteria were quantified in parallel, with a
limit of quantification of the order of 104–105 CFU mL−1.
Incubation time both for the analytes and for the HRP-labeled
detection antibody was 30 min. Intensive washing after the
incubation steps, for an unspecified time, was needed. This
CL-MIAwas limited to four analyses. The advantage was that
one-quarter of the amount of reagents was consumed com-
pared with conventional single-analyte ELISA.

Microarrays in single reagent tubes instead of multiwell
plates have been investigated for CL-MIA [64]. Antibodies
were immobilized with the highest efficiency on epoxy-coated
glass substrates. Biotoxins, inactivated bacteria, and viruses
in a sandwich format for multiplex analysis of biowarfare
agents were quantified in 1.5 h. The CL signal was
generated after incubation with streptavidin-poly-HRP.
Washing and pipetting were performed manually. Incuba-
tion was performed with a horizontal tube shaker. The
detection limits for viruses (TCID50 means 50 % tissue
culture infection dose), bacteria, and protein biotoxin were
6×102–5×106 TCID50 mL−1, 5×103–2×106 CFU mL−1,
and 0.1–0.2 ng mL−1, respectively. Microarrays in tubes
were an alternative to microwell plates for static-incubated
CL-MIAs. The limitation was practicability, because of the
lack of a fully automated process.

A disposable screen-printed microarray chip has been de-
veloped for point-of-care (POC) diagnostics [65]. Myoglobin,
cardiac troponin I, C-reactive protein, and brain natriuretic
peptide were analyzed by use of a sandwich CL-MIA in
25 min. Dynamic ranges of 0.5–50, 0.1–120, 0.2–20, and
0.67–67 mg L−1 were obtained for C-reactive protein, myo-
globin, cardiac troponin I, and brain natriuretic peptide, re-
spectively. The capture antibodies were electrochemically
grafted on to the screen-printed microarray by electro-
addressing of the diazotized aniline derivatives. Nanostruc-
tured gold was used as the conducting material, enhancing the
CL signal [38]. The screen-printed microarray chip was lim-
ited to a maximum six spots. Automated processing was not
discussed, even though automated processing is especially
important for the POC diagnostics.
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The first commercially available automated CL microarray
analysis was the Evidence Biochip Array Analyser from
Randox Laboratories (Belfast, UK). The system was devel-
oped initially for the clinical diagnostics market. The product
comprises a fully automated dispensing station for reagent
supply, washing solutions, and sample introduction [52]. An-
tibody microarrays, mainly, were performed in static-
incubated sandwich or direct CL-MIA test formats. The
single-use plastic carrier holder contains 3×3 microarray
chips. On each chip, 5×5 spots are microdispensed by ink-
jet technology. The capture antibodies are immobilized on an
alumina substrate activated with a mixture of GOPTS and N-
ethyldiisopropylamine. A sandwich MIA was designed for
analysis of 12 cytokines. The assay process included incuba-
tion of the analytes for 1 h on a thermoshaker, followed by
overnight incubation. After washing, the detection antibodies
were also incubated for 1 h. The LOD was between
0.12 pg mL−1 for IL-2 and 2.12 pg mL−1 for IL-4 [66]. A
wide range of multiplex applications has been published,
including screening for 20 anthelmintic drugs in milk and
muscle samples [67], drugs of abuse in meconium specimens
[68], and nitrofuran metabolites [69] and sulfonamides [70,
71] in honey. Small molecules were analyzed in 100 min by
direct competitive MIAs. The Randox Evidence Investigator
used was a non-automated microarray analysis system. Re-
agent dispensing and washing steps were performedmanually.
All results are listed in Table 1. Static-incubated CL microar-
rays can easily be run in parallel for high sample throughput.
Lengthy incubation and washing steps are the disadvantage of
this technology.

Analysis based on CL flow-based microarrays

Use of CL imaging as a detection technique for flow-based
antibody microarrays was first described by Weller and
Niessner [72]. Flow channels on the microarray are processed
with fluidic systems by use of pumps and valves. With flow-
based microarrays, research on automated and rapid multiplex
analysis has led to the concept of portable, decentralized,
multiplex microarray analysis as the next generation of appli-
cations suitable for research in analytical chemistry.

The first instrumentation for processing CL flow-based
microarrays by use of a fluidic system with tubing, pumps,
and valves was designed for detection of small organic mol-
ecules by indirect or direct competitive MIAs [72]. The mi-
croarray chip was called a parallel affinity sensor array
(PASA). The PASA system consisted of six syringe pumps,
a set of tubing, an autosampler, and a dark chamber for
readout of the microarray chip by use of a CCD camera.
Triacines, trinitrotoluene (TNT), and fluorescein were NHS-
activated before being microdispensed on N-(2-aminoethyl)-
3-amimopropylmethyldimethoxysilane-coated microscope
glass slides. The principle of regeneration of immobilized

stable chemical molecules was introduced for the first time
for CL microarrays. Calibration for atrazine and TNT was
performed on one microarray chip, resulting in detection
limits of 0.04 μg L−1 and 0.13 μg L−1, respectively. Total
assay time was 29 min, including the regeneration step. The
PASA system was also convenient for multiplex diagnosis of
allergies. A total of 24 preparations of recombinant or purified
allergens were immobilized on GOPTS-coated glass microar-
ray chips for screening of allergen-specific IgE. The antibody-
capturing CL-MIAwas performed by static incubation during
flow-based CL analysis in less than 1 h [73, 74]. Detection
limits between 0.16 and 1.9μg L−1 were achieved for different
allergen-specific IgEs.

