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Abstract This review is focused on methods for detecting
small molecules and, in particular, the characterisation of their
interaction with natural proteins (e.g. receptors, ion channels).
Because there are intrinsic advantages to using label-free
methods over labelled methods (e.g. fluorescence, radio-
activity), this review only covers label-free techniques.
We briefly discuss available techniques and their advan-
tages and disadvantages, especially as related to inves-
tigating the interaction between small molecules and
proteins. The reviewed techniques include well-known
and widely used standard analytical methods (e.g.
HPLC-MS, NMR, calorimetry, and X-ray diffraction), newer
and more specialised analytical methods (e.g. biosensors),
biological systems (e.g. cell lines and animal models), and
in-silico approaches.
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Introduction to small molecules

What are small molecules?

Size is not the only criterion for a molecule to be regarded as a
“small molecule”. The term “small molecule” is defined by
pharmaceutical chemistry, and small molecules have had a big
effect on drug discovery in recent decades.

A definitive encompassing statement of the size of a small
molecule and its molecular weight cannot be found in the
literature. The definition depends on the application and the
field in which it is used, and so is rather variable. Some
sources state that small molecules are “organic, non-peptide
compounds” [1, 2], others that the “size diversity of small
biomolecules easily overlaps with many natural peptide hor-
mones” and thus a molecule should fulfil three criteria: first,
“it is not directly encoded by genome”, second “it is synthe-
sized by specific enzymes”, and third “it is non polymeric”
[3]. This means the latter description includes non-ribosomal
peptides or specific non-polymeric carbohydrates, contradic-
ting the previous statement. Also, the range of the molecular
weight varies from definition to definition. For example, some
literature [3, 4] sets the limit at 1000Da, whereas 500 Da is the
upper threshold for others [5, 6]. Nevertheless, the molecular
weight is a crucial aspect of drug design because of the poorer
blood-barrier permeability associated with increasing molec-
ular weight in most common cases. [7] Because of this poor
permeability, the “rule of five” was established, which states
that “poor absorption or permeation are more likely when:
There are more than 5 H-bond donors (expressed as the sum of
“OH”s and “NH”s); The molecular weight is over 500; The
log P is over 5 (or Mlog P is over 4.15); There are more than
10 H-bond acceptors (expressed as the sum of “N”s and
“O”s); Compound classes that are substrates for biological
transporters are exceptions to the rule” [7].
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The origin of small molecules

Small molecules and their derivatives can originate from ex-
tractions of natural products, which are “secondary metabolites
chemicals that are not directly involved in the growth or the
development of the organism that produces them”, or chemi-
cally synthesized compounds [8]. Numerous natural small
compounds can be isolated from bacteria, actinomycetes, fungi,
or microbes [9]. In recent years, compounds of marine origin
have also been isolated and used as small-molecule drugs. The
anti-tumour drug Trabectedin (brand name Yondelis®) [10] is
an example, already used for the treatment of patients, which “is
the first marine anticancer agent approved in the European
Union for patients with soft tissue sarcoma” [11].

Small molecule fragments

When discussing small molecules, small-molecule fragments
must also be considered. Fragment-based lead discovery
(FBLD) is an increasingly popular screening technique. The
basic principle is to subdivide drug candidates into functional
fragments and use these fragments for screening. Afterwards,
the drug candidate is designed on the basic of the screening
results: “FBLD can lead to molecules with better drug-like
properties than those originating from typical HTS” [12]. The
“rule of three”, which specifies that fragments have a molec-
ular mass less than 300 Da, log P≤3, and ≤3 hydrogen bond
donors and acceptors, was often used in this context, although
it only serves to limit complexity in fragment libraries and
therefore is not a strict guideline [12, 13].

“A number of compounds that evolved from fragments
have entered the clinic, and the approach is increasingly
accepted as an additional route to identifying new hit com-
pounds in pharmaceutical discovery and inhibitor design”
[14]. For example, in December 2012 MK-8931 (Merck),
originating from FBLD, was announced as a potential drug
for Alzheimer’s disease, whereas fifteen years ago beta-
secretase 1 (BACE1) was regarded as an intractable target
[12]. In FBLD, low-molecular-mass compounds with low
affinity to the target are upsized, giving them better physico-
chemical properties than those generated using conventional
screening techniques [12, 13].

What do small molecules target?

Small molecules most often target proteins. DNA or RNA
might also be an interesting target for small molecules, but
they are excluded from this review.

In 2006, the list of the most common protein targets for
pharmaceutical research included [15]:

& Rhodopsin-like G-protein-coupled receptors (GPCRs)
& Nuclear receptors

& Ligand-gated ion channels
& Voltage-gated ion channels
& Penicillin-binding protein
& Myeloperoxidase-like
& Sodium: neurotransmitter symporter family
& Type II DNA topoisomerase
& Fibronectin type III
& Cytochrome P450
& Phosphodiesterases
& Proteases
& Protein kinases

Rhodopsin-like GPCRs, nuclear receptors, and ion chan-
nels together provide more than 50 % of possible drug targets.

A very detailed overview of targets and respective drugs
can be found in [16].

Many examples of screening for small molecules, their
targets, and the related diseases can be found in recent litera-
ture (Table S1, Electronic Supplementary Material). Interest-
ing examples will be emphasized in the appropriate method
section.

Why are small molecules interesting?

Small molecules are interesting for two reasons. First, they are
of great interest in pharmaceutical research because of their
intrinsic properties, e.g. being able to cross the blood–brain
barrier [17]. The second reason is the danger associated with
small molecules when they are present in the environment (i.e.
not used in a controlled way as pharmaceuticals). In this
context, a large group of small molecules can turn into
endocrine-disrupting chemicals (EDC).

When acting as EDC, small molecules can cause harm and
can thus be referred to as “Jekyll and Hydes” [18]. The
powerful effects of small molecules include curing diseases,
reprograming whole cells [19], or having very negative and
unwanted effects (for example being associated with a variety
of diseases and disorders in living organisms) as EDC.

EDC have been the focus of research for decades now [20],
but are still far from being sufficiently understood. EDC
research covers two main aspects: understanding the mecha-
nism by which EDC interact with proteins to disrupt their
function, and detecting EDC in the environment (even at small
traces). Monitoring levels of EDC [21] is necessary to control
their prevalence and to protect populations [22] from their
negative effect. Understanding the mechanism by which EDC
interact with proteins is very closely related to understanding
how small molecules can serve as pharmaceuticals. Detecting
small molecules under environmental conditions, e.g. in small
traces and complex matrices, is a totally different task, and is
not covered in this review. Instead, we focus on analytical and
bioanalytical techniques suitable for investigating small
molecule–protein interactions.
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Label-free detection methods for small molecule protein
interaction investigation

Advantages of label-free detection

There are several obvious advantages of systems which do not
require the use of labels. There are also some disadvantages;
for example, label-free technology will probably never match
the limits of detection of labelled methods [23, 24].

