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Abstract Amethod for the quantitative enantioselective anal-
ysis of amphetamine in human plasma by LC-HRMS is
presented. High-resolution detection, alone and in combina-
tion with targeted MS/MS, was validated and compared to a
highly sensitive GC-NICI-Method. Derivatization with (S)-
N-(heptafluorobutyryl)-prolyl chloride was accomplished to
yield derivatives suitable for enantioselective analysis of am-
phetamine on a nonchiral reversed phase column with MS-
compatible mobile phase. Equal analytical performance was
observed for the methods presented and the GC-NICI-MS
method. A dynamic range of 4,000 was found for the
established calibration curves. A fivefold deuterated analogue
of both enantiomeres was used as an internal standard. Full
validation data are given to demonstrate the usefulness of the
assay, including specificity, linearity, accuracy and precision,
autosampler stability, matrix effect, and prospective analytical
batch size accuracy. Themethod has been successfully applied
to pharmacokinetic profiling of the drug after oral application.

Keywords Bioanalytical methods . Chiral analysis . Drug
monitoring . Drug screening . HPLC .Mass spectrometry

Introduction

Amphetamine (ß-phenylisopropylamine) is a potent sympa-
thomimetic that stimulates the central nervous system. It ele-
vates synaptic levels of dopamine, norepinephrine, and sero-
tonin [1], whereby dopamine is regarded as the main mediator
of its stimulatory effects on behavior [2]. The main pharma-
ceutical application of amphetamine is in the treatment of
attention deficit hyperactivity disorder (ADHD) [3], but also
for patients with narcolepsy [4]. It is still widely used as a
reference drug to evaluate the psychostimulatory potency of
other agents. Due to its effect on the central nervous system,
amphetamine is a widely consumed drug of abuse, thus evok-
ing high interest in this drug and hence in its reliable analysis
from forensic, toxicological, and pharmaceutical points of
view, as high doses of amphetamine may lead to so-called
amphetamine psychosis, a syndrome virtually indistinguish-
able from paranoid schizophrenia [5, 6]. (−)-Amphetamine is
also a major metabolite of the monoamine oxidase B-inhibitor
selegiline [7], famprofazone [8], and methamphetamine [9].

The enantiomeres of this chiral molecule have different
pharmacokinetic and pharmacological properties. Thus, the
(S)-enantiomer has fivefold higher psychostimulant activity
than the (R)-form [10]. In forensic applications, enantiomeric
composition may help to distinguish between the misuse of
amphetamine and methamphetamine from the ingestion of
medications like selegiline, L-methamphetamine, and
famprofazone.

Enantiomeric analysis of amphetamine has been performed
in several ways. Chiral derivatisation and analysis on
nonchiral stationary phases was used for gas chromatography
(GC) and GC-MS, using (S)-N-(trifluoroacetyl)-prolyl chlo-
ride [11–15], (S)-N-(heptafluorobutyryl)-prolyl chloride
[16–19], (−)-menthyl chloroformate [20], and N-
pentafluorobenzoyl-(S)-prolyl-1-imidazolide [21] derivatives.
Liquid chromatography (LC) and LC-MS have also been used
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with chiral columns to separate the enantiomeres of amphet-
amine on chiral stationary phases [10, 22, 23], or with re-
versed phase (RP) columns after chiral derivatisation using
UV or fluorescence detection. A variety of agents have been
described in the latter studies for diastereomer formation with
amphetamine, among them (−)-menthyl chloroformate [24],
4-nitrophenylsulfonyl-L-proline [24], o-phtaldialdehyde/L-
cysteine [24], (+)-1-phenylethyl isothiocyanate [25], and (−)-
9-fluorenylethyl chloroformate [26–28]. While suitable for
UV and fluorescence detectors, these latter methods cannot
always easily be adopted for LC-MS detection due to com-
patibility problems with the mobile phase composition and
hence the necessary chromatographic resolution. (S)-
N-(heptafluorobutyryl)-prolyl chloride has so far not been
used for chiral derivatisation of amphetamine enantiomeres
and subsequent LC-MS analysis.