The same group has developed a second-generation auto-
mated CL microarray analysis system [75]. The so-called
Immunomat consists of eight syringe pumps, a set of tubing,
and a CL-detection system. The flow cell comprised a glass
carrier with inlet and outlet connections and a silicone seal that
contained the cut-out flow channel. The Immunomat has
shown, for the first time, that very fast indirect competitive
MIAs are possible with a flow-based configuration. Ten anti-
biotics in milk were quantified in 5 min. Detection limits
ranged from 0.12 μg L−1 (cephapirin) to 32 μg L−1

(neomycin). Each hapten was conjugated to proteins before
immobilization onGOPTS-coated glass slides. In this manner,
the immunogens for antibody production could be utilized
directly for protein microarray production. The disadvantage
was that the indirect competitive MIA was not regenerable
and, therefore, the cost of quantification of antibiotics in milk
was high, and the analysis with several chips was found to be
better. The same instrumentation was used for quantification
of bacteria by sandwich MIA. A shielding layer for poly(eth-
ylene glycol)-coated glass slides was introduced for CL anti-
body microarrays and resulted in high signal-to-noise-ratios
[38]. Heat-inactivated S. typhimurium, L. pneumophila Sg 1,
and E. coliO157:H7were quantified in parallel in 13min with
detection limits of 3×106 cells mL−1, 1×105 cells mL−1, and
3×103 cells mL−1, respectively [48]. For quantification of
viable E. coli cells, a stop-flow process was performed on
the Immunomat [52]. The method, with alternation of resting
volume elements and elements for forward pumping, was
more effective than continuous-flow approaches for analysis
of bacteria. Flow-based microarrays have the advantage that
the assay processes can be adapted very easily to the associ-
ation and dissociation constants of the affinity reactions be-
tween antibody and antigen. For this approach, optimum
conditions were 30 pumping cycles with a volume of 20 μL
(one-third of the flow cell of the microarray chip) and a break
of 108 s for every pumping cycle. With these conditions, the
sandwichMIA achieved a detection limit of 4×105 cells mL−1

for living E. coli cells. When the same antibodies were used, a
conventional CL-ELISA on microwell plates had a detection
limit of 5×106 cells mL−1 and an assay time of 3 h [76].
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However, the total analysis time, 67 min, was greater than that
for analysis of heat-inactivated bacterial cells, discussed
above. The principle was applied to quantification of
L. pneumophila Sg1 in bioaerosols [77]. A detection limit of
1×103 cells mL−1 was achieved for purified water, a hundred-
fold increase in sensitivity. For bioaerosol measurements,
bacteria were nebulized in a simple aerosol chamber then
collected by use of a wetted wall cyclone Coriolis μ. This
combination of impingement and multiplex microarray anal-
ysis was characterized by use of bioaerosols containing
inactivated L. pneumophila Sg1. The detection limit obtained
experimentally for heat-inactivated L. pneumophila Sg1 was
4×103 cells m−3.

On the basis of the Immunomat system, a new fluidic setup
for flow-based DNA microarrays was created [47]. In a first
proof-of-principle study, the general detection limit of a hy-
bridization assay on CL flow-based oligonucleotide microar-
rays was characterized. The surface chemistry was optimized
for diamino-PEG-coated microarray chips. NHS-activated
surfaces were identified as the most promising substrate. After
optimization of the surface chemistry and microcontact print-
ing of DNA probes, synthesized biotinylated 25-mer oligonu-
cleotides were hybridized on DNA microarrays by use of a
flow-injection system. A detection limit of 500 fmol L−1 (40
oligonucleotides mL−1) was achieved by CL imaging in
15 min. When a microarray flow cell and CL imaging with a
CCDwere used, the systemwas faster and more sensitive than
other published CL oligonucleotide-microarray analysis
methods [78–80]. In a second step, it was necessary to study
the analysis of PCR products. These amplified DNA se-
quences are typically longer (100–1000 bp) and double-
stranded. Sensitivity and analysis time of the hybridization
assay on the CL microarrays were, therefore, degraded. For
quantitative analysis of PCR products, the cycling was
stopped at the reaction point, when the spread between the
different starting amounts of target DNA had reached a max-
imum. A combination of the so-called stopped PCR and CL
oligonucleotide microarrays was shown to generate quantita-
tive results for PCR products. Single-stranded PCR products
were generated by boiling and subsequent cooling on ice. A
flow-based hybridization assay was performed in 7 h, because
the hybridization reaction on the oligonucleotide microarrays
had to be repeated 20 times. The incubation time needed was
similar to that of automated hybridization instrumentation for
DNAmicroarray analysis [81–83]. The advantage of the flow-
injection-based analysis was the direct coupling of the detec-
tion unit to the oligonucleotide microarray. The detection limit
for the gene uidA (β-galactosidase) of E. coli was 1.1×105

copies mL−1 [47]. A process scheme for accessing single-
stranded DNA quantitatively after stopped PCR was
established to reduce the assay time. Three waterborne path-
ogenic bacteria, E. coli O157:H7, S. enterica, and C. jejuni,
were used as model organisms for this approach [84]. The

procedure started with a dilution series of the heat-inactivated
bacterial cells in water. The bacterial cells were lysed in a PCR
cycling instrument at 95 °C for 15 min before the PCR was
started. The amplification was stopped at the logarithmic
phase of the PCR. Single-stranded DNA was generated by
magnetic nanoparticle separation (MNS). A reverse primer
labeled with biotin for MNS and a forward primer labeled
with digoxigenin (DIG) were used. The DIG-labeled single-
stranded PCR products were quantified on oligonucleotide
microarray chips. Quantification was conducted by use of a
flow-based CL microarray readout system. Total assay time
was 3.5 h, and the detection limits determined on CL oligo-
nucleotide microarrays were 136, 500, and 1 cell mL−1 for
E. coli O157:H7, S. enterica, and C. jejuni, respectively.
These detection limits are comparable with those of SYBR
green-based assays analyzed with a real-time PCR device. The
assay time was halved and a process suitable for integration
with automated multiplex microarray analysis was developed.

Rapid analytical methods need high flow rates, resulting in
a high pressure drop inside the microarray chip. The microar-
rays on microscope glass slides were sealed by a closure head.
This sealing principle was not reproducible, and the optical
lens was contaminated with reagents. For this reason, a three-
layer concept for the microarray chips was designed for easy
buildup (Fig. 5). This microarray chip consists of three inex-
pensive basic material components: microarrays on modified
glass slides, microfluidic channels on double-sided adhesive
foil, and a plastic carrier with inlet and outlet ports (Fig. 5a).
The closed microarray chip could be stored easily, was trans-
portable, and could be connected directly to the flow system
by establishing pressure on the O-rings (Fig. 5b). The CL
signal was recorded through a transparent microarray sub-
strate, and the imaging system was on the top.

