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Abstract
Extraction of qualitative and quantitative information from
large numbers of analytical signals is difficult with drifted
baselines, particularly in multivariate analysis. Baseline drift
obscures and “fuzzies” signals, and even deteriorates analyt-
ical results. In order to obtain accurate and clear results, some
effective methods should be proposed and implemented to
perform baseline correction before conducting further data
analysis. However, most of the classic methods require user
intervention or are prone to variability, especially with low
signal-to-noise signals. In this study, a novel baseline correc-
tion algorithm based on quantile regression and iteratively
reweighting strategy is proposed. This does not require user
intervention and prior information, such as peak detection.
The iteratively reweighting strategy iteratively changes
weights of residuals between fitted baseline and original sig-
nals. After a series of tests and comparisons with several other
popular methods, using various kinds of analytical signals, the
proposed method is found to be fast, flexible, robust, and easy
to use both in simulated and real datasets.
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Introduction

The baseline drift is one of the primary issues in chromatog-
raphy, nuclear magnetic resonance (NMR) spectra and Raman
spectra data analysis, especially in chemometric multivariate
analysis. The signals from these analytical instruments com-
monly consist of chemical information, baseline, and random
noises. However, the baseline drift will significantly affect
some fundamental chemometric algorithms. Therefore, it is
necessary to fit the baseline and subtract it from the analytical
signal to alleviate its negative influence. According to some
literature, the classic baseline correction method consists of
manually selecting the start and end of a signal peak and using
a piecewise linear approximation to fit a curve as the baseline
[1]. However, piecewise approximation is obviously time
consuming and requires much work, and the accuracy de-
pends on the user’s experience. As a consequence, several
algorithms have been proposed to fit the baseline. Meanwhile,
literature on this issue was spread among many fields, mainly
involving chromatography, NMR, vibrational spectroscopy,
and statistics.

Pearson proposed the first often-cited baseline correction
estimation method in 1970 [2]. This classic algorithm works
iteratively and inspects which points lie in a specific interval
related to their standard deviation, distinguishing the peak
points from baseline points simultaneously. Although the
algorithm is computationally efficient, it requires the
choice of two parameters (denoted μ and ν), convergence
criterion, and finally the use of a type of smooth curve
fitted to the estimated baseline points. If the selection of
these parameters has any slight mistake, the data could
render unacceptable results.
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After Pearson’s research, many researchers focused their
views on improving the baseline correction methods. Liang
et al. [3] introduced the roughness penalty method to decrease
the influence of the measurement noise and consequently
improved the signal detection and resolution of chemical com-
ponents with very low concentrations. Following these steps,
another novel approach was recommended by Shao et al. [4],
which focused on the determination of the component number
of overlapping chromatograms and baseline corrections, rely-
ing on wavelet transform for de-noising. In order to correct the
baseline of the measured spectra during elution in chromato-
grams, asymmetric least squares (ALS) was also introduced by
Boelens et al. [5]. Cheung et al. advocated a similar method for
preprocessing pyrolysis-gas chromatography-differential mo-
bility spectrometry data, via ALS to eliminate any unavoid-
able baseline drift [6]. Li and Zhan [7] proposed the mor-
phological weighted penalized least squares (MPLS) and
applied it in the baseline correction of gas chromatography–
time-of-flight mass spectrometry (GC-ToF-MS) datasets.

For the baseline issues in vibrational spectroscopy, a great
number of researchers have proposed a series of algorithms to
fit the baseline. Ruckstuhl et al. proposed a novel robust
baseline estimation to correct the baseline of original spectra
using pulse laser-induced fluorescence detection of gas-phase
hydroxyl (OH) vibration-rotation populations, created by the
reaction of hydrogen atoms with ozone (H+O3→OH+O2),
with robust local regression technique [8]. Regarding the
analysis of near-infrared spectroscopy, Schechter introduced
a useful method for the fluctuating nonlinear background [9].
To avoid defects of simple curve fitting, Lieber et al. sug-
gested an approach using least squares polynomial fitting
technique [10]. Mazet et al. modified Lieber’s method, de-
signing it to minimize a nonquadratic cost function, which
was proved to be faster and simpler [11]. Morháč developed a
nonlinear iterative peak clipping algorithm to correct the base-
line of various kinds of spectra, such as IR, NIR, and Raman
[12]. By using wavelet and penalized least squares algorithm
Zhang et al. succeeded in suppressing fluorescent background
in Raman spectroscopy [13, 14]. Kristian proposed a
customized baseline correction method successfully used
in Raman spectra on melted fat from pork adipose tissue
[15]. Lifting wavelet has been applied in baseline correc-
tions for Raman and NMR dataset by Liu and Shao [16].

For the NMR instruments, background drift is also a seri-
ous issue in metabolomics with massive NMR spectra. As
early as 1990s, Dietrich et al. applied the second derivative to
the signal-for-peak detection and successfully fitted a NMR
baseline with a fifth degree polynomial [17]. Soon afterwards,
Moore and Jorgenson recommended a method using median
filter with a very broad window [18]. Even though Moore’s
method is simple and practical, it can only be successfully
applied to NMR signals with peaks with wide baseline seg-
ments. Golotvin advocated a novel approach for baseline

correction using a smoothed NMR spectrum for both baseline
area recognition and modeling [19]. A continuous wavelet
transform derivate in signal-free regions, combined with pe-
nalized least squares has been presented by Carlos Cobas et al.
[20]. Recently, a robust baseline correction method for dense
signal NMR spectra has been proposed by Chang et al. [21]. A
practical algorithm designated as adaptive iteratively reweighted
penalized least squares (airPLS) has also been promoted by
Zhang et al., by iteratively changing weights of sum squares
errors between fitted baseline and original signals [22, 23]. This
baseline estimator has been proved fast and flexible, being
successfully implemented to various analytical signals.

