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Abstract The metabolic profiles of urine and blood plasma
in drug-addicted rat models based on morphine (MOR),
methamphetamine (MA), and cocaine (COC)-induced con-
ditioned place preference (CPP) were investigated. Reward-
ing effects induced by each drug were assessed by use of the
CPP model. A mass spectrometry (MS)-based metabolomics
approach was applied to urine and plasma of MOR, MA, and

COC-addicted rats. In total, 57 metabolites in plasma and 70
metabolites in urine were identified by gas chromatography–
MS. The metabolomics approach revealed that amounts of
some metabolites, including tricarboxylic acid cycle inter-
mediates, significantly changed in the urine of MOR-
addicted rats. This result indicated that disruption of energy
metabolism is deeply relevant to MOR addiction. In addi-
tion, 3-hydroxybutyric acid, L-tryptophan, cystine, and n-
propylamine levels were significantly changed in the plasma
of MOR-addicted rats. Lactose, spermidine, and stearic acid
levels were significantly changed in the urine of MA-
addicted rats. Threonine, cystine, and spermidine levels were
significantly increased in the plasma of COC-addicted rats.
In conclusion, differences in the metabolic profiles were
suggestive of different biological states of MOR, MA, and
COC addiction; these may be attributed to the different
actions of the drugs on the brain reward circuitry and the
resulting adaptation. In addition, the results showed possi-
bility of predict the extent of MOR addiction by metabolic
profiling. This is the first study to apply metabolomics to
CPP models of drug addiction, and we demonstrated that
metabolomics can be a multilateral approach to investigating
the mechanism of drug addiction.
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Introduction

In general, drug addiction is defined as a biological status
with loss of autogenous regulation as a result of drug abuse.
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It is well known to encompass several behavioral stages:
intoxication, bingeing, craving, and withdrawal [1, 2].

Various studies have been conducted to reveal the underlying
mechanism of drug addiction, and it has become clear that some
genes and proteins are important in drug addiction [1–6]. One of
the latest studies reported that microRNA is also of crucial
importance in determining vulnerability to drug addiction [7, 8].

However, the neurobiological changes accompanying and
the molecular mechanism leading to drug addiction are not
known in detail. This is because drug addiction status involves
a wide range of biological compounds, for example genes,
transcripts, and enzymes (proteins), and its mechanism is
attributable to extremely complicated biological functions.
Li et al. addressed the limitations or bias of individual tech-
niques and studies on drug addiction; they insisted on the
importance of comprehensive understanding across different
techniques and studies not only on genes but also on other
biological compounds, as mentioned above [4].

Recent rapid progress in analytical technology has
succeeded in enabling bioinformatics studies on genes, tran-
scripts, proteins, and metabolites, generically known as “omics
sciences” [9, 10]. The metabolome, i.e. the total set of endog-
enous metabolites in an organism, is the “ome” which is inev-
itably closest to the phenotype. As is well known, metabolites
are the end products and by-products of complicated biosyn-
thetic and catabolism pathways, and their diversity is one of the
most significant aspects of the metabolome. Thus, comprehen-
sive analysis of the metabolome, termed metabolomics, is a
powerful technique not only to complement data derived from
genomics, transcriptomics, and proteomics, but also to investi-
gate the phenotypic changes caused by exogenous stimuli more
predictively than other omics approaches [9–11].

It is quite important to multilaterally understand the underly-
ing mechanism of drug addiction. Metabolomics can possibly
be used to investigate the mechanism from a different perspec-
tive. There have been reports of metabolomics studies of the
blood or brain metabolic profiles of morphine-treated mice and
abusers [12–15]. In particular, basic study using animal models
of drug addiction is indispensable for appropriate investigation
of the effect of addiction on metabolic profiles, because meta-
bolic profiles are readily affected by such external factors as diet,
environmental variation, and circadian fluctuation [9, 16, 17].