However, the advantage of label-free technology when
investigating small molecule–protein interactions is that the
interaction is not disturbed by labels. A label could be, e.g., an
isotope, a fluorescent dye, a fluorescent protein, an enzyme, a
quantum dot, or a nanoparticle [25–28], and these labels can
disturb the system, or at least make the system more artificial.
Whereas the exchange of a single atom for another isotope of
the same element can be regarded as a rather small manipula-
tion, attaching a fluorescence label or even larger molecules to
a small molecule, which is the same size as or even smaller
than the label, will have a dramatic effect on both the physical
and the chemical properties. Even when using isotope label-
ling in, e.g., scintillation proximity assays (SPA) [29], one
must be aware that the radiation isotopes used have enough
energy to break chemical bonds and alter the behaviour of the
system in unknown ways (e.g. conformational changes).

Labelling the protein is less problematic than labelling the
small molecule, but still has disadvantages. It is straightfor-
ward for an experienced molecular biologist producing their
own proteins (e.g. by cell culture) to introduce, for example,
green fluorescent protein (GFP) or other labels [30]. However,
these proteins are arguably large even compared with other
proteins: for example, GFP is approximately 27 kDa. There
are other, much smaller chemical dyes, for example Cy5,
which is less than 800 Da [31]. This is only a small change
in mass compared with the protein (see Fig. 1). However, the
label must be attached to the protein and, in contrast with
biologically introduced labels (for example GFP), it is very
hard to control the point at which the dye will attach, and the
dye may even attach to multiple sites within the same protein.
This can result in proteins of the same type and in the same
mixture having completely different properties, caused by the
dye molecule attaching to different positions on different
proteins [31, 34, 35].

Other reasons not to use labels include the fact that label-
ling can be expensive and takes time. Sometimes, labelling is
not possible: the protein might be not stable enough to be
labelled [36], or may be unable to be labelled because it is only
available in a mixture with other proteins (e.g. serum sample
or cell lysate).

For these reasons, information gained from label-free
methods can be regarded as more accurate and closer to an
in-vivo situation, if the experimental conditions are chosen
carefully.

This critical review will discuss strengths and weaknesses
of different label-free techniques in terms of their ability to
investigate specific interaction characteristics of a small mol-
ecule with its target. These specific interaction characteristics
can be described as the physico-chemical properties of a
biomolecular reaction, and are very important for understand-
ing and/or manipulating, e.g., the binding of a drug candidate
to a receptor protein. Thus, the different label-free
bioanalytical methods should provide access not only to struc-
tural information, but also to information on thermodynamics
(e.g. affinity), kinetics (e.g. association and dissociation rate
constants), or even reaction mechanisms or dimerization of
reactants.

This review will discuss in detail several methods that can
be used for investigating small molecule–protein interactions.
Advantages, disadvantages, and requirements will be
emphasised, and notable examples of the respective method
will be presented.

In-silico (computational) methods

In-silico-based methods may be the fastest-progressing ana-
lytical method during recent decades. This statement is sup-
ported by Moore’s law [37], which has now been valid for
almost 50 years.

In silico covers a wide variety of methods, but we will
focus on those which can be used to perform small molecule–
protein virtual screening.

Virtual screening for pharmaceutically interesting com-
pounds has become very attractive during recent years be-
cause it takes 14 years, on average, for a new drug (e.g. small
molecule) to progress from development to market [38]. Dur-
ing this time, the developing company will spend approxi-
mately 1 billion USD [39].

Fig. 1 Size comparison of the 3D structures, generated using PyMol
[32], of a typical protein target (ligand-binding domain of the estrogen
receptor alpha [33], 30 kDa) in green, a small molecule (4-hydroxy-
tamoxifen) in purple, and a typical fluorescence dye (Cy5.5-ester) in cyan
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There are three approaches to performing virtual screening
for interesting small-molecule compounds or small-molecule
fragments: structure-based drug design (SBDD), ligand-based
drug design (LBDD), and sequence-based design. Normally,
two or more approaches are combined when a pure virtual
screening is performed. Which approach will be most prom-
ising for a given problem will depend on which information is
available regarding the protein (3D structure, or only se-
quence) and the interacting small ligands.

During SBDD, the small ligand is aligned to a protein (with
known 3D structure) in a way which is favourable in terms of
energy, as illustrated in Fig. 2. The list of programs and/or
algorithms which can be used for SBDD is quite long, and
includes: Dock [41], FlexX [42], GOLD [43], GLIDE [44],
SLIDE [45], LigandFit [46], FRED [47], Surflex [48], and
AutoDock [49].

Ligand-based drug design is possible when the 3D struc-
ture of the protein is unknown, if a group of small ligands is
known to interact with that protein [50]. The basic principle is
to find similarities within this group of ligands and use these
similarities as molecular descriptors. Using these molecular
descriptors, it is possible to predict other small molecules that
may bind to this protein [51].

Sequence-based drug design is probably the most ambi-
tious approach. For this technique, neither the 3D structure of
the protein nor any small molecule that can interact with the
protein is known [52].

All three approaches require no laboratory equipment, no
chemicals, and no laboratory space, and, depending on the
amount of small molecules and proteins to be screened, they
may not need specialised hardware or specially trained per-
sonnel. However, the data generated is very much dependent
on the quality of the experimental data (e.g. X-ray structures)
and the skills and knowledge of the person running the sim-
ulations, and is even more dependent on the critical assess-
ment of the generated data.

There are several interesting applications and examples of
the use of virtual screening. Recently, SBDD led to the dis-
covery of two small molecules able to block the Ras–Raf
interaction [53], which has an important function in cancer
development. The virtual screening reduced 40,882 candi-
dates to 97, which were then screened using cell-based
methods. One compound, Kobe0065, screened positive for
inhibition of the oncogene at μmol L−1 affinity. A later
computer-assisted similarity search of approximately
160,000 candidates yielded 273 virtually-screened small-
molecule inhibitor candidates, which were again validated
and yielded a second successful inhibitor: Kobe2602. This is
an example of the successful combination of in-silico methods
(here SBDD) with other analytical methods, including NMR
(to determine the mechanism by which Kobe0065 functions)
and cell-based assays.