As mentioned earlier, many different kinds of chemometric
algorithms have been proposed and implemented for treating
different kinds of analytical signals, including both classic
methods and novel algorithms. Thus, it might be a good idea
to change our view to the other field, for instance, learn
something from statistics. It is worth noting that Koenker
proposed a general approach by employing l1 regularization
methods to estimate quantile regression models for longitudi-
nal data [24]. Eilers et al. developed a fast and effective
smoothing algorithm based on penalized quantile regression
for the comparative genomic hybridization signals [25]. Hong
et al. presented a new technique using these quantiles as an
indicator of the X-ray color hardness of the source to classify
spectral properties of X-ray sources with limited statistics
[26]. Callister et al. proposed a normalization approach, in-
vestigating locally weighted regression and quantile tech-
niques, for removing systematic biases associated with mass
spectrometry and label-free proteomics [27]. In addition,
Chernozhukov and Hansen developed robust inference prod-
ucts for an instrumental variable model defined as Y=D′α(U),
which is computationally convenient in typical applications
and can be carried out using available software for ordinary
quantile regression [28]. In the same year, Jun advocated a
weakly robust identification test method to assess the quality
of an instrumental quantile model, which consists of a two-
step Anderson–Rubin (AR) statistic and an orthogonal de-
composition of the AR statistic, and was applied to reduce
the computational burden [29]. It was also Jun who proposed a
simple two-step estimator for the coefficients evaluated at
particular values of the latent variables, using a control vari-
able idea and quantile regression methods in which the instru-
ments were locally relevant to the established the consistency
and asymptotic normality [30]. Wunderli introduced a method
to penalty examine the nondifferentiable quantile regression
and defined an appropriate weak solution of the time flow
[31]. Yu suggested a novel quantile-based Bayesian maximum
entropy method to account for the nonstationary and nonhomo-
geneous characteristics of ambient air pollution dynamics [32].
At the same time, Waldmann et al. promoted a new algorithm
using a location-scale mixture of normals representation of the
asymmetric Laplace distribution, transferring different flexible
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modeling concepts from Gaussian mean regression to Bayesian
semiparametric quantile regression [33, 34].

According to the previous literature, polynomial fitting [10],
penalized or weighted least square [3, 5, 6, 10, 11, 20], wavelet
[4, 13, 16], derivatives [13, 22], and robust local regression [28,
29] have been widely adopted in analytic chemistry for baseline
corrections. However, none of these algorithms are entirely
perfect for practical applications. Each of them has drawbacks
in certain aspects. First, simple manual polynomial fitting
methods depend on the analysts’ experience for accuracy. Al-
though modified polynomial fitting method is suitable for the
most cases, it cannot work well in low signal-to-noise and
signal-to-background ratio signals. Second, the baseline correc-
tion algorithms based on wavelet will remove the baseline
successfully, if the transformed domain of the signal is well
separated. However, most of the real-world signals do not
consent this hypothesis. Thirdly, robust local regression not only
demands the specification of the bandwidth and tune parameters
by the user, but also requires that the baseline should be smooth
and vary slowly. airPLS seem to be the optimal automatic
baseline correction method. However, airPLS depends on the
penalized least squares, which is not robust enough. Last but not
the least, quantile regressionmethod could fit a very smooth and
similar baseline, but for the practical signals with noise and
narrow peak signals, desirable results are hard to achieve.

In this paper, we propose a robust, fast, flexible and automatic
baseline correction algorithm designated selective iteratively
reweighted quantile regression (SirQR). An advanced iteratively
reweighted procedure is implemented to gradually approximate
the complex baseline. quantile regression algorithm can offer a
quite useful baseline correction method which can fit the desired
baseline, and it can be reweighted to eliminate the influence
from peaks. The weights are adaptively and iteratively obtained
via the difference value between previously fitted baseline and
original signals. Moreover, for datasets with large number of
variables and large order of magnitude, the weight condition can
be selectively changed to fit the original data instead of the
default value. The proposed algorithm is proved to be intuitional
and effective with several kinds of analytical signals. It has been
implemented in MATLAB® programming language based on
sparse matrices and sparse linear algebra, which can fit the
baseline of massive signals in acceptable time.

Theory

Quantile regression algorithm

The robust quantile regression method was first proposed by
Koenker and Bassert in 1978 [35]. This kind of regression
analysis was primarily used in statistics and econometrics. As
the regression result is robust, it is not affected by outliers in
signal. One advantage of quantile regression, relative to the

ordinary least squares regression, is that the quantile regres-
sion estimates are more robust against outliers in the response
measurements. However, the main attraction of quantile re-
gression goes beyond that. In practice, we often prefer using
different measures of central tendency and statistical disper-
sion to obtain a more comprehensive analysis of the relation-
ship between variables [36]. This algorithm has been widely
used in many kinds of fields. Particularly, quantile regression
method is suitable for the situation of dependent variables
with heteroscedasticity, tail and spike distributions. Essential-
ly, quantile regression algorithm was an expansion of general
least squares regression method, while the robust median
regression is a special case of quantile regression.