Automated processing of flow-based CL microarrays has
been performed on the MCR3 (microarray chip reader, third
generation). The initial design of the MCR3 microarray anal-
ysis technique was dedicated to flow-injection-based, multi-
analyte, regenerable, indirect competitive CL immunoassays
[85]. The concept of the MCR3 was suitable for portable
stand-alone equipment in which all of the necessary reagents
are stored for one working day. Therefore, running,
regeneration, cleaning, and storage buffers were con-
nected inside the instrumentation for automated process-
ing with three syringe pumps, three six-port distribution
valves, and four separate turning valves. One 25-mL
syringe and one 50-mL syringe were filled with a cock-
tail of detection antibodies and the HRP-labeled second-
ary antibody conjugates, respectively. Multi-analyte sam-
ples were injected via a syringe-based loading unit,
containing single-use 1-mL syringes, connected to the
flow-injection system. The pumps, valves, and CCD
were controlled via Labview-based software (National
Instruments, USA).
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The first application was a multi-analyte immunoassay for
quantification of 13 antibiotics in raw milk by use of a regen-
erable hapten microarray [86]. Antibiotics of five antibiotic
classes (sulfonamides, β-lactams, aminoglycosides,
fluoroquinolones, and polyketides) were quantified simulta-
neously in 6 min by performing an indirect competitive MIA.
The flow-based microarray chip consisted of two flow chan-
nels, one for measurement and the other for regeneration. The
microscope glass slides were coated with diamino-PEG and
were subsequently activated by use of diepoxy-PEG. The
antibiotics were immobilized directly by microcontact print-
ing without further use of linking agents. The microarray chip
and plastic carrier were assembled with adhesive foil. By
internal calibration and use of regeneration cycles, the raw
milk was automatically analyzed without changing the micro-
array chip during a working day. One microarray chip could
be used for at least 50 measurements. Detection limits were
between 0.05μg L−1 (tetracyclin) and 135μg L−1 (neomycin).
Regenerability was limited, because of signal losses during
measurement. Possible reasons were overloading of
immobilized antibiotics, chemical changes in the structure of
the antibiotics during the assay processes, or inefficient recov-
ery of antibodies. Despite these problems in regenerability,
results from antibiotic microarray analysis and the conven-
tional microbial inhibition test were comparable. The micro-
array chip reader (MCR3, Fig. 6) was further developed for
routine screening of antibiotics in raw milk.

In a proof-of-principle study, identification and quantifica-
tion of antibiotic derivatives in honey was shown to be possi-
ble by use of regenerable antibiotic microarrays in combina-
tion with the MCR3 [87]. Because of the need for longer
washing steps to minimize cross-contamination of honey

components, total assay time increased to 14 min, including
regeneration and washing of the MCR3. The indirect compet-
itive MIA method enabled rapid analysis of the four antibi-
otics without purification or extraction steps. As a result of the
high viscosity of the honey, the samples were diluted 1:10,
leading to reduced sensitivity compared with the other foods,
for example milk. Regeneration of the microarray chip was
possible for 40 cycles. Multi-analyte calibration curves were
obtained for the antibiotics enrofloxacin, sulfadiazine, sulfa-
methazine, and streptomycin, and detection limits were be-
tween 4.2 μg kg−1 (enrofloxacin) and 192.6 μg kg−1

(sulfadiazine). Spiking experiments with the same microarray
chip revealed recovery was adequate within the dynamic
ranges of the calibration curves of enrofloxacin (92 %), sul-
famethazine (130 %), sulfadiazine (89 %), and streptomycin
(93 %).

It was shown that the concept of regenerable hapten mi-
croarrays could be transferred to other small molecules and to
other matrices. Ochratoxin A (OTA) was quantified in green
coffee extracts by indirect competitive MIA in 12 min, includ-
ing measurement and surface regeneration [88]. A peptide–
OTA conjugate was synthesized for covalent immobilization
on NHS-activated, diamino-PEG-coated glass microscope
slides. The analytes were extracted with 20:80, (v/v) metha-
nol–PBS solution before measurement on the MCR3. The
limit of quantification for the extracted OTA was
0.03 μg L−1. Signal losses observed during regeneration re-
sulted in overestimation of recovery.

The concept of regenerable hapten microarrays was used
for rapid multiplex quantification of mycotoxins in cereals
[89]. Aflatoxins (AFB1s), OTA, deoxynivalenol (DON), and
fumonisins (FB1s) were analyzed on theMCR bymeans of an

Fig. 5 Three-layer principle of
the microarray chip (a) and
insertion in the loading unit for
flow-based microarray chips (b)

Fig. 6 Image of the MCR3
instrument for microarray
analysis (a) and use of the
instrument for analysis of raw
milk in a routine control
laboratory (b)
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indirect competitive MIA. Total assay time was 19 min, in-
cluding extraction, extract dilution, measurement, and surface
regeneration. Diamino-PEG-coated glass slides were used
directly for microarray production. NHS-activated carboxyl
groups were introduced into the mycotoxins before produc-
tion of the microarray by contact printing. The mycotoxin
derivatives were, therefore, covalently immobilized, and the
microarray chip was not completely activated. Intensive re-
generation studies demonstrated regenerability over 50 mea-
surements with minimum signal losses—between 96 % and
88 %. Detection limits between 0.06 μg L−1 (OTA) and
9.9 μg L−1 (FB1) were obtained. Recovery was between 55
and 80 % for water-soluble mycotoxins (FB1 and DON) and
from 82–132 % for more nonpolar substances (AFB1 and
OTA).