LBDD was used very early on to predict affinities of
polychlorinated biphenyls (PCBs) and polychlorinated
dibenzodioxins (PCDDs) for the aryl hydrocarbon receptor
(AhR), which is of great interest in xenobiotic metabolism but
has no known 3D structure [54]. Recently LBDD, and quan-
titative structure activity relationship (QSAR) in particular,
has been used not only to predict affinities and find new small
molecules and ligands for proteins, but also to predict other
properties of molecule classes, for example toxicity [55].

Sequence-based drug design has been used to discover new
small molecules out of a library of 191,407 individual small
molecules. The objective was to screen suitable small mole-
cules for interaction with four potentially interesting targets
(GPR40, SIRT1, p38, and GSK-3beta). The small molecules
indicated by screening were then validated by: cell-based
assays, for GPR40; fluorescence, for SIRT1; or optical sensors
(SPR), for p38 and GSK-3beta. This screening identified and
experimentally validated one novel binder for GPR40, five for
SIRT1, two for p38, and one for GSK-3beta, which may be
the first time that sequence-based virtual screening has been
successfully applied to this kind of problem [56].

Biosensors

Despite their different transduction principles (piezoelectric,
electrochemical, or optical), all sensors share specific proper-
ties. They usually require one of the interacting substances—
here either the protein or the small molecule—to be

Fig. 2 Docking of a small molecule to a protein. Virtual docking (using
AutoDock Vina [40]) of a small molecule (4-OH-tamoxifen, anti-cancer
drug) to the binding pocket of the human-estrogen receptor alpha. The
different simulated conformations of the small molecule are shown in
different colours (yellow, violet, and cyan)
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immobilized onto a surface to create the sensing element. This
can be read out using a suitable transduction principle and
related electronics.

The process of immobilizing one of the reactants could be
regarded as attaching a very large label to one of the reactants,
especially when the small molecule is immobilized on the
surface. Because of this, the sensor section of this review will
almost exclusively focus on approaches and examples where
the protein is immobilized, and the small molecule is detected
in a direct test format (Fig. 3).

Even when the protein rather than the small molecule is
attached to the surface, the behaviour of the protein could be
affected, just as happens during labelling. The difference
between the labelling process and the immobilization process
is that little can be done to control the way a label attaches to a
protein. In contrast, sensor scientists usually use biopolymers
to immobilize the protein in a controlled way, and create an
environment that does not affect its activity [57]. This is
always necessary for the label-free sensor techniques, because
non-specific adsorption of molecules to the sensor surface
must be reduced to enable discrimination between specific
interaction and non-specific binding.

All sensor-based techniques only need a small amount of
immobilised protein (a few μg). The amount of small mole-
cule needed for experiments can be very high (up to high
μmol L−1) depending on the affinity of the small molecule–
protein interaction.

Piezoelectric transduction

QCM-based sensors use the piezoelectric effect of a quartz
crystal. The resonance frequency of the QCM depends on the
mass of the sensor, and the change of the frequency follows
the Sauerbrey equation [58]. The combination of resonance
frequency and dissipation measurements (QCM-D) is most
widely used for analyte detection in the liquid phase. For a

more detailed overview, refer to one of the recent reviews
[59, 60].

The advantage of QCM compared with other techniques,
and especially other sensor-based techniques, is the relatively
easy technical setup and its relative cost-effectiveness. In
contrast with optical sensors, QCM measurements can also
be performed in non-transparent solutions. High concentra-
tions of solvent, which are sometimes required in small mol-
ecule screening, do not disturb the measurements. Disadvan-
tages are the low degree of high-throughput capability, and the
fact that the detected sensor signal is directly dependent on the
mass of the detected molecule, which is by definition very
small.

QCM provides kinetic data for the interaction [61]. Nihara
et al. investigated kinetic rate constants of catalytic dextran
elongation by use of a dextransucrase enzyme. Kinetic rate
constants for the binding of the enzyme to immobilized dex-
tran could be monitored, as could the kinetics of the catalysed
elongation process itself. The reverse assay-procedure, with
immobilized enzyme on the QCM, did not provide kinetic
information. The molecular mass of the dextran acceptor was
too small compared with the immobilized enzyme, meaning
frequency changes of the QCM were insufficient and rate
constants could not be determined.

Another notable recent example where QCM was used to
investigate small-molecule binding to an immobilised protein
is the binding of the antioxidant catechin (from green tea) to
troponin C (a marker for cardiac failure) [62]. Tadano et al.
revealed that several catechin derivatives from green tea bind
to immobilized troponin C subunits, and affinity constants of
the interactions have been calculated from the resulting fre-
quency changes. The binding event of (−)-epigallocatechin
gallate seems, on the basis of troponin C peptides, to be in
good agreement with NMR spectroscopy studies.

QCMwith dissipationmonitoring has been used tomonitor
conformational changes of glycoprotein gp120 induced by

Fig. 3 Schematic sensorgram. A
typical sensorgram (upper) and
the corresponding processes on
the heterogeneous phase (lower),
consisting of five phases. 1:
baseline, only buffer is flushed
over the surface; 2: the small
molecule is injected, leading to a
change in the sensor signal; 3:
equilibrium is reached; the sensor
signal is stable on a different level
compared with baseline; 4: buffer
is injected again and the small
molecule dissociates, changing
the sensor signal back to 5:
baseline
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exposure to small-molecule inhibitors [63]. This glycopro-
tein is found on the envelope of the HIV-I virus and is
involved in the viral entry into host cells. The QCM-D mea-
surements reveal changes in viscoelasticity of the surrounding
medium, indicating a conformational change in the gp120
immobilized on the sensor surface. Although the results are
in good agreement with reference experiments using ITC, the
interaction with the small molecule was only measured indi-
rectly, via the conformation change of the protein, and not
directly via the mass change on the sensor surface upon
binding of the small molecule.

Optical transduction

There are many optical transduction principles, and they vary
greatly. Therefore, we will only briefly discuss the most
popular techniques and their use in small molecule–protein
interaction analysis.

The easiest way to investigate small molecule–protein in-
teraction is when one of the binding-partners has an intrinsic
fluorophore, e.g. the fluorescent tryptophan of most proteins.
This has been used for detailed biophysical analysis of the
interaction of the enzyme FKBP-12 with rapamycin, a small-
molecule target for prostate-cancer treatment and immunosup-
pression. Performing fluorescence intensity measurements,
the authors could specifically determine the energetic contri-
bution of the interaction between a single residue and the
rapamycin molecule [64]. It is debateable whether these tech-
niques can be regarded as truly “label-free”, but there is no
need for a labelling process which could negatively affect the
interaction. However: light of a suitable wavelength is needed
for irradiating the fluorophore, and this has an unknown effect
on the sample.