As the least squares algorithm could minimize the value of
error sum of square, the least squares regression is also known
as sample mean regression. However, the fundamental differ-
ence between quantile regression and least squares regression
can be assumed that when x is the value of the independent
variable X, the arbitrary quantile Q(y,τ) of the corresponding
values ofY should follow a distribution functionX~F(x) as an
approximation. At the same time, the principle of the corre-
sponding estimation method is looking for a ζ, making the
sum of absolute value of the asymmetry weighted error min-
imum. It could be summarized as the following equation:,

min
ξ∈R

X
i¼1

n

ρτ yi−ξð Þ ð1Þ

Where ρτ(μ)=μ(τ–I(μ<0)), I(·) is the a simple indicator
function;

Assuming that:

τ
X
i:yi ≥ ξ

yi−ξj jþ 1−τð Þ
X
i:yi< ξ

yi−ξj j ¼ l Y ; τ ; ξð Þ ð2Þ

Where the yiwere the samples of y(1),y(2) … y(n). Therefore
∑ i=1

n |yi−ξ| is a strictly decreasing function when nτ>m; and
instead ∑ i=1

n |yi−ξ| is a strictly increasing function (1)
when nτ<m. Consequently, the τ quantile Q(y,τ)=y([nτ]) of
the sample y1, y2, … yn is the desired ζ.

As a special case, when τ is equal to 1
2 , the formula can be

simplified into: minξ∈R ∑n
i¼1 yi−ξj j , and the median(y) of the

sample y1, y2, … yn, is the desired ξ. During regression anal-
ysis, the distribution function X~median(x) is taken as the
approximation X~F(x) instead of the expected value X~E(x),
and the regression coefficient estimationmethod has also been
named least absolute deviation regression.

In summary, the function of least squares regression
algorithm determines the mean value X~F(x) of the corre-
sponding Y when the independent variable X takes the
value x. However, in quantile regression, the main func-
tion is to identify the various τ quantile Q(y,τ) of the value
with corresponding Y. In other words, quantile regression
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algorithm can estimate various fractile points of the corre-
sponding Y when the independent variable X takes the
value x. Therefore more information can be obtained from
this process, for example, determining the correlation be-
tween the independent variable X with the value of x and
the greater (high-fractile point) or lesser (low-fractile point)
value for the corresponding Y. Consequently, it conveys
that the result of quantile regression is provided with the
features of robustness and richness of information.

Quantile regression was introduced by Koenker and Bassett
in 1978, but it was only used for baseline fitting until 2011 by
Komsta [34]. Baseline estimation with quantile regression works
similarly as polynomial fitting, which fits the baseline with a
small quantile at the peak region of the signal (0.01 is proposed).
In this way, both the quantile regression and the polynomial are
fitted to the lowest values. Consequently, the peaks have little or
no effect on the baseline. A more detailed discussion to quantile
regression was given by Koenker and Hallock [37] and a com-
prehensive description was also made by Koenker [36].

Selective iteratively reweighted quantile regression

A classic smoothing algorithm designated penalized least
square was proposed byWhittaker in 1923 [38]. If y is a series
of m data points and z is the smooth series that should
approximate y, we can minimize:

Q2 ¼
X
i¼1

m

yi−zið Þ2 þ λ
X
i¼2

m

zi−zi−1ð Þ2 ð3Þ

The first term measures the fitness of z to y, and the second
term is used as the penalty term, discouraging changes in z.
Thus, the influence of the penalty is tuned by the parameter λ.
The larger λ is chosen, the smoother zwill be, at the cost of a
worse fit to the data. A detailed treatment with several related
applications has been presented by Eilers [39]. However, the
minimized Q2 is not robust, which may not be ideal for real-
world signals. Therefore, the error value of this equation can
be absolutely enlarged by square.

The solution for this issue is to change the objective func-
tion Q2 into Q1:

Q1 ¼
X
i¼1

m

yi−zij j þ λ
X
i¼2

m

zi−zi−1j j ð4Þ

The sums of squares of residues have been replaced by the
sums of absolute values, which means that the L2 norm has
beenmodified intoL1norm. Focusing in the right side of (4), it
can be deemed that the functions of yhave a single summation
of 2m–1 absolute values of terms. Thus, a novel method could
be proposed by combining the ideas from quantile regression
with linear programming to fit the dataset.

Koenker and Basset proposed in 1984 [40] the following
problem: a vector y, a regression basis B and n regression
coefficients α. With τ a parameter between 0 and 1, we can
minimize the following equation:

S tð Þ ¼
X
i

m

ρτ yi−
X
j

n

bijα j

 !
ð5Þ

Here, ρτ(μ) is the check function; it is τμ when μ>0 and
(τ–1)μwhen μ≤0. It will return the weighted absolute values
of residuals in (5), τ for the positive one and 1–τ for the
negative one. The weights are independent of the sign with
τ=0.5. Therefore, solving Eq. (5) is equivalent as solving (4).
This idea is the so-called median regression.

It was Portnoy and Koenker again who presented a detailed
account of quantile regression and also an efficient algorithm
based on the interior point method for linear programming [41] .
Thesemethods have been implemented in both R andMATLAB
programming languages. However, some modifications should
be made for signal smoothing and baseline correction:

y� ¼ y
0

� �
and B ¼ I

λD

� �
ð6Þ

where y is original dataset, 0 is a m–1 zeros vector; I is
the m×m identity matrix and D is a matrix so that Dz=Δz.
Thus, D is an adjusted matrix m–1×m whose purpose is to
transform z into differences of neighboring elements. For a
desired result, y* and B are the best choices for next steps.