There have been many studies on the involvement of brain
function in drug addiction, whereas its effect on the whole
body has not been studied as much, even though valuable
information might be available. Hidden effects of drug addic-
tion may be revealed by applying metabolomics to urine or
blood, because disorders of both the central and peripheral
nervous systems could be reflected by changes in biological
specimens. If there is a possibility that metabolomics can be
used to detect drug addiction, thenmetabolic profiling of urine
and/or plasma may become a valuable diagnostic tool for
assessment and treatment of drug addiction.

Therefore, we examined the effect of drug addiction on the
metabolic profiles of urine and blood plasma by using rat
models of drug addiction. These models were trained by
chronic treatment with morphine (MOR), d-methamphet-
amine (MA), and cocaine (COC), and were assessed properly
by use of the conditioned place preference (CPP) model. In
order to study their metabolic profiles in detail, an established
mass spectrometry-based metabolomics technique was ap-
plied to the urine and plasma of rats.

Materials and methods

Animal experiment

Twenty-four male Sprague–Dawley rats (seven weeks old,
weight 281–312 g) were purchased from Charles River Japan
(Yokohama, Japan). This animal study was approved by the
Animal Experimental Committee of Dainippon Sumitomo
Pharma. Preparation of drug-addicted rats and the procedure
of the CPP model were carried out in accordance with to
previous reports, with slight modification [18–20]. The dose
administered was 4 mg kg−1 MOR, 2 mg kg−1 MA, and
10 mg kg−1 COC, on the basis of the weight of each rat. The
sequence of the animal experiment is shown in Fig. 1, and the
details of the experiment are described in the Electronic Sup-
plementary Material.

Sample collection and preparation

Urine was combined and stored under refrigeration with dry ice
for 24 hours immediately after pre-priming or choice-test. Blood
was drawn from the abdominal aorta under isoflurane anesthe-
sia. After anticoagulation treatment with ethylenediamine
tetraaceticacid dipotassium (EDTA-2 K) [21], blood plasma
was obtained by centrifugation at 3000 rpm for 10 min at
5 °C. Urine and plasma were quickly frozen in liquid nitrogen
and stored at −80 °C until analysis [22]. The extraction protocol
was the same as described in previous reports [9, 11, 23–25],
with slight modification; details are given in the Electronic
Supplementary Material.

Instrumental analysis and statistical analysis

Gas chromatography–mass spectrometric (GC–MS) analysis
was performed as described elsewhere [24, 26]. The metabo-
lites were identified by use of built-in software and an in-house
metabolome library (Fukusaki laboratory). Principal
component analysis (PCA) with autoscaling was conducted
on normalized datasets from urine and plasma, by use of
SIMCA-P+13 software (Umetrics, Umeå, Sweden). Statistical
differences for potentially significant metabolites were
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evaluated by significance test (Welch’s t-test, significance level
0.05). The datasets were also used for projection to latent
structures (PLS) regression. Detailed information of instrumen-
tal analysis, data processing, and construction of the PLS re-
gression model and its validation are described in the Electronic
Supplementary Material.

Results

CPP paradigm

The results obtained from the CPPmodel are listed in Table 1.
The CPP score obtained from rat no. 3 in the control group
was an outlier (positive CPP score) among the others (nega-
tive CPP scores). The score for rat no. 20 in the cocaine group
is also an outlier (negative score). Because these results sug-
gested that the rats 3 and 20may be affected by factors such as
external stimulation, these results were omitted from subse-
quent use to maintain high experimental quality.

Identification of metabolites

In total, 57 metabolites in blood plasma and 70 metabolites
in urine were identified by GC–MS. Table 2 lists all identi-
fied metabolites. Under the analytical condition used, some
types of metabolite were not discriminated from each other
(e.g. citric acid and iso-citric acid). In such cases, possible
compound names were annotated for the same peak.

In both urine and plasma of rat no. 13 in the MOR-
administered group, peak intensities of some of the identified
metabolites showed highly irregular. Because this may be a
result of intravital abnormality or other invisible causes, rat
no. 13 was omitted from subsequent metabolomics study.