Multiplex microarray analysis on the MCR3 has been
shown to be suitable for analysis of phycotoxins in shellfish
[90]. Saxitoxin (STX), ocadoic acid (OA), and domoic acid
(DA) were directly immobilized on epoxy-activated diamino-
PEG-modified glass surfaces. The possibility of direct immo-
bilization of the phycotoxins on epoxy-activated microarray
chips was an advantage, because of the limited concentrations
available for chemical derivatization. Three highly relevant
marine toxins were quantified simultaneously on regenerable
hapten microarrays. The bound anti-phycotoxin antibodies
were regenerated over 25 consecutive measurements. Regen-
eration experiments revealed a constant reduction for OA and
DA (3.1 % for DA and 1.5 % for OA per cycle). Because an
exponential decrease observed for STX would result in over-
estimation of recovery, a mathematical correction factor (B/
B0) was introduced, using the blank directly measured before
each sample and the third measured blank (zero standards).
Average recoveries of 86.2 % for DA, 102.5 % for OA, and
61.6 % for STX were determined. Except for STX, signal
losses by regeneration of the phycotoxin microarray could be
corrected mathematically. The multi-analyte calibration LODs
for DA, OA and STX were 0.5 μg L−1, 1.0 μg L−1, and
0.4 μg L−1, respectively. The overall assay time was 20 min,
including 5.5 min for the regeneration step. Fast and automat-
ed analysis could be performed by use of a simple extraction
procedure which would be manageable for field analysis.
Limitations include lack of availability of antibodies for all
analogs of the phycotoxins.

For multiplex biosecurity analysis, simultaneous detection
of chemical toxins, for example STX, and protein toxins (e.g.,
staphylococcal enterotoxin B (SEB) and ricin) is important.
However, small molecules and proteins are quantified sepa-
rately by competitive MIA and sandwich MIA. Combined
analysis of low (<1000 Da) and high-molecular-weight
(>1000 Da) toxins can be achieved by use of anti-idiotypic
antibodies for such chemical toxins as STX. Therefore, an
antibody against the antigen-binding site is used that is spe-
cific for STX. The multiplex microarray analysis was run on

the MCR3 system. STX was detected by use of an indirect
competitive MIA. Ricin and SEB were identified by use of a
sandwich MIA. The challenge was combination of both MIA
processes in one measurement. A mixture of detection anti-
bodies against STX, ricin, and SEB was mixed in-line in an
incubation loop by parallel injection and pushed over the
microarray chip. Standard sandwich MIA procedures were
used for sequential incubation of the antibodymicroarray with
analytes and detection antibodies. It was shown that both
assay principles could be combined on the MCR3 [91]. A
detection limit of 2.3 μg L−1 was obtained for STX, similar to
that described previously for regenerable indirect competitive
MIA. The LODs for ricin and SEB were 2.9 μg L−1 and
0.1 μg L−1, respectively.

Regenerable microarrays for biotoxin analysis were intro-
duced for ricin [92]. This lectin binds specifically to terminal
D-galactose and lactose. By preparation of glycosylated mi-
croarray chips, regeneration cycles could be implemented for
ricin analysis. 6-Azidohexyl lactose was immobilized on an
alkyne silane surface by use of click chemistry. The
immobilized carbohydrate captured the B-chain of ricin. The
A-chain of ricin was detected by use of an antibody. With this
regenerable sandwich glyco-immunoassay format, ricin could
be quantified in 13 min on the MCR3 with a detection limit of
80 ng mL−1.

As a proof-of-concept study, antibodies against the emerg-
ing zoonotic pathogen hepatitis E virus (HEV) and entero-
pathogenic Yersinia spp. were analyzed in parallel by use of
immobilized recombinant antigens (rAgs) of HEV genotypes
1 and 3 and Yersinia outer protein D (YopD) on epoxy-
activated diamino-PEG-coated microarray chips [51]. In this
study, sera from slaughtered pigs were tested on theMCR3 for
detection of anti-HEV and anti-Yersinia IgG in parallel. The
assay for detection of antibodies in sera was an indirect
method. Swine serum diluted 1:100 (1 mL) was pumped over
the antigen microarray chip. The captured antibodies were
detected by HRP-conjugated polyclonal anti-swine antibod-
ies. Multiplex screening of serum samples for emerging zoo-
notic infectious diseases could be performed in 9 min on the
MCR3.

Use of antibodies for flow-based CL-MIA applications can
differ from that for static-incubated CL-MIA. For flow-based
MIAs, highly reactive antibodies are needed. High dissocia-
tion constants result in wash-off effects, and lower CL signals
are observed. Against this background, antibodies should be
screened by use of the same analytical techniques. Efficient
hybridoma screening with the MCR3 has been reported. Poly-
clonal anti-mouse antibodies were coated on NHS-activated
diamino-PEG-coated glass slides. The supernatant of hybrid-
oma cells was immobilized on microarrays by contact print-
ing. Screening was performed with HRP-labeled analytes, for
example, aflatoxin B2 [93] or benzo[a]pyrene [94]. Rapid
analysis times (5 min), reduced work load, and greater
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automation were advantages compared with conventional hy-
bridoma screening on multiwell plates.

Quantification of PCR products was transferred to the
MCR3 system to perform CL-based NAMA. The capability
for multi-analyte quantification was examined by parallel
analysis of bacteriophage MS2 (RNA virus), bacteriophage
PhiX174 (DNA virus), and the human pathogen adenovirus
(DNA virus, hAdV2) [22]. The MCR3 system was modified
for oligonucleotide microarray analysis. The CL microarray
imaging unit was equipped with a Peltier heater to optimize
the selectivity of hybridization reactions on oligonucleotide
microarrays and to reduce the secondary structures of single-
stranded PCR products. The efficiency and selectivity of
hybridization reactions was increased. The increase of tem-
perature was important mainly for the hybridization reaction.
In addition, the activity of subsequent antibody and CL reac-
tions was also increased. As a consequence, higher CL signals
and lower cross-reactivity of PCR products were observed.
Multi-analyte calibration experiments for dilution series of
active viruses in tap water were examined. The DNA/RNA
extraction and PCR reaction were conducted separately for
each virus. The PCR products were combined in one sample
before MNS was performed. Multiplex analysis of the single-
stranded DIG-labeled PCR products was performed on the
MCR3 system. The total analysis time for DNA/RNA extrac-
tion, cDNA synthesis for the RNA viruses MS2, PCR, single
strand separation, and oligonucleotide microarray analysis
was 4–4.5 h. Detection limits were 6.6×105 GU mL−1 for
MS2, 5.3×103 GUmL−1 for PhiX174, and 1.5×102 GUmL−1

for hAdV2 at 40 °C. In conclusion, multiplex quantification of
PCR products was possible on the MCR3 system. No multi-
plex PCR was performed. To perform single PCRs the sample
must be divided into smaller volumes depending on the
amount of virus present. Further investigations are necessary,
for example nucleic acid amplification on microarray chips to
compete with multiplex real-time PCR applications.