The key product of selectively iteratively reweighted
quantile regression is similar to the weighted least squares
[42], the iteratively reweighted least squares [43, 44], and the
adaptively iteratively reweighted penalized least squares [22].
However, it uses different ways to calculate the weights and
utilizes item adjustment to control smoothness of the fitted
baseline. As it is shown:

S0 tð Þ ¼
X
i

m

ωiρτ yi−
X
j

n

bijα j

 !
ð7Þ

where ωi is the weight vector that selectively acquires the
changed values by using the iterative method. The initial value
of ωi0 should be assigned by 10−4 at the starting step, which
has been determined by several tests and calculations from 0
to 10−10. After initialization, theω of each iterative step could
be acquired using the following expression:

wt
i ¼

10−10 di≥dm

e
t xi−z

t−1
ið Þ

dtj j di < dm

8<
: ð8Þ

where di=xi –zi
t–1. The vector dt consists of the elements of

the differences between x and zt–1, whose value is below
dm=5.0×10

−5 for a better fitting in the iteration step of t.
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Meanwhile, the value of dm can be selectively designated
by the users for a better fitting to the original signal dataset,
not just for the default 5.0×10−5, such as the dataset with
many numbers of variables and large orders of magnitude.
The corresponding value should be designated bigger than the
default one for a better approximation. The fitted value zt–1 in
the previous (t–1) iteration is a candidate for the baseline. If
the value of the ith point is greater than the candidate for the
baseline, it can be regarded as part of the peak. Thus, the
weight of the correspondingωwill be assigned to a tiny value
10−10 (cannot be zero after considering the influence of
quantile regression method in whole dataset) to nearly neglect
it at the next iteration of fitting. In order to obtain the points of
the peaks and eliminate them gradually preserving the base-
line points in the weight vector ω, the iterative and reweight
methods were adopted in this SirQR algorithm.

For the iteration procedure, it reaches the goal either in the
maximal iteration times or when the termination criterion is
arrived in. The termination criterion is defined by:

dtj j < 10−5 � xj j ð9Þ

Here, vector dt is the same as in Eq. (9), consisting of the
negative elements of differences between x and zt–1.

For a better overview of the framework of the proposed
baseline correction algorithm, the flow structure chart of the
SirQR algorithm is illustrated in Fig. 1.

Experimental and applications

In order to test the performance of the SirQR algorithm in
practical application, datasets of several broadly used analyt-
ical instruments were selected to reveal its performance, such
as chromatography, NIR, Raman, and NMR spectra. In most
cases, baseline drift and random noise influenced badly the
analytical result. In the following section, artificially designed
simulated data was taken as an example at first, and then
extended to actual spectra.

Simulated data

To construct the desirable dataset, three parts of the simulated
data have been combined, including linear or curved base-
lines, standard Gaussian peak signals and random noise, as
shown in the following equation:

M xð Þ ¼ p xð Þ þ l xð Þ þ n xð Þ

where M(x) represents the simulated dataset, p(x) stands for
the pure standard Gaussian peak, l(x) displays the standard
simulated baseline in linear or curve mode, and n(x) represents
the random noise.

In order to simulate the curved baseline, we adopted a sinus
curve, and absolutely linear baselines were also introduced.
Then, four standard Gaussian peaks were composed as the
purely standard signals, whose variances and averages were
distinct in their intensities. As listed in Table 1, the constructed
dataset is also illustrated in Fig. S1 (see Electronic supple-
mentary material Fig. S1). The n(x) noise is generated by a
random function via MATLAB® with the data is fluctuating
between 0 and 1 % of the synthetic signals.

Real chromatograms data

HPLC-DAD dataset

Dendrobium is a quite famous Traditional Chinese Medicinal
herb. The HPLC-DAD dataset of Dendrobium by a Dionex
U3000 HPLC apparatus (Dionex, Sunnyvale, CA, USA) were
chosen to test the proposedmethod. TheseDendrobiumsamples
were collected from ten different production regions in China,
such as Hunan, Hainan, Jilin, Xinjiang, etc. The experiments
were performed in a UV spectrometer with a MWD-3000RS
multiple wavelength detector. At each step the spectra ranges
from 190 to 400 nm with bandwidth intervals of one nm and
resulting 210 data points for each UV spectrum. Then, the
“most-rich peak” of wavelength 254 nm was selected. This
was carried out at the Research Center of Modernization of
Chinese Medicines, Central South University. All these chro-
matograms are represented in Fig. 2a. They include the ten
different samples, and the baseline drifts are clearly shown.