Other approaches are based on phase shifts (Mach Zehnder
interferometry (MZI) [65]), waveguide grating biosensors
(e.g. [66, 67]), photonic-crystal biosensors (e.g. [68, 69]),
surface-plasmon resonance (SPR) [70], or reflectometry (e.g.
RIfS [71]).The technique with the best theoretical perfor-
mance is probably MZI [65]. However, because it is also
probably the most challenging technique, there have been no
successful applications of MZI for small molecule–protein
screening.

SPR, like MZI, is an evanescence-based technique, which
detects the change of the refractive index of a surface upon
binding of an analyte to a sensitive layer. SPR-based tech-
niques can determine kinetic constants directly, and can use a
wide variety of surface chemistry [72]. Like QCM, SPR uses
gold (or, more rarely, other noble metal)-covered surfaces.
One advantage of SPR is that the technique is very well
accepted by the scientific community, especially for determin-
ing kinetic rate constants. Like QCM, a disadvantage of SPR
is that the signal also correlates—although more indirectly

than with QCM—with the size of the molecule to be detected,
which is again a small molecule.

Sensors based on SPR have been used to screen for anti-
prion compounds, and to compare their inhibition activity
against abnormal prion protein formation in scrapie-infected
neuroblastoma (ScNB) cells [73]. This study indicated that
most anti-prion compounds tested interacted with and had an
affinity for the recombinant domain of the prion protein. The
SPR binding response to that domain correlated with anti-
prion activity in (ScNB) cells.

Reflectometric techniques do not only monitor the
refractive-index change upon binding, as do MZI or SPR,
but also monitor the change in physical thickness. In contrast
with QCMor SPR, the substrates are not gold-coated. Glass or
transparent polymers are most often used as transducer mate-
rials, but silicon can also be used depending on the detection
technique and wavelength used. Therefore, a large variety of
possible surface chemistry can be used [74]. Like SPR,
reflectometric techniques have the disadvantage that the size
of the analyte affects the amount of signal generated by the
sensor. In addition, the technique has not yet reached the high
degree of acceptance of SPR. However, because both the
physical thickness and the refractive index are detected,
reflectometric techniques are less sensitive to temperature
fluctuations [75]. As with SPR, kinetic data can be obtained
directly.

Sensors based on reflectometry have been used for
fragment-based screening. By using biolayer interferometry
(BLI), reproducible matches have been observed for the target
JNK1, which has been implicated in diabetes, and the target
eIF4E, an important modulator of disease progression in on-
cology. In addition to overlappingmatches obtained from SPR
and biochemical assays, compounds uniquely identified with
BLI have been observed [76].

Both SPR and reflectometric techniques offer a high degree
of automation and the possibility of high throughput [77].

To determine both affinity and kinetic rate constants, one of
the reactants must be immobilised. When only the affinity is
of interest, it is possible to determine it in homogenous phase.
Two possible methods will be explained in brief.

The first possible method of determining the affinity in
homogenous phase by using optical sensors is rather an assay
type than a separate method. Therefore, this method can be
applied to all optical-transduction techniques presented here
(SPR [78] or reflectometry [79]). The assay type is rather old
and is commonly known as binding inhibition assay (the same
principle as, e.g., KinExA [80]). By using this assay format, it
is also possible to circumvent the problem of low signal by
detecting small molecules directly, but at the cost of losing
kinetic information. The effect of the surface properties on the
biological system can also be avoided [81].

The second possibility, thermophoresis [82], does not re-
quire an immobilisation step. The method relies on disturbing

4038 P. Fechner et al.



the protein–small molecule interaction via an IR laser and then
monitoring the auto-fluorescence with a photodetector. Infor-
mation provided by this method includes affinity, free energy,
enthalpy, and entropy. The capabilities of this method are
limited by the auto-fluorescence of the protein or the small
molecule, so it cannot be applied to all protein–small molecule
systems. As for the first example, information on kinetic rate
constants is not available.

Electrochemical transduction

Electrochemistry offers a wide variety of possibilities for
investigating small molecule–protein interactions. The most
important are square-wave voltammetry and impedance
measurements.

One main advantage of electrochemical transduction is the
possibility of using relatively simple and cost-effective equip-
ment, which can be used by untrained persons [83]; the best-
known example is blood-glucose meters. In contrast with
other sensor-based techniques, the intensity of the observed
signal is usually not strongly dependent on the size of the
analyte, which is useful for small-molecule detection.

A disadvantage that the analyte must be redox active when
square-wave voltammetry is performed. However, this prob-
lem can be overcome by immobilizing a redox-active compo-
nent on the sensing surface in close proximity to the analyte.
Upon binding of a protein, this redox process is disturbed and
the reduction correlates with the amount of protein bound.
This procedure has successfully been used for, e.g., the detec-
tion of TNT [84].

Since its invention in the late 1970s the patch-clamp tech-
nique has been widely used, especially in electrophysiology.
Here, ion channels in cells are studied by measuring the
current flux. Impressive results were obtained from studying
voltage-gated calcium or sodium channels in regard to pain
therapy [85, 86], and frommeasuring their inhibition by small
molecules [87].

Impedance was first used relatively early (over 25 y ago) to
detect cholinergic agents via their binding to immobilised
acetylcholinesterase [88]. More recently the affinities of small
molecules towards the amyloid beta peptide, which has an
important function in Alzheimer’s disease, have been deter-
mined by impedance spectroscopy [89].

Although the small molecule does not need to be redox
active when using impedance spectroscopy, this technique
was rarely used in small molecule research until recent years,
when it has been more widely used for monitoring whole cells
exposed to small molecules than for monitoring isolated pro-
teins [90–92].

Monitoring whole cells has advantages and disadvantages,
which are the same for each transduction principle associated
with cells. These advantages and disadvantages will be
discussed in detail in the “Cell-based methods” section.

Isothermal titration calorimetry (ITC)

Calorimetric methods are one of the oldest methods used in
analytical (and bioanalytical) chemistry. Calorimetry has been
used in numerous applications; a detailed overview of current
applications is given in [93]. In particular, the advantages of
calorimetric methods have attracted much interest regarding
drug discovery and drug design [94].

As shown in Fig. 4, ITC directly measures the heat of
interaction between two reactants, e.g. for a protein and a
small molecule. The main advantage of calorimetric methods
for investigating protein–small molecule interactions is the
amount of information generated per experiment; it is possible
to gain information about enthalpy, entropy, affinity, specific
heat capacity, and stoichiometry in one experiment. Because
this information is generated in homogenous phase and with-
out labelling, the information can be assumed to be very
accurate when compared with equivalent information obtain-
ed by other methods. Additionally, the molecular weight of
the measured reactants does not affect the strength of the
signal. The basic principle of this method is explained in ■;
for a more detailed explanation of the function principle see
[95].