A microfluidic microarray chip with an antibody-capturing
format has been developed for allergen diagnostics [95]. The
microfluidic cartridge consisted of a PMMA chip holder
containing the fluidic connections to the pumping system, an
O-ring joint, the microfluidic channels in SU-8 polymer, a
protein microarray on the PDMS substrate, and a bottom
PMMA chip holder. For rapid analysis of allergen-specific
antibodies in serum samples, a dynamic incubation time of
6 min (flow rate 50 μL min−1; 300 μL sample volume) was
found to be the best. The detection limit was higher than for
conventional ELISA. Similar detection limits were achieved
by use of a higher sample volume (1.2 mL) and a lower flow
rate (20 μL min−1). Similar to the ELISA, analysis time was
60 min. The so-called “macromolecules to PDMS transfer”
method has been used for direct modification of PDMS sur-
faces for protein microarrays. Beads or proteins were spotted
and dried on a 3D master coated with Sylgard 184, cured, and

recovered after peeling off as spots of beads or proteins
entrapped at the surface of the bar PDMS [96, 97].

An automated CL microarray analysis system was devel-
oped for detection of autoantibodies causing such autoim-
mune diseases as rheumatoid arthritis, multiple sclerosis, and
autoimmune diabetes [98]. The autoantigens were
photoimmobilized on polystyrene chips by microdispensing
mixtures of the autoantigens, the polymer poly(ethylene gly-
col) methacrylate, and a photoreactive crosslinker (4,4 -
diazidostilbene-2,2 -disulfonic acid disodium salt; BIS). A
transparent PDMS microfluidic chip was attached to the
microspotted polystyrene plate. The instrumentation consisted
of a CCD camera, a syringe pump, two additional six-port
distribution valves, and a personal computer for processing
the antibody-capturing MIAwith the flow-based microarrays.
Seven autoantigens were detected in 1:100-diluted serum in
30 min. Strong correlations (0.83–0.97) were obtained be-
tween results from conventional ELISA and microarray
assays.

An automated flow-based system has been developed for
processing a ten-channel capillary as a multiplex
immunodetector [99]. A sandwich MIA was performed in
ten parallel arranged glass capillaries for detection of E. coli
O157:H7, SEB, and bacteriophage M13 in 29 min. The poly-
clonal capture antibodies were immobilized on the silanized
glass capillaries. CL signals from each capillary were detected
by use of a multianode photomultiplier array. Limits of detec-
tion were 0.1 mg L−1 for SEB, 104 CFU mL−1 for E. coli
O157:H7, and 5×105 PFU mL−1 for bacteriophage M13.

A multichannel sandwich CL-MIA on single-use ABS
plastic chips was evaluated for parallel calibration and quan-
tification of pathogenic bacteria [36]. Capture antibodies were
immobilized adsorptively in the microchannels of the acrylo-
nitrile–butadiene–styrene (ABS) substrate by contact printing.
The sandwich MIAwas performed with a multi-channel peri-
staltic pump. Five multiplex standard concentrations and one
multi-analyte sample were measured in parallel. Total assay
time for measurement and calibration was 18 min. The detec-
tion limits were 2×104 cells mL−1 for E. coliO157:H7, 2×107

cells mL−1 for S. typhimurium, and 8×104 cells mL−1 for
L. pneumophila Sg1. The high detection limits were a result
of high background signals, because the channels of the ABS
substrate were blocked with protein solution (BSA) only.
Multi-channel microarrays were seen as a means of increasing
the throughput of flow-based microarrays. However, a com-
plicated fluidic system is desired for full automation of parallel
MIA processes.

Portable microarray analysis has been developed for per-
sonalized diagnostics [29]. A multichannel microarray chip
was created by use of the three-layer principle. Three channels
and bore holes for the inlet and the outlet were cut in a
polycarbonate plastic carrier to form the microfluidics. Anti-
bodies or NH2-labeled oligonucleotides were immobilized by
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microdispensing on to GOPTS-coated glass slides. The mi-
croarray chip was sealed by use of adhesive foil containing the
same channel structure as the microfluidic carrier. The CL
signal was detected by lensless imaging from the underside of
the glass slide. A syringe pump was used for the flow-based
MIA process. Digoxigenin-labeled PCR products (1 μL) were
quantified by NAMA in 33 min. Target DNA of parvovirus
B19 DNA could be detected down to 0.05 μmol L−1.

A microfluidic cartridge has been developed for allergen
screening. An antibody (IgE)-capturing CL-MIA was per-
formed on flow-based microarrays [100]. The 7 cm×4 cm
injection-molded microfluidic cartridge contained an antigen
microarray, reagent tanks, a waste tank, and pumps. A
computer-controlled array of solenoid valves provided the
necessary actuation force for automated processing of re-
agents and samples in a total assay time of 27 min. Dissolved
nitrocellulose was sprayed on to silicone rubber as a substrate
for the antigen microarray. Twenty allergen extracts were
immobilized by contact printing. The cutoff was estimated
to be less than 1 IU mL−1 (2.4 ng mL−1).

A miniaturized microarray has been developed for quanti-
tative analysis of three parvovirus B19 DNA genotypes in
serum [101]. The disposable microarray chip was based on
lateral flow MIA. Liquids were propelled through
microfluidic channels by capillary forces. The microfluidic
microarray chip consisted of three channels in PDMS coated
on to microscope glass slides. DNA probes were immobilized
on diamino-PEG (Jeffamine ED-600)-coated and subsequent-
ly NHS-activated glass slides. The CL-NAMAwas performed
in 30 min. The detection limit for B19 target DNA was 650
pmol L−1.

The advantage of flow-based CL microarrays is that het-
erogeneous reactions are accelerated, and miniaturization of
the CL microarray readout systems is possible. The detection
system is integrated on the microarray chip. The complete
analytical process can therefore be performed automatically
by use of computer-controlled pumps and valves in a closed
system. The disadvantage is that only sequential assay pro-
cesses can be performed, and high-throughput measurement is
limited. An overview of flow-based CL microarray applica-
tions is given in Table 2.