GC-ToF-MS data

Chromatograms of the analyses of tobacco smoke using CG-
ToF-MS,whose raw tobacco leaveswere collected fromYunnan
province, were selected to test the proposed sirQR method. The
weight of each cigarette was 0.700±0.015 g, whichwas filled by
CMB-120 cigarette tube filling machine (Burghart, Germany).
The plant perfumes from herb extractions were injected into the
cigarette via CIJECTOR cigarette injection machine (Burghart,
Germany). Twenty cigarettes are smoked simultaneously by the
smoking machine (Borgwaldt, Germany), and the cigarette
smoke was collected by a Cambridge filter. An extraction sol-
vent (80 mL, dichloromethane/methanol=2:1 (v/v)) was used to
elute the compounds enriched in the Cambridge filter. After
extraction, evaporation and concentration to 1 mL, the sample
was injected into GCT Premier™ GC-ToF-MS. A DB-35MS
(30 m×0.25 mm, 0.25 μm) chromatographic column was used,
with a split ratio of the injector of 1:30 at 250 °C. Helium was
used as carrier gas at a constant flow rate of 1.5 mL/min. The
column temperature was programmed from 50 to 280 °C. Mass
spectra from 40 to 400 m/z were collected. The ionization
voltage was 70 eV and ion source temperature was 220 °C.
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The GC-ToF-MS chromatograms of the analyses of tobacco
smoke with various baselines are illustrated in Fig. 3a.

Raman spectra

Several prednisone acetate tablets (PATs) were analyzed
by a BWTEK i-Raman-785 spectrometer using a laser

of 785 nm wavelength for excitation with a 2048 ele-
ments thermoelectric cooled linear charge-coupled de-
vice arrays. PATs’ Raman spectra from ten different
pharmaceutical factories were recorded using 5,000 ms
integration times. As three tablets for each pharmaceu-
tical factory were measured, a total of 30 Raman spectra
were obtained. These Raman spectra are plotted in Fig. 4a,

Table 1 The analysis of the results of baseline correction for the simulated dataset with the expected heights

Baseline type Peak no. Peak height

Uncorrected Expected ALSa FABCb airPLSc SirQRd

Linear Peak 1 57.01 50.00 50.55 50.44 50.36 50.31

Peak 2 40.64 30.00 29.06 29.64 29.34 30.14

Peak 3 86.29 70.00 68.42 69.86 68.17 70.17

Peak 4 63.85 40.00 40.21 40.01 40.03 39.53

Curved Peak 1 59.71 50.00 50.56 50.53 52.11 49.71

Peak 2 32.45 30.00 29.03 29.08 28.78 29.18

Peak 3 78.20 70.00 68.39 68.99 68.89 69.92

Peak 4 45.71 40.00 40.04 38.88 40.05 40.20

a For the ALS method, the parameters are as follows: λ=10,p=10−5 ,d=2
b For the FABC method, the parameters are as follows: λ=10,a=10
c For the airPLS method, the parameters are as follows: λ=8
d For the SirQR method, the parameters are as follows: λ=1.25,μ=0.03,dm=4×10

−4

Fig. 1 Flow chart of the SirQR
algorithm’s the framework
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and one can obviously notice that the baselines vary from
sample to sample.

Nuclear magnetic resonance dataset

Nuclear magnetic resonance signals are also influenced by
baseline. This paper demonstrates the feasibility of the pro-
posed algorithms in the correction of the baseline with larger
numbers of variables.

These spectra were acquired on a Varian INOVA AS600
(Varian, Inc. US) 600 MHz NMR. Proton chemical shifts at
298 Kwere obtained from depurated plasma and human urine.
Five urine samples of the same people collected in different
times and one plasma sample were included in this dataset.
The original data of 1HNMR signals is illustrated in Fig. 5a,
where one urine signal (the red line and best out of five) and
the plasma signal (the cyan line) are represented.

Result and discussion

HPLC-DAD result

The baselines of HPLC-DAD chromatograms of ten
Dendrobium samples from different regions have been
corrected by SirQR algorithm with λ=1.25,μ=0.03. Both orig-
inal and corrected chromatograms are illustrated in Fig. 2a, b.

Although the influence of the baseline decreased significantly
after correction, in order to express its effectiveness, two dif-
ferent dimension reduction methods have been applied to the
mean-centered datasets for further research. The first one was a
principal component analysis (PCA), applied to investigate the
influences of clustering analysis on the proposed SirQR algo-
rithm, comparing the first two principle components between
original signals and corrected ones with centralized and
normalized dataset. The second one was a multidimensional
scaling (MDS) [45–47], which also applies to the matrix,
consisting of the original and corrected mean-centered nor-
malization chromatogram signals.

This resulted in a significant improvement in the scores and
the variance of the first and second principal components and
making the interpretation more clearly and be easy to distin-
guish the wanted difference and the center of gravity of the
model, which are plotted in Fig. 2c, d. In Fig. 2c, d, the blue
circles represent the original chromatograms and the red tri-
angles represent the corrected chromatograms. Obviously, the
movement and aggregation of red triangles are more compact,
which can be easily seen from the plots (Fig. 2c, d) that the
size of the sample point circle after correction is much smaller
than that of the sample point circle before background correc-
tion. Notice that the first two components can explain more
than 60% of total information. In Fig. 2d, especially, theMDS
[48] method is also used to indicate the aggregation trend after
the correction in a clearer manner. From Fig. 2d, one could

Fig. 2 Chromatographic data
of Dendrobium: a original
chromatograms from ten samples
and b corrected chromatograms.
cAnalyses results of the corrected
chromatograms with PCA scores
and variance after centralization
and normalization using PCA
method, and d analyses results
also after centralization and
normalization using
multidimensional scaling analysis
method. In (c) and (d), these
blue circles indicate the original
chromatograms and the red
triangles represent the corrected
chromatograms. The compactness
of these eight sample points
becomes closeness from the
solid circle to dashed circle
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clearly see that the results tend obviously to the center of
gravity of the data after corrected process via SirQR algo-
rithm. The combination of the PCA and MDS plots demon-
strates the validity of the SirQR algorithm. Via SirQR algo-
rithm, the corrected chromatograms have a more compact
pattern and are closer to the desired chromatograms. The
clustering and classification results increased because of the
compactness and closeness in principal components pattern
space to a certain degree.