However, this method has disadvantages. Experiments
usually take several hours, with limited potential for automa-
tion or high-throughput screening. The amount of reactants is
usually quite high; this is not a problem regarding the small
molecule, but the availability of protein is limited in some
cases. Other limitations of the methods are determined by the
intrinsic properties of the measured system, namely the prod-
uct of affinity and concentration of protein (Wiseman con-
stant), on which the affinity has the greatest effect and which
should be approximately 10–100 in an optimum case. These
disadvantages are encountered as a result of recent develop-
ments focused on reducing the volume of the measurement
cells down to a few hundred μL, which reduces the amount of
protein needed to 10 μg [96]. Another technique, continuous
isothemal titration calorimetry (cITC) [97], uses continuous
injection of the small molecule, which leads to more data
points and thus reduces the statistical error and the time
needed per experiment. For high-affinity systems the limiting
Wiseman constant might be circumvented by varying exper-
imental conditions, for example pH or temperature, to reduce
the affinity of the system [98]. A more elegant method of
circumventing this limitation is displacement titration, where a
lower-affinity small molecule is pre-incubated with the protein
and then displaced by titrating the higher-affinity small
molecule [99].

Recent examples where ITC has been used to investigate
small molecule–protein interactions also include investiga-
tions of membrane proteins, which are usually difficult to
handle. ITC has been used to reveal that the interaction of
glycine, which acts as an agonist on the glycine receptor, is
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driven by enthalpy, whereas the interaction of strychnine,
which acts as an antagonist on the glycine receptor, is driven
by entropy [100].

Using displacement titration calorimetry, Biela et al. were
able to determine the very high binding affinities (pico to
nanomolar range) of different peptidomimetica to the throm-
bin receptor. Using this information, the hydrophobicity of the
investigated peptidomimetica was stepwise increased (Gly, D-
Ala, D-Val, D-Leu and D-Cha), resulting in a parallel increas-
ing affinity of the ligands. The determination of DH0 enabled
calculation of entropic contributions, revealing an enhanced
entropic term resulting from the stepwise increase of the
substituents’ hydrophobicity. Thus, the results support “the
classical understanding of the hydrophobic effect, being main-
ly entropy driven in nature and resulting from the release of
firmly fixed water molecules from a well-hydrated binding
pocket” [101].

ITC in combination with NMR and xX-ray crystal-
structure analysis helped to explain the binding mechanism
of small-peptide inhibitors to serine protease. The structure of
the peptide inhibitors was varied on the basis of the structure
of Upain1 (CSWRGLENHRMC). Modifications at the N-
terminal reduced the affinity by a factor of 10, whereas mod-
ifications at the C-terminal did not affect binding affinity. ITC

measurements revealed that the driving force for all peptides
was enthalpy, whereas the entropic contribution inhibited
binding because of the more restrained conformation upon
binding. N-terminal and C-terminal modifications both re-
duced binding enthalpy, but for N-terminal modifications the
unfavourable entropy over-compensated the enthalpy, causing
the reduction in affinity. C-terminal modifications did not lead
to a change in binding entropy [102].

Mass spectrometry (MS)

MS is the method of choice for detection and identification of
unknown molecules. For analytes ranging from small mole-
cules to nanoparticles, the method is usually sensitive, fast,
has low sample consumption, can be very well automated, and
can be used for high-throughput approaches.

The basic principle of the method remains the same for
investigating small molecule–protein interactions: instead of a
single molecule, the small molecule–protein complex is
ionised and then detected [103].

However, there are some challenges associated with using
MS for this purpose, because the structure of the protein
should remain in a native state and be minimally affected by
the ionisation. In the worst case, ionisation can cause the

Fig. 4 ITC experimental setup
and titration curve. Schematic
drawing of the experimental setup
for ITC measurements (left). The
experimental setup of an ITC
consists of two cells. One
contains the protein of interest
(sample cell), one lacks of the
protein of interest (reference cell).
A small molecule is stepwise
injected into a protein solution.
As the interaction takes place,
heat is generated at each injection
(upper right). The titration curve
(lower right) is obtained by
integrating the peaks of each
injection. By further data
evaluation, thermodynamic data
is determined
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interaction between the small molecule and the protein to be
completely destroyed. This can be especially problematic for
hydrophobic interactions, because no water is present in the
gaseous phase and some additives strengthen ionic and elec-
trostatic forces, while weakening hydrophobic and van der
Waals forces. Another challenge is that the buffer should be
compatible with both the protein and the ionisation technique
required for mass spectrometry, otherwise peak broadening
and “ion suppression” will result [104]. In most cases, finding
a compatible buffer is not possible. A related challenge is that
sometimes the shift in mass caused by the small molecule in
relation to the larger mass of the protein is not sufficient to
clearly discriminate between the protein itself and the small
molecule–protein complex.

Once these challenges have been overcome, it is possible to
determine the binding stoichiometry and even the affinity with
a low consumption of sample (less than femtomolar) [105]
and very rapidly. Probably the most promising ionisation
method is electron-spray ionisation (ESI) [106].

Using ESI-MS, it has been possible to investigate the
affinity and mechanism of enzymatic cooperativity of
multimeric proteins [107]. In this study, nanoESI-MS was
used to reveal the allosteric mechanism in the binding of
different inhibitors to fructose 1,6-bisphosphatase (FBPase),
which is a potential target in type 2 diabetes. FBPase is a
tetrameric enzyme, consisting of four identical subunits. In the
nanoESI mass spectrum the formation of a non-covalent com-
plex with four ligands was observed. States with one, two, or
three ligands could not be detected because of the low reso-
lution of the different states, resulting from the lowmass of the
small molecule compared with the protein. For a ligand with
higher molecular weight two states were detected, with
two and with four ligands bound. The Hill coefficient
was determined by titration, and positive cooperativity was
proved.

ESI-MS was also used in fragment-based screening for
drug discovery [108]. A fully automated nanoESI-MSmethod
with high throughput was established to screen hundreds of
potential drug candidates in a short time. One hundred and
fifty-seven phenylpyrazole-derived compounds were
screened against the anti-apoptotic protein Bcl-xL, a protein
which has a function in tumour progression.

Another interesting application is the coupling of affinity
columns toMS.With this approach it was possible to find new
ligands for nuclear receptors [109].