High-resolution mass spectrometry (HRMS) provides un-
surpassed specificity due to drastically reduction of back-
ground interference. Being available only at dedicated labo-
ratories, this technique has not gained widespread application
so far. With the advent of Orbitrap mass spectrometers, this
instrumentation has become affordable and downscaled to
benchtop size, making application of HRMS more and more
frequent.

For pharmacokinetic applications, robustness and short
analysis time is a major concern, since they involve the
processing of a large number of samples. Additionally, as
children represent a considerable proportion of the target
group for amphetamine medication, reduction of sample size
is of critical importance. It was thus the aim of this study to
elaborate and validate a LC-HRMS assay for the quantitative
determination of amphetamine enantiomeres in human plasma
that meets the requirements of sensitivity, specificity, speed
and ruggedness for pharmacokinetic applications and drug
monitoring, and to compare this method to detection with
highly sensitive analysis by GC and negative ion chemical
ionization (NICI) mass spectrometry.

Experimental

Chemicals and reagents

(S)-(+)-amphetamine (D-AMP) and (R)-(−)-amphetamine (L-
AMP) were purchased as certified reference solutions from
Cerilliant (USA). Heptafluorobutyric anhydride (HFBA) and
(S)-proline were from Sigma (Vienna, Austria). (R)-α-
methylbenzylamine of ChiraSelect grade was from Fluka
(Vienna, Austria). All other substances, solvents, and reagents
of analytical grade were from Merck (Darmstadt, Germany).
Plasma samples were collected as part of a pharmacokinetic
study and hence under approval of the corresponding
authorities.

Preparation of (S)-N-(heptafluorobutyryl)-prolyl chloride
(L-HPC)

(S)-N-(heptafluorobutyryl)-prolyl chloride (L-HPC) was pre-
pared as described [29]. Then 1.2 g (10.4 mmol) of (S)-proline
were dissolved in 30 mL ethyl acetate cooled to −20 °C.
2.5 mL (10 mmol) of cold HFBAwere added and the mixture
stirred for 1.5 h. After washing with 0.1 M HCl, the ethyl
acetate was dried over anhydrous sodium sulfate and 2.8 mL
(20 mmol) of triethyl amine were added. The solvent and
excess triethyl amine were removed in vacuo. One hundred
milliliters cold (−20 °C) solution of thionyl chloride in dichlo-
romethane (2M)were added, stirred on an ice bath for 15min,
and kept at room temperature for 2.5 h. Solvent and excess
reagent were removed in vacuo and the residue dissolved in n-
hexane. Optical purity was checked by derivatisation of
(R)-α-methylbenzylamine of certified enantiomeric composi-
tion and was found to be 99.74 %.

Preparation of racemic d5-amphetamine

Racemic d5-amphetamine was prepared from (±)-amphet-
amine by acid-catalyzed exchange reaction using 5 % DCl
in D2O [30]. Briefly, racemic amphetamine sulphate (2 mg)
was dissolved in 0.5 ml of 5 % DCl in D2O, the glass vial
capped tightly and held at 160 °C for 15 h. After cooling, the
mixture was diluted with methanol and isotopic purity as well
as enantiomer ratio checked by GC-NICI-MS.

Plasma sample preparation and derivatisation

Samples were thawed at room temperature and processed
immediately after thawing. Fifty microliters of the methanolic
solution of the internal standard, containing d5-amphetamine
free base (4 ng of each enantiomer), were pipetted into a 5-mL
glass tube and 0.25 mL of plasma was added. After short,
vigorous shaking, 0.2 mL of 0.3 M NaOHwas added, follow-
ed by 2.5 mL of n-hexane. The tubes were shaken on a
reciprocal shaker at low speed for 15 min and centrifuged at
3,000 rpm. The clear supernatant n-hexane phase was trans-
ferred to 5-mL glass tubes and 50 μL of the L-HPC reagent
(1 mM in n-hexane) was added. The mixture was shaken and
left at room temperature for 30 min. Thereafter, solvent was
removed under a gentle stream of nitrogen at 40 °C. The dry
residue was dissolved in 100 μL ethyl acetate for GC-NICI-
MS or 150 μL methanol/water (60:40; v/v, containing 0.1 %
formic acid) for LC-HRMS and transferred to autosampler
vials. The vials were stored at −20 °C until analysis.