GC-ToF-MS discussion

For the GC-ToF-MS chromatogram datasets of tobacco sam-
ples, the background was corrected by the proposed SirQR
algorithm. The corrected results were further analyzed by
principal component analysis (PCA), also comparing these
results with other novel algorithm namedMPLS [7], as shown
in Fig. 3. In Fig. 3a, b one can clearly see that the original and

corrected chromatograms demonstrate that the SirQR algo-
rithm is flexible enough to remove the background drifts even
with an excessive number of variables. Moreover, PCA was
also implemented to assess the validity of the proposed SirQR
algorithm. As known to all, numerical differentiation can
eliminate the tardily shifting background [49, 50]. Thus,
PCA method has been executed in the original and corrected
chromatogram signals with first-order numerical differentia-
tion preprocessing. In Fig. 3c, the triangles represent the
original chromatogram signals, and the crosses represent the
corrected ones. As illustrated, the good matching in principal
component spaces, suggests that the SirQR algorithm does not
eliminate the important information from the original chro-
matogram signals. Moreover, as all eight samples were paral-
lel samples, if the effect of background can be ignored, they
should be located closer to each other in principal component
spaces. Focusing on Fig. 3d, the triangles represent chromato-
grams without any background correction, neither by SirQR

Fig. 3 Background correction
results and analysis for the
GC-TOF-MS dataset of tobacco
smoke by SirQR algorithm.
aOriginal chromatogram dataset
of eight samples with various
backgrounds; b corrected
chromatogram results through the
SirQR method; c comparison of
the distribution of samples before
and after background correction
in principal component spaces;
and d first two principal
components of the original and
corrected chromatograms with
first-order numerical
differentiation preprocessing and
comparison with MPLS method

Fig. 4 Baseline correction results of the Raman spectra of PATs. aOriginal spectra dataset. bCorrected spectra dataset
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nor by MPLS in principal component spaces; the plus sym-
bols represent the corrected chromatogram signals by the
proposed SirQR algorithm; and the diamonds represent the
corrected chromatogram signals by the MPLS algorithm. The
direction in the first principal component mainly conveyed the
sample difference, as the value reaching 92 % of the total
variance in first principal component. If we let the scope of
these original samples’ chromatogram signals be indicated as
L in the first principal component direction, it is not difficult to
obtain the scope of the corrected samples’ chromatogram
signals in both SirQR method and MPLS method. Comparing
with the two distances, the SirQR method, with 0.410×L, is
slightly better than the MPLS method, with 0.430×L. Thus,
these values can point out that SirQR algorithm can decrease
the variance mostly originated from the background, the same
way as the MPLS algorithm does or even better to some
extent. According to the analysis above, one can demonstrate
that the larger variation in the first principal component direc-
tion of the original chromatograms could be due to the vari-
ation of background from chromatogram to chromatogram.
This proposed SirQR method can remove this background
variation among a series of chromatograms without missing
useful and important information.

Correction result of Raman spectra

The proposed sirQR algorithm has also been applied to Ra-
man spectra of PATs with highly fluorescence background. All
baseline influences on the ten different PATs tablets spectra
were favorably removed. These results are represented in

Fig. 4b. Similarity analyses (correlation coefficient) have been
applied to the corrected analysis results with original Raman
spectra, via comparison with the corresponding mean spectra,
which is listed in Table 2.

Before correction, the similarity values of the original
Raman signal and the original mean spectra seem unsatisfac-
tory and unacceptable. Even some original signals went far
beyond our expectation. However, an obvious improvement
was achieved, as shown in the corrected row of Table 2, via
the SirQR algorithm proposed correctionmethod. One can see
that the improvement of the corrected result is not just a few
percent digits but even one or two orders of magnitude. Some
corrected results can reach an extremely high similarity, which
suggests that the SirQR method has the ability to remove
baselines and conserve the useful signals. In order to further
confirm this, we took a t test method to test the significance of
the improvement of correlation data between with and without
baseline correction. A paired t test has been taken, in which the
hypothesis testing, say H0, is that μ1=μ2. Here, μ1 means the
mean value of the correlation values listed in Table 2 without
baseline correction, while μ2 indicates the corresponding one
with baseline correction. The testing result is also shown in
Table 2, that is, they are significantly different atα=0.05 level.
That is to say, according to the statistical analysis, the
simularity after baseline correction using SirQR algorithm is
clearly better than that of the original dataset without baseline
correction.

In short, the SirQR algorithm could amend the baseline
validly and accurately while retaining and optimizing primary
useful information.

Fig. 5 Baseline correction results
of the HNMR data of plasma
and urine samples. aOriginal
HNMR data of a plasma sample
(the below red line) and a urine
sample (the above cyan line).
bCorrected HNMR data of a
plasma sample (the below red line)
and a urine sample (the above
cyan line). cOriginal data
(blue line) with the fitting baselines
(green line) and corrected result
(red line) of one urine sample
of these ones. dOriginal data
(blue line) with the fitting baselines
(green line) and corrected results
(red line) of one plasma sample
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Result information of NMR signals

The NMR of the depurated plasma and human urine samples
for proton signals, as described in the “Experimental and
applications,” has been also corrected by the proposed SirQR
algorithm. The main purpose of this correction is to test the
performance of the SirQR approach on high-throughput
dataset, which exceeded four thousand variables in H NMR
signal, and make a preliminary classification between these
two samples.