Nuclear magnetic resonance (NMR)

NMR is still mainly used to determine structures of molecules
[110, 111]. But with the ongoing development of instrumen-
tation, this technique is now very well suited for investigating
the interaction between small molecules and proteins or even
bigger structures. Several NMR experiments were used by

Rademacher et al. to study norovirus infection [112, 113]. The
interaction of histo blood-group antigens (HBGA), as small
molecules, with the replicated norovirus surface of virus-like
particles (VLPs) was investigated. A library of 500 fragments
was screened to identify binders to human norovirus VLPs.
Those studies revealed α-L-fucose to be essential for the
binding of the VLPs, and delivered high-avidity binders
which are potent inhibitors of norovirus infections. As well
as investigating virus-infection processes of VPLs, cells can
also be investigated [114, 115]. An NMR study of living
cancer cells was published in 2011 [116]. Integrins, as trans-
membrane receptors, are involved in tumour-cell proliferation,
migration, and survival. Therefore, integrin antagonists are
used for cancer therapy. For NMR studies of potential antag-
onists, bladder-cancer cells with integrin receptors were in-
vestigated in non-deuterated buffer suspensions. This study
reveals the potential of investigations of small ligands
interacting with membrane-bound proteins in the environment
of a whole cell.

Other potentially interesting information can be gained,
e.g. about aggregation states of investigated proteins (impor-
tant in, e.g., Alzheimer’s research) [117], and about protein
dynamics [118, 119] and stability. A more detailed insight is
provided by more-specialised NMR reviews [120–123].

When investigating the interaction between a small mole-
cule and a protein via NMR, the scientist can monitor the
change in chemical shift of protein signals when the small
molecule binds to the protein. For example, 15N-HSQC-
NMR experiments were used to identify the region of inter-
action of a drug candidate with the binding groove of the
oncogene BCL6 [124]. This compound was selected by
computer-aided drug design because of its potential to disrupt
BCL6 activity by blocking its interaction with a corepressor.
This loss of function can kill cancer cells. The same 2D-NMR
experiment was used to reveal that the azobenzene compound
ischemin binds to the CREB-binding protein at its
bromodomain acetyl-lysine binding pocket [125]. Ischemin
suppresses cardiac myocyte apoptosis during ischemia. Those
2D-NMR experiments (HSQC, HMBC, etc.) can help to
identify the protein region the small molecule interacts with,
but are time-consuming and challenging in terms of signal
interpretation. Alternatively, the signals of the small molecule,
interacting with a substantially bigger protein, can be moni-
tored, and there are several fast one-dimensional experiments
(STD, WaterLOGSY) that can provide sufficient information.
For those experiments, the nuclear Overhauser effect (NOE)
can be used to transfer magnetization from the protein to the
small molecule.

Three notable techniques for investigating small molecule–
protein interactions are: transferred nuclear Overhauser effect
spectroscopy (NOESY), saturation transfer difference spec-
troscopy (STD), and water-ligand observed via gradient spec-
troscopy (WaterLOGSY).
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The underlying principle of investigating small molecule–
protein interactions with NOESY is the short relaxation time
of small molecules in solution. When a protein is added to this
solution and the small molecules bind to it, the relaxation time
increases dramatically and the 2D 1H-1H NOESY spectrum
changes accordingly. In this way, up to 96 different small
molecules can be investigated at once [126] when using the
method for fragment-based screening.

STD (like NOESY) is based on an interchange of the
magnetic moment between bound and unbound small mole-
cule [127, 128]. An important variable is the saturation fre-
quency, which must saturate the protein frequencies and
should therefore be different from the frequencies of the small
molecule. The experiment is described in Fig. 5. The signals
of the small molecule bound to the protein disappear as a
result of the spin relaxation [129, 130]. The experiments are
usually performed in a 100 to 1000-fold excess of the small
molecule, depending on the molecular weight of the protein
[113].

STD has recently been used for screening and qualitative
ranking of drugs in complex biological systems [123,
131–133], determination of affinity constants [134–136],
and group epitope mapping [137]. The STD-NMR

observation of time-dependent hydrolysis of piperacillin
catalysed by penicillin-binding proteins (PBPs) revealed sev-
eral hydrolysis products [138]. Surprisingly, one of those
piperacillin derivatives, (5S)-penicilloic acid ((5S)-PA), had
binding capability to the PBPs, although no longer having aβ-
lactam ring. Additionally, the complex of PBP with (5S)-PA
was confirmed by STD-NMR, supporting crystallography
observations. Fragment-based screening for inhibitors of hu-
man thymidylate synthase (hTS) was also successfully per-
formed using STD [139]. A library of 420 molecule fragments
was screened, and ligand pairs were identified binding in
proximal sites in the cofactor-binding pockets of hTS. The
fragment hits helped identify novel non-canonical leads with
excellent binding efficiencies for hTS. Inhibition of hTS is
used for anti-cancer therapy and has recently been considered
for treating infectious disease. These examples reveal the
usefulness of ligand-based NMR for initial screening, and
for more in-depth investigation, of drug candidates.

WaterLOGSY is based on the same principles as NOESY
and STD, but water molecules—as the name implies—have
an important function in the magnetisation transition:
magnetisation of water is induced and then transferred to
bound small molecules. The signals of bound and unbound
molecules will have the opposite NOE effect and can thus be
discriminated (see Fig. 5). The experiments are usually per-
formed in an excess of small molecule, not higher than 100
equivalents. Therefore, it is more suitable than STD when the
small molecule has a low solubility. WaterLOGSY has been
successfully used for screening and affinity measurements
[140], for studying the interaction between small molecules
and nucleic acids [141], and for epitope mapping, as in the
following study in which solvent accessibilities of bound
ligands were investigated for mapping ligand orientations
[142]. These experiments were performed with ligands for
two dehydrogenases (AKR1C3 and HSD17β1), and even
ligands buried in deeper binding pockets had slightly different
signal intensities for some parts of the molecule, revealing its
orientation. In addition, the use of DMSO as co-solvent and its
magnetization transfer ability were successfully investigated,
enabling investigation of ligands which are poorly soluble in
water. In summary, WaterLOGSY can help to design new
compounds which lack the crystal structures of protein–ligand
complexes, and is complementary to STD-NMR.