GC-NICI-MS analysis of amphetamine-L-HPC derivatives

GC-NICI-MS analysis of amphetamine-L-HPC derivatives
was accomplished as previously described [19] with slight
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adoptions to use only 250 μL of sample. An ISQ quadrupole
mass spectrometer coupled to a TRACE GC Ultra (Thermo
Scientific, Vienna) was used. The GC was fitted with a BPX5
fused silica capillary column (15 m×0.25 mm i.d., SGE). The
injector was operated in the splitless mode at 280 °C. Helium
was used as a carrier gas at a constant flow rate of 1.5 mL/min.
Initial column temperature was 100 °C for 1 min, followed by
an increase of 40 °C/min to 310 °C, and an isothermal hold of
2 min. The mass spectrometer transfer line was kept at 315 °C.
NICI was performed with methane as a moderating gas.
During single ion recording, m/z 368.1 and m/z 373.1 were
recorded for target and internal standard, respectively, with a
dwell time of 50 ms.

LC-HRMS analysis of amphetamine-L-HPC derivatives

AQ-Exactive high-resolution orbitrapmass spectrometer with
a heated electrospray source coupled to an Accela 1250 HPLC
pump (Thermo Scientific, Vienna) was used. The Hypersil
Gold (Thermo Scientific, Vienna) reversed phase column
(100 × 2.1 mm, 1.9 μm) was placed in a Maylab
Mistraswitch thermostatic oven and kept at 35 °C. LC elution
was accomplished at a flow rate of 300 μL/min starting with
40%mobile phase A (0.012% formic acid, 5 mM ammonium
acetate) and 60 % mobile phase B (0.012 % formic acid in
methanol, 5 mM ammonium acetate). A gradient to 100 %
mobile phase B was run within 7 min, and mobile phase B
continued isocratically for another 4 min. The column was
then equilibrated at the starting conditions for 2 min before the
next injections. Ten microliters of sample were used for anal-
ysis. Total analysis time per sample was 13 min. Identical
conditions at a flow rate of 0.8 mL/min were employed for
analysis on a chiral ß-cyclodextrin column (LiChroCART
ChiraDex 250-4, 5 μ; Merck, Darmstadt).

The orbitrap mass spectrometer was set to maximal reso-
lution (140.000). The entrance quadrupole was set to a mass
range from 428 to 435 at unit resolution. Detection ofMH+ for
amphetamine-L-HPC and d5-amphetamine-L-HPC was ac-
complished at m/z 429.1413 and m/z 434.1727, respectively.
For MS/MS analysis, MH+ ions of amphetamine and d5-
amphetamine were selected as precursors and fragmented by
CID at a normalized collision energy of 35 %, followed by
orbitrap detection at 70.000 resolution.

Analytical method validation

Calibration graphs were established in the range of 0.024 ng/mL
plasma to 25 ng/mL plasma (L-AMP) and 0.098 ng/mL plasma to
100 ng/mL plasma (D-AMP) with 11 calibration points in dupli-
cates. For this purpose, blank plasma was spiked with the appro-
priate amounts of L- and D-AMP and serial dilution of the highest
calibrant with blank plasma. Standard solutions of L- and D-AMP
were prepared in methanol and stored at −20 °C. Calibration

curves were calculated by polynomial regression analysis (qua-
dratic fit) weighting for 1/s2 (s=standard deviation of duplicates).
For response function check, five individual calibration curves
weremeasured and the coefficients of regression evaluated. Back-
calculated values of all measured calibrants were correlated to
their nominal values and correlation coefficients calculated.
Different calibration ranges for L- and D-AMP were chosen due
to the expected maximal levels of D-AMP after administration of
dexamphetamine, thus demonstrating that the presented method
can be adjusted to the needs of the analytical task.