Asthe number of variables and the value of signals were
extremely large, the difference value (dm) between original
signals and fitting values was selectively changed by the user.
We designed dm=2.5×10

4 and other parameters were set
by these default ones (λ=1.25, μ=0.03). One can observe
the satisfactory corrected result in Fig. 5b, where only
three iterations fit the prospective baseline. The cyan line
means the corrected plasma signal and the red line indi-
cated the urine signal. To clearly see each sample, the
separated figures of these two samples are illustrated in
Fig. 5c, d, including the original and corrected signals. In
addition, these NMR signals were tested with PCA and
MDS methods, as shown in Fig. 6. In Fig. 6a, b, the
samples nos. 1 to 5 correspond to the mean-centered and
normalized dataset of different five urine samples where
the blue circles indicate these original signal and the red
triangles correspond to the corrected ones via SirQR algo-
rithm. The two big solids circles present the compactness
of the original sample points, while the dashed circles
indicate the compactness of the corrected sample points.
From both Fig 6a, b, one can see the clear variation trend
and aggregation extent in both PCA and MDS spaces
between solid circle and dashed circle, which demonstrates
that the urine samples obtained a better aggregation after
correction. The PCA variance of the first two components
are more than 80 %. From Fig. 6b, one can easily see
even clearer compact trend for the red triangles (corrected
sample points) in MDS space. In summary, the SirQR
algorithm can also be successfully and flexibly implemented
in high-throughput real experimental datasets.

Comparison with other algorithms using simulated dataset
and real dataset

The corrected baselines of linear and curved synthetic datasets
have been implemented by the proposed SirQR algorithm.
The corrected results can be seen in Fig. 7a, b. Both the linear
and the curved baselines were subtracted successfully. Addi-
tionally, the SirQR algorithm could converge rapidly. As the
simulated datasets were obtained from compounds with four
known standard Gaussian peaks, the expected heights of four
peaks are well known. Therefore, one can compare the heights
before and after correction with the expected ones. The com-
parison result is listed in Table 1.

In the light of the expected heights, which are known, four
different methods have been taken to make comparisons using
datasets with the linear and the curved baseline. The methods
used for comparison were the fully automatic baseline correc-
tion procedure of Carlos Cobas et al. [20] (FABC algorithm),
asymmetric least squares baseline correction of Eilers [51, 52]
(ALS algorithm) and adaptive iteratively reweighted penal-
ized least squares of Zhang [22] (airPLS algorithm). The
results of the ALS algorithm, the FABC algorithm, the airPLS
algorithm, and the SirQR algorithm are listed in Table 1.
Combining these results with Fig. 7a, b, one can observe that
the SirQR algorithm is accurate and can fit the most reason-
able baseline in both linear and curved situations. In the linear
baseline, peak heights after baseline correction of the ALS
algorithm and the airPLS algorithm were significantly closer
to the expected height than the FABC algorithm and the ALS
algorithm, especially in somewide and large peak. In addition,
the SirQR algorithm is also successful in fitting the curved
baseline and much better than the other three algorithms,
including some small peak sections. Deducing from Table 1,
one can conclude that the SirQR algorithm corrected the
baseline as well as the other algorithms and even better them
in some extent.

It is worth noting that using the quantile regression method
is a clear advantage of our correction algorithm, compared
with the ALS correction method, the FABC approach and
airPLS algorithm. As it was shown in the first four pictures

Table 2 The similarity of original or corrected Raman spectra with mean spectrum

Sample Sample1 Sample2 Sample3 Sample4 Sample5 Sample6 Sample7 Sample8 Sample9 Sample10

Similarity

Original 0.9524 0.8949 0.9449 0.8850 0.9723 0.9588 0.9767 0.9556 0.9266 0.9601

Corrected 0.9824 0.8942 0.9960 0.9975 0.9881 0.9901 0.9910 0.9512 0.9977 0.9991

t test

μ1=0.9527 μ2=0.9789 n=10

|t|=2.2935>tα/2 (9)=t0.25 (9)=2.2622, reject H0

Ten samples were used to compare the similarity between corrected and before with the corresponding mean signal
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of Fig. 8, these three algorithms have been applied in
correcting the noisy data in comparison with the proposed
SirQR algorithm. One can clearly see that, although the FABC
method could be better to fit the noise data, it could not correct
the wider peaks (see Fig. 8a). For the results from ALS
(Fig. 8b) and airPLS (Fig. 8c) algorithms, the effect of noise
processing is not satisfactory, as the fitting lines are obviously
under the original data. On the other hand, the SirQR algo-
rithm could do a better fitting as shown in Fig. 8d. Although
the corrected result in high noise is not better than with the
FABC method, the fitting line kept quite close to the original
data, and also is obviously better than the other two methods
(ALS and airPLS). In particular, the SirQR algorithm can be
flexible when dealing with these wide peaks notably better
than FABC method.

In addition, three other different simpler methods have
been taken to make a comparison with the real spectra dataset
of milk in Fig. 8 as well. The methods used for comparison
were iterative restricted least squares of Coombes et al. [53]
(IRLS algorithm), simultaneous peak detection and baseline

correction of Coombes et al. [54] (PeakDetection algorithm),
Rolling Ball algorithm for X-ray spectra by Kneen and
Annegarn [55] (RollingBall algorithm). The results of the
IRLS algorithm, the PeakDetection algorithm, the RollingBall
algorithm, and the SirQR algorithm are illustrated in the rest
four pictures in Fig. 8, respectively.