Multi-analyte aspects for CL microarray analysis

Multiplex analytical methods have several advantages over
conventional analysis of a single species per sample. The
economy of analyzing more than one species per sample is
an obvious advantage for commercial analytical laboratories.
Reagents, solvents, time, and space can be reduced by
multiplexing. Instead of one instrument for one analyte and
several instruments for several single analytes, one analysis

can be used for several species per sample. Therefore, the cost
of laboratory space, personnel, running instrumentation, and
consumables is reduced. Multiplex analytical methods can be
regarded as “green” analytical chemistry, because use of haz-
ardous solvents and reagents can be reduced [102, 103].
Moreover, the bioanalytical methods of CL microarrays are
mainly solvent-free and waste is reduced by reducing the
amount of sample and reagent volumes. Detection of small
organic molecules by use of MIA test formats requires sample
preparation with little or no solvent. Otherwise, the antibodies
would be deactivated [104]. Automation and miniaturization
of flow-based methods, especially the flow-based CL micro-
arrays discussed above, are seen as a contribution to greener
analytical methods [105].

Furthermore, new analytical approaches can be investigat-
ed, because combining classes of analytes provides more
information for solving a defined analytical problem. By use
of multi-analyte methods relevant classes of analytes can be
combined to furnish solutions to more generic analytical
problems. Examples of applications in food and water safety,
environmental monitoring, diagnostics, forensics, toxicology,
and biosecurity are discussed below. Multi-analyte ap-
proaches are summarized in Table 3.

Food and water safety

Safe food and water is a principal demand for ensuring the
high quality of products and the health of humans and animals
worldwide. During production, processing, storage, and trans-
port, a variety of hazardous chemicals, toxins, microorgan-
isms and other contaminants can enter the food chain. The
chemical and pharmaceutical industry produces a large variety
of small organic molecules, for example pharmaceuticals,
pesticides, and food and feed supplements. Products of agri-
culture, for example crops, fruit, or vegetables are treated with
these small organic molecules. Animals and humans come
into contact either directly by treatment or indirectly by con-
sumption of feed. Residues or metabolites enter the environ-
ment by excretion in the urine or feces and are further trans-
formed by microorganisms in the environment or in waste
water-treatment plants. Food products of animal origin, for
example meat, eggs, milk, and honey could also contain these
small organic molecules. In conclusion, many residues and
contaminants are present in food and feed and can be accu-
mulated in the environment (water and soil). Small organic
molecules could be hazardous to both human and animal
health and welfare at significant exposure levels. Therefore,
legislation has defined maximum residue levels (MRLs) for
many substances. In addition to anthropogenic introduction of
chemicals into the food chain and water cycle, natural toxins
of plants or microbial toxins, antibiotic-resistant bacteria,
pathogenic microorganisms, and pathogenic viruses are

Chemiluminescence microarrays in analytical chemistry 5601
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contaminants in food, feed, or drinking water and in the
environment [106, 107]. With regard to food and water safety,
acceptance of non-culture methods is increasing for rapid
analysis of pathogenic microorganisms by PCR methods or
immunoassays [108]. The advantage of multiplex analysis of
pathogens is that the quality of food is ensured because false
negative results are reduced, and, second, measurement time
and costs of reagents are minimized [109]. Reliable quantita-
tive results from nucleic amplification tests will be important
for food and water control. Therefore, defined calibration
standards of organisms or nucleic acids are needed and vali-
dated procedures should be available.

To control and monitor the occurrence of natural or the
anthropogenic contaminants, samples are taken at different
stages in the food chain and analyzed for a variety of species
as recommended by legislation. Liquid chromatography–
mass spectrometry is a standard technique for determination
of small molecules [110, 111]. The extraction and cleanup
processes involve a variety of sample preparation steps [112].
For quantification of several classes of small molecules in
food or water, a single method is often not sufficient. The
multi-analyte methods LC–MS or LC–MS–MS are laborious
and time-consuming for the complex matrices. These cost-
intensive instruments are established for routine quality test-
ing in large food-safety institutions or companies only.
Microarray-based methods of analysis are, therefore, promis-
ing technology for covering the complete range of chemical
and microbial species in food and water.

The dairy industry is one of the largest food markets.
Because of the worldwide distribution of milk products, se-
curing food safety must be monitored throughout the food
chain. Anthropogenic and the natural contaminants from
farming side can enter food via feed and water, as a result of
poor hygiene, or as a result of veterinarian treatment. Food
safety concerns in milk include such pharmaceuticals as hor-
mones [113] and antibiotics [114–116], toxins (e.g. aflatoxin
M1 [117], diverse staphylococcus enterotoxins [118, 119],
Bacillus cereus enterotoxins [120]), and pathogenic bacteria
[121]. In addition, concentrations in infant milk of such food
supplements as vitamins are regulated [122].

Intensive quality testing of honey is needed because honey
is generally regarded as a natural and healthy food product
[123]. However, honey bees come in contact with agricultural
environment, which is polluted by different sources of con-
tamination. Species for the analytical microarray are mainly
antibiotics, pesticides, pathogenic bacteria, and genetically
modified organisms [124]. Antibiotics are the main class of
contaminants from beekeeping. In European Union (EU) leg-
islation, noMRLs for antibiotics in honey are defined because
no residues are allowed. In some European countries, tolerable
levels have been set in the last few years, and many honey
products are now imported or mixed with honey from other
countries outside the EU [125].T
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Growth-promoting agents, veterinary drugs, and chemical
contaminants are either prohibited or MRLs are defined for
food-producing animals and animal products [126]. Growth-
promoting agents, for example hormones and β-agonists are
prohibited. Defined MRLs are regulated for such veterinary
drugs as antibacterial substances, including sulfonamides and
quinolones, anthelmintics, anticoccidiostats, carbamates, py-
rethroids, sedatives, and non-steroidal anti-inflammatory
drugs, and for such environmental contaminants as organo-
chlorine and organophosphorus compounds and mycotoxins
[127]. Antibodies are available for many of these small or-
ganic molecules [128]. Avoidance of sample preparation is not
possible for immunoanalytical methods in tissues. Meat juice,
blood (serum or plasma), or urine are preferred matrices for
rapid testing with analytical microarrays. Emerging pathogen-
ic microorganisms and antibiotic-resistant bacteria are major
meat-safety concerns in the 21st century [129]. In, e.g., por-
cine meat, the pathogens Campylobacter spp., Yersinia spp.,
Salmonella spp., Trichinella spp., hepatitis E virus (HEV),
Taenia spp., and Toxoplasma spp. are of great interest for food
safety and public health [130]. These pathogenic bacteria,
viruses, and parasites are zoonotic agents. Zoonoses are in-
fectious diseases that can be transmitted from animals, both
wild and domestic, to humans [131]. Infected animals produce
antibodies against these zoonotic pathogens. Blood sera of,
e.g., slaughtered pigs, cows, chickens, and other poultry can
easily be analyzed to determine the hygiene status of the
animals.