Interday precision was determined at 0.024 (LOQ), 0.56, 4,
and 20 ng/mL concentration levels (L-AMP) and 0.098
(LOQ), 2.24, 16, and 80 ng/mL concentration levels (D-
AMP) by carrying 5 identical samples at each concentration
level throughout the analytical sequence. Spiked samples
were prepared from blank plasma. Intraday precision was
determined at 0.024 (LOQ), 0.56, 4, and 20 ng/mL concen-
tration levels (L-AMP) and 0.098 (LOQ), 2.24, 16, and 80 ng/
mL concentration levels (D-AMP) by carrying 5 identical
samples at each concentration level throughout the analytical
sequence. Spiked samples were prepared from blank plasma.
Accuracy of the methods was also tested at the
abovementioned concentrations. Thus, the data from inter-
and intraday precision measurements were used to calculate
the deviation of the values measured from the actual spiked
values. Specificity was tested by analyzing six different blank
plasma samples. Freeze-thaw stability, long-term stability of
stored samples, stock solution stability, and short-term
(benchtop) stability have been evaluated previously [19].

Autosampler stability was determined by analyzing a set of
spiked samples at different concentrations together with the
corresponding calibration curve at two different days. The sam-
ples were thereby left at ambient temperature for 5 days until
reanalysis.

Matrix effect was investigated using six lots of matrix in-
cluding hemolyzed and hyperlipidemic samplematrix. For each
analyte and the internal standard, the matrix factor (MF) was
calculated in each lot of matrix by calculating the ratio of the
peak area in the presence of matrix (measured by analyzing
blank matrix spiked with analyte at a concentration of 0.56 ng/
mL (L-AMP) and 2.24 ng/mL (D-AMP) after extraction) to the
peak area in the absence of matrix (pure solution of the analyte).
The IS normalized MF was also calculated by dividing the MF
of the analyte by the MF of the IS. The IS was added to the
matrix or buffer together with the unlabelled target. Normalized
MF were calculated for each sample separately.

For assessment of accuracy and precision at prospective
analytical batch size, five replicates of spiked samples at 0.024
(LOQ), 0.56, 4, and 20 ng/mL concentration levels (L-AMP) and
0.098 (LOQ), 2.24, 16, and 80 ng/mL concentration levels (D-
AMP) together with at least 90 blank plasma samples were
extracted and chromatographed with a set of calibration stan-
dards in one single run. Quality control (QC) samples were
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analyzed once before the blank plasma samples and again after
analysis of 90 blank plasma samples. Accuracy was measured as
bias (percent deviation of the calculated vs. the nominal values)
and precision was expressed as coefficient of variation (%).

Results and discussion

LC-HRMS analysis of amphetamine-L-HPC derivatives

The method presented here provides a rapid and simple way
for the enantioselective analysis of D- and L-AMP in plasma
allowing processing of large sample batches. As children are a
main target of this medication, small sample size is desirable.
The high sensitivity of the orbitrap mass spectrometer allows
the use of only 250 μL of plasma by keeping a LOQ of
0.024 ng/mL. Extraction and derivatisation are simple, and
the alkaline n-hexane extract is very clean, even from a
complex matrix like plasma. We have processed batches with
up to 130 samples per day conveniently. Investment of time
for this sample preparation is easily compensated by the
benefit of clean extracts that result in lower insult of the
chromatographic system.

Chromatographic resolution of the diastereomeres
formed after derivatisation of L- and D-AMP with L-HPC
on a conventional reversed phase column is the rate-
limiting step in this type of enantioselective analysis, espe-
cially when the choice of mobile phase is restricted to
electrospray-compatible compositions. We have therefore
compared two modes of mass spectrometric detection: high
resolution only (R=140.000) and targeted MS/MS analysis
from the protonated precursor ions at R=70.000. The prod-
uct ion mass spectra obtained for AMP-L-HPC and d5-
AMP-L-HPC are shown in Fig. 1. Besides loss of the N-
carboxyamphetamine moiety, three specific fragment ions