It is worth noting that using the quantile regression method
is a clear advantage of our correction algorithm, compared
with the IRLS correction method, the PeakDetection approach
and RollingBall algorithm. According to Fig. 8, one can
clearly see that, although the IRLS correction method
(Fig. 8e) could be well in fitting the overall baseline trend, it
could not do well in high noise part and some parts of the
corrected spectra were still drift, which were clearly below the
x-axis. For the result from RollingBall algorithm (Fig. 8f) and
PeakDetection algorithm (Fig. 8g), the effect of noise pro-
cessing made a huge influence that the fitted baseline in the
range of 0 to 1,000 were significantly distort and unreason-
able. Although the corrected result using SirQR algorithm
(Fig. 8h) could not obtain a perfect result in every sections,

Fig. 6 First two principle component plots using two different methods
with the scores of the original and corrected results of the five urine
samples after centralization and normalization: a using classic PCA
method with the variance and b using MDS method. In both pictures,
these blue circles indicate the original urine HNMR data; the red triangles

represent the corrected urine HNMR data; the solid circle shows the
compactness of the original sample points; and the dashed circle repre-
sents the compactness of the samples after corrected. The variation trend
between two circles also illustrates the improvement of sample compact-
ness after correction

Fig. 7 Corrected results of
simulated data with different
baselines. a Linear baseline and
the corresponding corrected
results. bCurved baseline and the
corresponding corrected results
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it could do well in the range of high noise section, kept the
fitting line close the original spectra and kept the stability of
the corrected result. For the analysis above, the SirQR
algorithm is obviously better than the other three methods
(IRLS, RollingBall, and PeakDetection).

In summary, combing with the two aspects we can say that
the SirQR algorithm seems to be a robust correction method.
The main reason may be due to L1 norm, which is the sum of
absolute values during the correcting process. These absolute
values not only reach the purpose of fitting the aim line, but
also, unlike the sums of squares, cannot enlarge the error value.
Thus, the robustness of this algorithm can be a significant
advantage, obviously better than others in general.

Processing speed and expansibility

As described in the section above, Table 3 describes the
number of variables, total calculation times and calculation
time per iteration of simulate data, Raman spectra, GC-ToF-
MS, HPLC-DAD and NMR signals. From this table one can
deduce that the speed of the proposed SirQR algorithm is swift
enough even for the large datasets with more than 20,000
variables, such as the NMR signal, that was only 14.611 s
for 24,000 variables with two iterations. This achievement can
be owed to the sparse matrix [56]. Moreover, in order to
control the effectiveness of the fitting baseline, the maximum
iteration times and the value of dm can be manually established
by the users. By means of this manual test, a desirable and

reliable fitting baseline can be more effectively amended for
further analysis, avoiding for the overfitting phenomenon.
Detailed figure of the overfitting phenomenon is given as
Fig. S2 in the Electronic supplementary material.

Continuing to investigate Table 3, it is not difficult for one to
find the relationship between the number of variables and cal-
culation time per iteration. Obviously, with the increasing of the
number of variables, the corresponding calculation timewill also
increase. Although the time of calculation is higher for larger
number of variables; it is fast enough for most general data,
especially with less than 10,000 variables. It can be summarized
that the usage of sparse matrices and the exponential reweight
strategy enables the application of the SirQR algorithm in more
high-throughput domains and meet the needs of data analysis.

Fig. 8 Test and comparison with other different algorithms using
simulated dataset and real dataset. The first four pictures describe
the robustness testing result for four algorithms on high noisy
simulated data. a FABC method, corrected result and the focusing
partial figure. b ALS method and corrected result. c airPLS method
and corrected result. d SirQR method, corrected result and the

focusing partial figure. The rest four demonstrate the comparison
of the corrected results with other four simple algorithms on real
dataset. e Using IRLS method and the corrected result. f Using
RollingBall method and the corrected result. g Using PeakDetection
method and the corrected result. h Using SirQR method and the
corrected result

Table 3 The calculation time of simulated dataset, HPLC-DAD,
GC-ToF-MS, Raman spectra, and NMR signal

Resource
signal

Number of
variables

Total calculation
time(s)

Iteration
times

Calculation
time per
iteration(s)

Simulated dataset 500 0.111 1 0.111

Raman spectra 1,715 0.349 2 0.175

GC-ToF-MS 4,464 2.095 2 1.048

HPLC-DAD 11,064 4.974 2 2.487

NMR signal 24,000 14.611 2 7.305

Different datasets were applied to infer the relationship between the
number of variables and the calculation time per iteration
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Conclusions

In this research, the proposed SirQR algorithm provides a
robust, valid, and fast baseline correction method for
processing different analytical signals. The proposed algo-
rithm combines quantile regression and reweighted itera-
tive strategy to fit the background as desired. After com-
paring with several popular baseline correction methods,
such as ALS, FABC airPLS and MPLS, the results dem-
onstrate that the proposed algorithm can offer a robust and
accurate baseline corrected signals for both simulated data
and real analytical signals. Moreover, the successful results
of these datasets have proved that this approach can be
used as a preprocessing method for many analytical instru-
ments (chromatograms, Raman spectra and NMR signals,
even MALDI-TOF).
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