Metabolome variation in the MOR-addicted rats

Score plots of PCA based on GC–MS analysis of urine and
plasma before and after MOR addiction are shown in Fig. 2.
As shown in Fig. 2a, the two groups overlapped on the PCA
score plot before MOR addiction. On the other hand, MOR-

addicted and control groups were clearly separated on the
PCA score plot for urine samples after MOR addiction
(Fig. 2b). The two groups were partially separated on the
PCA score plot for plasma samples (Fig. 2c).

All identified metabolites were checked by use of the
significance test. As shown in Fig. 3a, 3-hydroxybutyric
acid, L-tryptophan, cystine, and n -propylamine levels
changed significantly in the plasma of MOR-addicted rats.

1211109876543210-1-2-3-4

Urine collection
(24 hours)

Plasma
collection*

Urine collection
(24 hours)

Pre-priming

Conditioning training (10 Days)

days

Choice 
test

Pre-
choice
test

Post-priming
Fig. 1 Sequence of animal
experiment and sample
collection. The asterisk indicates
blood was taken under anesthesia
after urine collection

Table 1 Results from the CPP model

Group Rat
no.

Box selected
for drug
administration

Amount of
time spent
in the box (s)

CPP
score

Black
box

White
box

Control 1 White box 517.8 382.2 −135.6

2 Black box 409.2 490.8 −81.6

3 White box 364.3 535.7 171.4

4 White box 548.0 352.0 −196.0

5 Black box 361.0 538.0 −177.0

6 White box 600.0 299.0 −301.0

Methamphetamine 7 White box 304.0 596.0 292.0

8 Black box 496.5 403.4 93.1

9 White box 393.2 506.8 113.6

10 White box 337.3 562.7 225.4

11 Black box 525.7 374.3 151.4

12 White box 355.8 544.2 188.4

Morphine 13 White box 359.8 540.2 180.4

14 Black box 625.1 274.9 350.2

15 White box 408.6 491.4 82.8

16 White box 402.4 497.6 95.2

17 Black box 589.7 310.3 279.4

18 White box 390.6 509.4 118.8

Cocaine 19 White box 369.4 530.6 161.2

20 Black box 338.2 561.8 −223.6

21 White box 385.5 514.5 129.0

22 White box 430.5 469.5 39.0

23 Black box 513.3 386.7 126.6

24 White box 408.5 491.5 83.0
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In urine, 2-ketoglutaric acid, fumaric acid, malic acid, and L-
threonine levels were significantly increased whereas
glutamic acid, isoleucine, L-valine, L-aspartic acid, oxamic
acid, 2-aminoethanol, indoxyl sulfate, and creatinine levels
decreased significantly (Fig. 3b). There were no significant
differences between these metabolites in the urine of control
and MOR groups before addiction (Fig. 3c).

Metabolome variation in the MA-addicted rats

PCA score plots based on GC–MS analysis of urine and
plasma before and after MA addiction are shown in Fig. 4.
Results from all the rats overlapped before MA addiction, as
shown in Fig. 4a. MA-addicted and control groups were not
well-separated on PCA score plots for both plasma and urine
after addiction (Figs. 4b and c).

The significance test for all the metabolites identified
revealed significant changes in n-propylamine and lauric
acid levels in plasma after MA addiction (Fig. 5a). In urine
of the MA-addicted rats, lactose, spermidine, and stearic acid
levels were significantly increased (Fig. 5b). There were no
significant differences between amounts of these metabolites
in the urine of control and MA groups before addiction
(Fig. 5c).