bearing the isotope label of the internal standard were formed:
C7H7 (m/z 91.0548), C9H11 (m/z 119.0861), and C9H14N (m/z
136.1126), as well as their deuterated analogues at m/z
96.0862, m/z 124.1175, and m/z 141.1440. For quantitation,
the summed intensities of these three ion traces were moni-
tored. As seen in Fig. 2, baseline separation can be achieved
under the conditions employed; the column temperature of
35 °C being crucial to this. This resolving power remained
constant even after analysis of more than 150 samples on the
same column without any washing or regeneration steps in
between. This can be attributed to the careful conditioning
during the LC method, which only moderately increases anal-
ysis time, but with the benefit of largely unattended operation.
Even lower detection limits can be obtained, if desired, when
larger plasma samples of 1 mL are extracted (results not
shown). The HRMS method showed slight background inter-
ference near the L-AMP-L-HPC peak, which does not signif-
icantly affect quantitative performance, as shown below by
the validation data. Virtually, no background is seen with the
HRMS/MSmethod. The obtained chromatographic resolution
is comparable to the results from analysis on a chiral stationary
phase, where ideal peak shape was obtained for D-AMP and
peak broadening for L-AMP. The elution order was L-AMP/D-
AMP for GC-NICI-MS, D-AMP/L-AMP on the reversed
phase column, and L-AMP/D-AMP on the ß-cyclodextrin
column.

Analytical method validation

The calibration graphs established were linear within the
tested range of 0.024 ng/mL plasma to 25 ng/mL plasma (L-
AMP) and 0.098 ng/mL plasma to 100 ng/mL plasma (D-
AMP). Proportionality of the response function was observed
between 0.024 ng/mL plasma and 100 ng/mL plasma for both
enantiomeres. For the needs of a pharmacokinetic application
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were obtained from the
protonated MH+ precursors and
recorded at a resolution of 70.000
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(administration of dexamphetamine), however, calibration
ranges were set as indicated above and the method validated
within that range. Mean regression coefficients (r2, n=5) were
0.99972 (D-AMP) and 0.99927 (L-AMP) with the HRMS
method, and 0.99965 (D-AMP) and 0.99987 (L-AMP) with
the HRMS/MS method. The mean regression equations from
five calibration curves were as follows: Y=−8.2967−4

(±0.00411)+0.02841 (±3.80616−4) × X − 1.25385−5

(±3.94046−6) × X2 (D-AMP, HRMS); Y=−0.00224
(±0.0019)+ 0.03314 (±7.04625−4) × X − 7.64652−5

(±2.91795−6) × X2 (L-AMP, HRMS); Y = 0.01055
(±0.00444) + 0.07831 (±0.00146) × X −1.51064−4

(±5.8973−5) × X2 (D-AMP, HRMS/MS); Y=0.00521

(±0.00235)+ 0.11049 (±8.69072−4) × X −7.40753−5

(±3.59895−5) × X2 (L-AMP, HRMS). Correlation (r2) of
back-calculated values with their respective nominal values
(means of five calibration curves) were 0.99955 (D-AMP,
HRMS), 0.99977 (L-AMP, HRMS), 0.99988 (D-AMP,
HRMS/MS), and 0.99959 (L-AMP, HRMS/MS). The data
demonstrate the extraordinary analytical power of the orbitrap
HRMS system, as quantification can be achieved over a
dynamic calibration range of 4,000.

The coefficients of inter- and intraday variation (precision)
and accuracy of the spiked samples are presented in Tables 1
and 2. It can be seen from these data that the method provides
a highly precise and accurate assay for L-and D-AMP in
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human plasma, with both, the HRMS and HRMS/MS method
being equally suitable. This can be attributed at least in part to
the use of stable isotope-labeled internal standards. Mass
spectrometry in combination with stable isotope dilution is a
very powerful tool in external quality assessment schemes,
and assays based on this technique can be regarded as refer-
ence procedures to validate other analytical methods.

Six different blankmatrices were checked for interferences.
In none of the samples, there was background contribution
above 25 % LOQ at the retention times of targets and internal
standards, respectively.

For autosampler stability, the mean concentrations of sam-
ples chromatographed immediately after sample preparation
and 5 days later were measured and the deviation from imme-
diately analyzed samples were 0.74 % (2.24 ng/mL), 0.54 %
(16 ng/mL), and −1.50 (80 ng/mL) (D-AMP, HRMS); 4.96 %
(0.56 ng/mL), −2.22 % (4 ng/mL), and −3.43 (20 ng/mL) (L-
AMP, HRMS); 0.21 % (2.24 ng/mL), 1.74 % (16 ng/mL), and
4.36 (80 ng/mL) (D-AMP, HRMS/MS); and 1.27 % (0.56 ng/
mL), −1.61 % (4 ng/mL), and 3.17 (20 ng/mL) (L-AMP,
HRMS/MS). Thus, D- and L-amphetamine-L-HPC derivatives
are stable to repeated analysis conditions with both of the
described methods.