Another aspect is food authenticity. Deliberate mixing of
horse meat with ham products has resulted in Europe-wide
comprehensive testing of ham products [132, 133]. Identi-
fication of different animals in food is possible by NAT
[134], and automated systems would reduce costs and
analysis time.

Food allergies are an important health problem in indus-
trialized countries. Accidental or undeclared contamination
of food products with allergens are a major risk for people
suffering from food allergies. Food allergens include celery,
cereals containing gluten, crustaceans, eggs, fish, peanuts,
soybeans, milk and dairy products, mustards, tree-nuts, and
sesame seeds [135]. These allergenic foods are detected
either by sandwich immunoassays [136] or by NAT methods
[137].

Genetically modified organisms (GMOs) in food products
must be declared [138]. Molecular methods have been inves-
tigated for detection and identification of such GMO products
as maize, soybeans, and canola [139].

Monitoring of seafood poisoning is another issue for food
safety. Filter-feeding organisms, e.g., shellfish, ingest
phycotoxins by direct filtration of affected phytoplankton
and accumulate these toxins [140]. Humans are infected by
eating contaminated seafood. This problem is global, with a
growing number of outbreaks of human poisoning. More than

60,000 human infections by aquatic toxins occur per year,
with 1.5 % mortality [141]. The standard method for
phycotoxin analysis is the use of mouse bioassays. This tox-
icological bioassay suffers from lack of sensitivity, no differ-
entiation within the individual toxin groups is possible, and
the assays are time-consuming [142]. Initial screening of
seafood, directly at the harbor or on a ship, by multiplex
microarray analysis, could replace mouse assays or HPLC–
MS measurements.

Environmental matrices (soil, water, air)

Environmental matrices, i.e., soil, water, and air, constitute the
largest pool of small organic molecules which occur as a result
of industrial, agricultural, or medical pollution [143, 144].
These matrices are either accumulated in soil or transported
in ground water or surface water by the rain. In addition, the
water from waste water-treatment plants flows into surface
water [145]. Emission of aerosols is another mechanism of
transport. Chemicals that are not completely degraded are
present in the environment and could be harmful to wildlife,
agriculture, or humans. Organic micropollutants, for example
hormones, pharmaceuticals, drugs of abuse, biological trans-
formation products, biocides, sweeteners, and perfluorinated
compounds are emerging contaminants in environmental wa-
ter matrices [146, 147]. For all of these compounds, the
antibodies will not be available, and some of the antibodies
have been shown to have cross-reactivity with similar small
organic molecules that are present at levels that are too high.
Therefore, multi-analyte chromatographic methods are
regarded as preferable for quantitative analysis. To monitor
water-treatment technology and the quality of water itself,
rapid and cost-effective methods are needed [148]. The num-
ber of analytes must be reduced to important indicator
micropollutants, for example antibiotics (e.g., sulfonamides),
pharmaceuticals (e.g., diclofenac), herbicides, and fungicides
[149]. These indicators can be analyzed quantitatively by CL-
MIA.

Pathogenic microorganisms [150, 151] and viruses [152],
antibiotic-resistant bacteria [153, 154], and biotoxins [155] are
emerging contaminants in water that should be reduced with
high efficiency by drinking water-treatment plants because of
acute health risks and sometimes even high mortality. Drink-
ing water is either consumed directly or used as process water
in industry or in agriculture. Drinking water should not cause
illness, and, therefore, hygiene indicators, for example coli-
forms [156], E. coli, and E. faecalis are routinely analyzed in
drinking water by cultivation methods. Rapid culture-
independent methods, for example immunoassays or molecu-
lar methods would be accepted as alternative methods because
the results would be comparable [157, 158]. Intensive research
is needed to increase sensitivity (e.g., one colony-forming unit
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ofE. coli in 100 mL of drinking water and 1 rotavirus in 90m3

drinking water [159, 160]) and to enable differentiation be-
tween living and the dead microorganisms. NAMA methods
with a live or dead marker [161, 162] in combination with
effective concentration methods [163] could be a solution for
rapid multiplex analysis of drinking water. More frequent
measurement with more hygiene indicators would improve
the quality of drinking water. Additional pathogenic indicators
for drinking water, for example noroviruses, adenoviruses,
rotaviruses, enteroviruses, L. pneumophila, P. aeruginosa,
and C. jejuni, have been discussed [164].

Bioaerosols could contain a variety of biological ma-
terials, for example pollen, fungal spores, bacteria, or
viruses [165]. New quantitative detection methods for
pathogens and allergens are an emerging research field
in aerosol science [166, 167]. The establishment of
multi-analyte methods of quantification for pathogens
in bioaerosols would be important for environmental
monitoring. A current application is the rapid detection
of pathogenic Legionella spp. in bioaerosols, because
Legionella outbreaks with high mortality have often
occurred in recent years because of contamination of
artificial aquifers (for instance, by contaminated aerosols
from cooling towers [168]). The main pathogen is
L. pneumophila. Rapid methods of analysis are needed
to identify the bioaerosol-producing source. A total of
15 serogroups are known for L. pneumophila. Multiplex
subtyping on antibody microarrays would save time and
the cost of monitoring of airborne L. pneumophila. Therefore,
research on multiplex microarray analysis for bioaerosol
characterization is a promising application.