There are additional advantages of NMR compared with
other methods discussed within this review. Compared with
X-ray diffraction, NMR has the advantage that structural
information gained regarding the interaction complex is closer
to the natural state of the protein [143, 144], because NMR
experiments are performed in aqueous solution and the protein
does not have to be crystallized. Therefore, NMR enables
interaction studies on proteins which cannot be crystallized
[145]. Another advantage is that the information gained is also
on a molecular level, providing a very deep insight into the

Fig. 5 Comparison of a normal NMR spectrum (1H) with STD and
WaterLOGSY. Example spectra of a binder (orange) and a non-binder
(blue) depending on the technique used. In the upper spectra, both ligands
produce a signal. Using WaterLOGSY (middle) the spectrum of the non-
binder becomes negative (negative NOE). For STD experiments (lower)
the spectrum pictured is a subtraction of the non-binder STD spectrum
(during saturation) from the normal 1H spectrum

4042 P. Fechner et al.



underlying principles of the interaction [145, 146]. In contrast
with, e.g., biosensor applications, especially optical biosen-
sors, the size (molecular weight) of the small molecule does
not affect the strength of the signal being detected [142].

On the other hand, there are some disadvantages. One
major disadvantage is the time needed per experiment when
monitoring the chemical shift of the protein to identify the
binding domain [147–149]. This is caused by the increase of
transverse, longitudinal, and cross-relaxation, which are mass-
dependent, and the large increase of the molecular rotational
correlation time [121, 144, 150]. In addition, the amount of
protein needed can be quite high: normal NMR experiments
need concentrations of approximately 1 mmol L−1 and a
sample volume of 500 μL. NMR techniques to monitor li-
gand–protein interactions can use concentrations as low as
50μmol L−1 in a 100 μL sample volume [144], or even as low
as a few hundred nmol L−1 [151].

X-ray diffraction

X-ray diffraction is best known as the standard technique for
the determination of molecule structures. It can resolve chem-
ical structures ranging from a few Da [152] to a theoretically-
unrestricted upper molecular weight [153], and can resolve
complexes of different molecules. The latter makes it perfectly
suited for investigating small molecule–protein interactions.

The basic principle of X-ray diffraction has changed little
since its development over 60 years ago [154], although it has
been extended and varied. It uses an X-ray irradiation source
(alternatively, electrons or neutrons can be used [155–157]) to
produce a beam, which is then diffracted by the sample of
interest. The diffraction pattern can then be used to reconstruct
the 3D structure of the sample. The sample must usually be in
a crystallized state.

When using X-ray diffraction to investigate small mole-
cule–protein interaction, there are several possibilities:

& The small molecule and the protein can be co-crystallized.
& The protein can be crystallized alone and the crystal can

later be soaked in a small-molecule solution.
& The protein can be crystallized with a low-affinity ligand

and later be soaked in a higher-affinity ligand.

Each of these methods of creating the sample to be
diffracted has advantages and disadvantages, but, as for
NMR, structural information regarding both the protein and
the small molecule is gained [158]. Crystallizing the protein
alone and soaking it with small molecules later can be
regarded as the most resource-effective method, because the
crystallization process has to be optimized only once and it is
even possible to compare the structures of the apo-protein
with the small molecule–protein complexes. However, the
soaking may destroy the crystal entirely, or it may lead to

false-negative results when there is not enough structural
flexibility left for binding of the small molecule within the
crystal [159]. Co-crystallization with a small molecule has the
advantage that a small molecule–protein complex is often
more stable than the apo-protein. Additionally, the crystalli-
zation process can be considered closer to the native state,
because it is performed in liquid phase. This method is less
suitable for low-affinity interactions, when the high concen-
trations of small molecule required may disrupt the crystalli-
zation process [160].

All crystallization methods will provide the 3D structure of
the protein, its binding pocket, and the small molecule, mean-
ing there are no false-positive results. It is also possible to
investigate very low-affinity interactions: affinities down to
5 mmol L−1 are unproblematic [161].

On the other hand, large amounts of very pure protein are
needed, the crystallization process can be challenging (or even
impossible in the worst case) and time-consuming, and, there-
fore, the throughput will always be limited [162]. However,
the latest developments in robotics and lab automation have
increased the throughput, and X-rays can also be used in
primary screenings [163].

In several drug-development projects, X-ray diffraction has
an essential function. Recently, structural information on cru-
cial interactions enabled Certal et al. to optimise their
phosphoinositde-3 kinase (PI3K) inhibitors for cancer treat-
ment to be selective for the beta isoform. They were able to
use structural information on other isoforms of PI3K to gain
information on their specific problem, overcoming the lack of
usable crystal structures of the beta isoform [164].

The study of Muray et al. reveals the potential of X-ray
diffraction for fragment-based screening. They used high-
throughput X-ray crystallography in combination with other
methods to find inhibitors of heat-shock protein 90 (HSP90),
which is associated with cancer. Twenty-six interesting frag-
ments were discovered and two lead series with high ligand
efficiency were identified. The resorcinol lead was further
optimized into a compound for clinical trials. To obtain
high-quality X-ray structures, it was necessary to use a com-
bination of cocrystallography and soaking experiments [165].

Goudreau et al. were able to identify a new inhibitor-
binding site on HIV-1 capsid N-terminal domain. The
cocrystal of the target protein with a benzimidazole inhibitor
has good agreement with NMR studies regarding binding to a
novel site, which is well-removed from the two previously
reported binding sites. [166].

Cell-based methods

Cell-based methods emerged from advances in methods of
molecular biology and genetic engineering. They can be
regarded as a link between somewhat artificial methods,
which rely on the use of isolated proteins and ligands, and
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whole-animal models. This means they are closer to reality
than fully artificial systems, but are easier to handle and
require less intensive care than animal models. In addition,
for most people it is better for ethical reasons to perform
studies with cell cultures rather than with animals.

Most commonly, a transgenic cell line is created by intro-
ducing new genetic material. This new genetic material is
designed as a “reporter gene”, which forces the cell to generate
a detectable signal (e.g. fluorescence, antibiotic resistance)
when exposed to a specific stimulus, in our case the chemical
stimulus of a small molecule (Fig. 6) [167]. The “reporter
gene” can either be temporarily introduced (transient transfec-
tion) or can be persistent (stable transfection), generating a
“reporter cell line”. Either bacterial or eukaryotic cells can be
used for this process. Bacterial cells are usually easier to
handle, but eukaryotic cells are closer to the human metabo-
lism, which is usually desired when investigating small mol-
ecule–protein interaction in pharmaceutical research.

One of the biggest advantages of reporter-gene assays
performed with reporter cell lines is also the biggest disad-
vantage. With these reporter-gene assays, as well as detecting
a single small-molecule species, it is also possible to detect
whole groups of substance classes, including their metabo-
lites, sharing the same effect (and not necessarily having
structural similarities). This behaviour is often referred to as
“effect directed analysis” (EDA) [168], and means it is not
possible to determine if a small molecule itself has the ob-
served effect, or if the small molecule must be metabolised to
have that effect.