Evaluation of the matrix effect resulted in mean internal
standard-normalized matrix factors for normal, lipidemic, and
hemolytic matrix of 1,00±0.007 (L-AMP, HRMS), 1,00±
0.022 (D-AMP, HRMS), 0.99±0.013 (L-AMP, HRMS/MS),
and 1,01±0.017 (D-AMP, HRMS/MS). This demonstrates that
assay performance is not influenced by plasma matrix com-
position and no significant matrix effect can be observed. The
matrix effect measured herein is comparable to that of the GC-
NICI-MS method which was determined as 1,05±0.061 (L-

AMP) and 1,05±0.033 (D-AMP). Again, this must be attrib-
uted to the sample preparation and clean-up procedure, mak-
ing this assay robust against variations of matrix composition.

Accuracy at prospective analytical batch size has been
estimated for a 90-sample batch. Deviations of samples ana-
lyzed after sample batch from early analyzed samples were
1.87 % (2.24 ng/mL), 1.00 % (16 ng/mL), and −1.45 (80 ng/
mL) (D-AMP, HRMS); −1.49% (0.56 ng/mL), −1.78% (4 ng/
mL), and −3.15 (20 ng/mL) (L-AMP, HRMS); −0.48 %
(2.24 ng/mL), 0.09 % (16 ng/mL), and 2.50 % (80 ng/mL)
(D-AMP, HRMS/MS); and −1.13 % (0.56 ng/mL), 1.23 %
(4 ng/mL), and 0.92 (20 ng/mL) (L-AMP, HRMS/MS). The
method is thus suitable for analyzing batch sizes up to 130
samples, including calibrants and quality control samples.

We have applied the method described herein to the anal-
ysis of D- and L-amphetamine during pharmacokinetic profil-
ing of the drug. Figure 3 shows a typical time course from a
human volunteer receiving 20 mg of dexamphetamine (D-
AMP) orally as a fast-release formulation and subsequent
analysis by GC-NICI-MS, LC-HRMS and LC-HRMS/MS.
These data are part of a pharmacokinetic bioequivalence study
which has been approved by the responsible authorities. As
can be seen, the time course is virtually identical for all three
methods. Values obtained by the LC-MS methods and the
GC-NICI method showed a linear regression coefficient r2=
0.99965 and slope B=0.9950 (HRMS/MS), as well as r2=
0.99902 and slope B=1.01486 (HRMS). It is a beneficial
feature of the L-HPC derivative that processed samples can
be analyzed by GC and LC as well, thus allowing direct
comparison of method performance from the same set of
samples. It should be noted that the method described was
also applied to the analysis of D- and L-amphetamine after oral
intake of racemic amphetamine with unattenuated assay per-
formance. The results of this pharmacokinetic study will be
published separately.

Conclusions

The analysis of (S)-amphetamine and (R)-amphetamine from
human plasma is of major interest in pharmaceutical research
and toxicological monitoring of the drug. Enantiomeric sepa-
ration by covalent chiral derivatisation allows the use of
nonchiral chromatographic systems, an approach widely used
in enantioselective GC-analysis. The use of L-HPC as a chiral
label for amphetamine in LC-MS analysis has not been de-
scribed so far. High-resolution mass spectrometry adds an
additional dimension to specificity and allows detection of
amphetamine by the described methods with accuracy, preci-
sion, and sensitivity comparable to the highly sensitive GC-
NICI-method. The use of a stable isotope labeled internal
standards adds an additional dimension of specificity and
selectivity to the mass spectrometric detection, thereby also
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Fig. 3 Pharmacokinetic profile of D-amphetamine from a human volun-
teer receiving 20 mg of dexamphetamine orally. Samples were collected
at the indicated time points and processed as described under methods.
Analysis of samples was performed by GC-NICI-MS, LC-HRMS, and
LC-HR-MS/MS
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compensating ideally for losses during sample work-up pro-
cedure and derivatisation sequence. We have successfully
applied this method to the bulk analysis of plasma samples
for a preliminary pharmacokinetic study, demonstrating its
ability for routine measurements
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