Diagnostics, forensics, and toxicology

Chemiluminescence immunoassays and nucleic acid assays
are important for routine applications in the clinical laboratory
[169], and miniaturized analytical systems enable low-cost
decentralized diagnostic testing in non-laboratory settings
[170]. Several species can be analyzed in blood, plasma,
serum, or urine. Research in genomics, proteomics, metabo-
lomics, and other “omics” has identified new biomarkers
suitable for multiplex diagnostics [171]. Antigen microarrays
are used as high-throughput methods for screening for anti-
bodies that indicate, e.g., autoimmune diseases [171], allergies
[172], and infectious diseases. Additional applications for
antibody microarrays are cytokine network profiling, sepsis,
acute myocardial infarction, and early diagnosis of cancer
[173]. Screening for small organic molecules in blood, plas-
ma, serum, or urine is relevant to clinical and forensic toxi-
cology [174, 175]. Rapid screening for drugs of abuse is, for
example, important for rapid detection of suspected abusers
[176, 177].

Biosecurity

Biosafety entails dealing with biologically active agents in a
safe way. Biosecurity is the field that addresses unspecified
biological material in, e.g., food, water, air, powder, or other
matrices, that can cause death or diseases in humans, animals,
or plants. There is a permanent risk that biological agents, for
example pathogens and toxins, will be used intentionally or
their use will be threatened. Biological weapons, bioterrorist
attacks, biocriminal actions, biological disasters, and civil
protection for harmful bioagents are scenarios implying
public-health preparedness for multiple biological species.
Simple, rapid, inexpensive, and automated analytical systems
are needed that can be used for biosecurity [178]. In principle,
all of the species previously discussed as emerging contami-
nants in food, water, and air are important for biosecurity. On
the basis of several characteristics, for example mortality,
infectivity, potential for person-to-person transmission, and
dread, the Centers for Disease control (CDC, USA) have
prepared a priority list of bioterrorist agents [179]. Critical
category A biological agents are Variola major, B. anthracis,
Y. pestis, C. botulinum, F. tularensis, filovirus, and arenavirus.
Critical category B biological agents are C. burnetii, Brucella
spp., B. mallei, B. pseudomallei, alphaviruses, R. prowazekii,
biotoxins, for example ricin or SEB, C. psitacci, and food
safety threats, for example Salmonella spp. and E. coli
O157:H7, or water safety threats, for example V. cholerae
and C. parvum. Critical category C biological agents are
emerging-threat agents, for example nipah virus and hantavi-
rus. Microarray-based analysis systems with sandwich MIA
or NAMA test formats will be important for biosecurity
because parallel monitoring of multiple species reduces costs
and the time for preparedness [180].

Concluding remarks

Detection principles, analysis systems, and applications of CL
microarrays in analytical chemistry have been reviewed. Two
configurations for CL microarrays were compared: static-
incubated CL microarrays in wells and tubes and flow-based
microarrays. A variety of microarray-based fast assays could
be implemented if flow channels were used. Limitations of
flow-based CL microarrays include sample throughput for
screening applications in routine laboratories with total sam-
ple numbers >100 per day. Sequential assay processes should
be conducted in parallel on multi-channel microarrays for
high-throughput applications. The optical readout is simple
and portable. CL microarray analysis systems could be a
promising development for the future. Static-incubated CL
microarrays are more time-consuming and are not suitable
for rapid multi-analyte applications. The performance of both
approaches is compared in Table 4.
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The first multiplex microarray analytical techniques that
were reported were based on automated assay processes and

CL microarray readout. A schematic overview of progress in
the development of CL microarray analysis is presented in
Fig. 7a. Over the last 15 years the first multiplex applications
in analytical chemistry were established with CL microarrays.
The main achievements are shown in Fig. 7b. Among require-
ments for quantitative multiplex analysis, CL microarrays
must be reproducibly produced, transportable, active over
several months, regenerable for internal calibration, and use-
able over a full working day. The most important point is that
analytical CL microarrays are at least as inexpensive as the
cost for one analyte. All analytical process steps in the micro-
array analysis should be performed automatically and rapidly,
data processing of microarray images should be performed by
the system, and instrumentation should be, at least, transport-
able or, even better, portable for decentralized applications.

Table 4 Comparison of the performance of static-incubated and flow-
based CL microarray analysis techniques

Performance Static-incubated Flow-based

Possibility of miniaturization – +++

Possibility of automation ++ +++

Throughput +++ –

Rapidness – +++

Variability in test formats – +++

Variability in test processes – +++

Sensitivity +++ +++

Fig. 7 Achievements in the development of CL microarrays (a) and their first applications in analytical chemistry (b)
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The advantage of CL-MIA in contrast with multi-analyte
liquid chromatography-based methods [181] is that little or no
sample preparation is needed. Concerning trace analysis with
detection limits below the specified analytical performance of
CL-MIA, generic enrichment for, e.g., food, water, and blood
must be combined as a hyphenated technique [182]. For
simple and smart analysis, the sample should be automatically
injected for microarray analysis, and quantitative data should
be printed after a short while. For many food, water, or
environmental samples, in-line coupling of sample prepara-
tion and multiplex microarray analysis will be important. In
this manner, complex samples of totally different matrices
could be analyzed in routine laboratories. NAMA methods
have many sample-preparation steps that have to be processed
in-line. Automated in-line techniques for molecular methods
will increase the acceptance of decentralized applications.

Another point is the availability of sensitive and selective
antibodies for multi-analyte immunoassays. Most of the anti-
bodies were not screened by flow-injection assay, and cross-
reactivity on microarrays were also not evaluated. Validation
studies of multi-analyte immunoassays are more extensive
than for conventional single-analyte immunoassays. As a con-
sequence, screening of new selective receptors must be per-
formed by use of the same microarray analysis technique for
multiplex microarray analysis. In addition, intensive research
on a suitable group of antibodies with low cross-reactivity in
multiplex immunoassays is needed. The same applies to mul-
tiplex DNA microarray analysis. Evaluation of appropriate
nucleic acid primers and probes is also very time-consuming.
The design of a multi-analyte application is important. First,
the choice of analytes for the multiplex microarray analysis
should fulfill one complete analytical task. Second, the selec-
tive receptors used must be adjusted to the multi-analyte assay.
If these factors are taken into account, multiplex microarray
analysis is a powerful technique in analytical chemistry.
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