It is even possible to use genetically unmodified cells and
monitor their “behaviour” (e.g. morphology, growth, and
change in reflective index caused by second-messenger activ-
ity) when exposed to small molecules. A comprehensive
overview of methods providing a deeper insight into morphol-
ogy information can be found in [169]. In particular, the high

degree of automation available for flow cytometry and mi-
croscopy reveals this technology to be ideally suited for
multiparameter phenotypic profiling. Monitoring of the
growth of human T cell leukaemia (Jurkat) and human hepa-
tocellular carcinoma (HepG2) cells to evaluate the cytotoxic-
ity of water-soluble fraction from biodiesel and its blends is
reported in [170]. The authors describe assays to detect chang-
es of the mitochondrial membrane potential, and compare
their results with the recognition of apoptosis. They also use
a third technology in this study, to monitor changes in cell
behaviour using real-time impedance measurements. This
label-free read technology corresponds very well with the
results of the other assays in this study. Automated impedance
measurement is a well-established and validated technology
for cell-based assays. An important strength of this technology
is the ability to work with unmodified cells in settings as close
as possible to in-vivo situations, as was recently revealed by
monitoring of T cell activation [171]. Another possibility of
similar assays is quantifying the changes of the refractive
index. For example, [172] used a grating-coupler approach
to develop a screening assay for human stem-cell lines in a
way which enables monitoring of dynamic mass redistribution
within living cells.

Cell-based assays have also been extensively used to in-
vestigate GPCRs [173] and nuclear receptors [174, 175], and
in combination with virtual screening for discovering new
STAT3 inhibitors [176].

Conclusions and outlook

After discussing the advantages and disadvantages of both
types of method (Table 1), we conclude that each is best suited
to a specific purpose.

Fig. 6 Reporter gene assay.
Upon translocation of the small
molecule into the genetically
modified cell, the small molecule
binds to a receptor. This leads to a
signalling cascade, which forces
the cell to produce a detectable
signal depending on which
genetic material was used to
generate the transgenic cell
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Methods with high-throughput capabilities, e.g. in-silico
screening, mass spectrometry, biosensors, or cell-based sys-
tems, are probably best suited for primary screening. After-
wards, positive screening targets should be further investigat-
ed using other methods. For a general understanding of how
single small molecules interact with their target protein, such
methods as X-ray diffraction, NMR, or ITC are probably most
promising.

Other factors that will affect the decision of what method to
choose are the availability of the method and the related costs.
The specialisation and expertise of those using the equipment
will also contribute to the decision as to which method to use.
X-ray.

It is possible to perform in-silico simulations without buy-
ing new lab instrumentation because free software is available,
and simple docking experiments can be performed on com-
merc ia l ly avai lable PCs. “Unfor tunate ly, many
chemoinformatic approaches simply overpromise and under-
deliver and, therefore, do not improve productivity (and may
even reduce it)” [177]. Furthermore, as stated in the in-silico
section, if the models are not chosen and prepared carefully
the simulations may still produce results, but these results will
not be reliable. However, this problem does not occur only
with computational methods; a poorly-performed experiment
using any method may produce unreliable results. In-silico is
an unmatched method in terms of throughput but, as with any
method, experiments must be planned and performed
carefully.

The other methods also have their unique features, advan-
tages, and disadvantages. NMR or X-ray diffraction will yield
structural information. There may be workarounds for provid-
ing limited structural information, for example conformational
changes, by using other methods (e.g. biosensors [178]), but
they will not equal the detailed insights obtained using NMR
or X-ray diffraction. However, choosing between NMR and
X-ray diffraction depends on the preferences of the researcher
and the problem to be tackled. For example, X-ray diffraction
does not place a limit on the size of the molecules to be
investigated and provides better special resolution, whereas
NMR is faster, can be applied to a larger number of samples,
and requires no crystallization of the protein.

For extensive characterization of the thermodynamics of
small molecule–protein interaction, ITC is the method of
choice. Some variables, including affinity, can be determined
using other methods, e.g. NMR, biosensors, or MS, but in
many cases ITC provides more reliable and more complete
information than any other method.

In contrast, biosensor measurements both enable the deter-
mination of affinity and provide detailed insights into kinetic
data. However, one of the reactants must be immobilized
while maintaining its natural activity.

At some point, pharmaceutical screening must progress
from standard analytical methods. Cell or animal-based sys-
tems can provide complementary information (e.g. pharma-
cokinetics) to the previously mentioned methods, and are
mandatory before clinical trials of a pharmaceutical.

We conclude that for serious research into small molecule–
protein interactions, a combination of at least two (or prefer-
ably more) complementary methods covering different as-
pects is required. For example, in-silico approaches can be
regarded as a useful supporting tool because simulated results
can be experimentally validated, and the experimental results
can be used to refine and improve the in-silico models.

The ultimate objective would be to have one method that
provided the most information while being closest to an in-
vivo situation and having high throughput. However, there is
no such method, and any method will have its disadvantages.
Recent developments in all methods in label-free technology
focus on overcoming these individual disadvantages while
strengthening intrinsic advantages. In particular, methods that
yield detailed information but suffer from low throughput (e.g.
NMR, X-ray, or ITC) profit most from lab automation and
robotics, as revealed in the recent development of these tech-
niques [179, 180]. Together with automation, the trend of
miniaturization not only increases throughput, but also mini-
mizes sample consumption [181]. This is of great importance,
because some samples (mainly the proteins) are quite valu-
able, because they are difficult and therefore expensive to
produce. In addition, miniaturization and parallelization fur-
ther increases the throughput of sensors [182, 183]. Improving
the limit of detection remains one of the major challenges of
label-free sensing, and is the objective of recent

Table 1 Comparison of methods for label-free interaction analysis of small molecules with proteins

In silico Bioensors ITC MS NMR X-ray Cells

Throughput Very high Good Low Very high Low Low High

Kinetic data No Yes No No No No No

Thermodynamic data Yes, but simulated Yes Extensive Very limited Very limited No No

Structural information Yes, but simulated Limited No Very limited Yes Excellent No

Time consumption Adjustable Low High Low Moderate High High

Sample consumption None Moderate High Very low Moderate High Low
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developments. Although sensors are already working at con-
ditions very close to the physiological state, improvements in
assay design bring models closer to the in-vivo system. The
next logical step is combining living cells with label-free
methods; the increased information that may be gained will
result in great improvement of the method [184], especially
when combining primary cell lines or cancer-cell lines with
complementary methods, for example sensors.

The need for a sophisticated combination of multiple
methods will remain the driving force behind any new devel-
opment in label-free small molecule–protein interaction anal-
ysis in the immediate future.
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