Metabolome variation in the COC-addicted rats

Figure 6 shows the PCA score plots based on GC–MS
analysis of urine and plasma before and after COC addiction.
The results from the two groups overlapped on the PCA
score plot before COC addiction (Fig. 6a). As shown in
Fig. 6b, COC-addicted and control groups were not

Table 2 Metabolites identified in plasma and urine by use of GC–MS

Plasma Urine

1,5-Anhydro-D-glucitol L-Lysine 2-Aminoethanol Glycolic acid Pyruvic acid/
Oxalacetic acid

2-Aminobutyric acid L-Methionine 2-Hydroxypyridine Hippuric acid Ribose

2-Hydroxybutyric acid L-Ornithine 2-Ketoglutaric acid Hydroxyproline Spermidine

2-Hydroxypyridine L-Proline 3-Hydroxybutyric acid Hypotaurine Stearic acid

α-Ketoglutaric acid L-Serine 3-Hydroxyisovaleric acid Indoxyl sulfate Succinic acid

3-Hydroxybutyric acid L-Threonine 4-Hydroxymandelic acid Inositol Threitol

Aconitic acid L-Tryptophan 4-Hydroxyphenylacetic acid Isoleucine Uracil

Alanine L-Tyrosine 5-Aminovaleric acid Lactose Uric acid

Allantoin L-Valine Aconitic acid L-Asparagine Xanthine

Citric acid/iso-Citric acid Malic acid Alanine L-Aspartic acid Xanthurenic acid

Cysteine Mannose Allantoin L-Histidine Xylitol

Cystine n-Butylamine Arabinose L-Lysine Xylose

Glucose Nonanoic acid Arabitol L-Proline

Glutamic acid n-Propylamine Ascorbic acid L-Serine

Glutamine Oxalic acid β-Alanine L-Threonine

Glyceric acid Palmitic acid Catechol L-Valine

Glycerol Phenylalanine Citramalic acid Malic acid

Glycine Propyleneglycol Citric acid/iso-Citric acid Malonic acid

Glycolic acid Pyrophosphate Creatinine Maltose

Heptadecanoic acid Pyruvic acid/
Oxalacetic acid

D-Glucronic acid N-Acetylglucosamine

Hydroxyproline Ribose D-saccharic acid/
D-glucaric acid

N-Acetylglutamine

Inositol Spermidine Erythritol N-Acetyl-L-leucine

Isoleucine Stearic acid Ethylmalonic acid N-α-Acetyl-L-Lysine

Ketovaline Succinic acid Fucose n-Butylamine

L-Asparagine Uracil Fumaric acid Oxalic acid

L-Aspartic acid Urea Glucose Oxamic acid

Lauric acid Uric acid Glutamic acid Pantothenic acid

L-Histidine Xylitol Glyceric acid Pyroglutamic acid

L-Leucine Glycine Pyrophosphate
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separated on the PCA score plot for urine samples after COC
addiction, though they were partially separated for plasma
(Fig. 6c).

All identified metabolites were checked by use of the sig-
nificance test. As shown in Fig. 7, L-threonine, cystine, n-
propylamine, and spermidine levels changed significantly in

a

b

Morphine
Control

Morphine
Control

Morphine
Control

c

Fig. 2 PCA score plots of urine
and plasma of control and
morphine groups. The control
group and the morphine group
are shown as green and red plots,
respectively. (a) Urine before
morphine addiction, and (b)
urine and (c) plasma after
morphine addiction. Each ellipse
was given by Hotteling’s T2
(0.95)
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the plasma of COC-addicted rats, whereas no metabolites in
urine fluctuated significantly after addiction.

Discussion

Assessment of the animal experiment

In metabolomics, careful experimental design is required if
valuable results are to be obtained because metabolic profiles
are subject to high temporal variability, for example circadi-
an fluctuations, in an organism [9, 16, 17].

Therefore, animal experiments were specially designed to
avoid the effects of circadian rhythms and other external stim-
ulations, and the resulting animal models were properly evalu-
ated by use of the CPP model, a well-established technique for
assessing the rewarding effect of addiction-producing drugs
[15, 27, 28]. The CPP model guaranteed that all the rats in this

metabolomics study achieved the rewarding effect: they were in
a drug-addicted state. This solid animal model heightened the
quality of the final results.

Post-priming treatment was performed before sample collec-
tion to avoid the effect of sudden loss of drugs. No pre or post-
priming treatment effects on metabolome variation or individual
differences were observed, because there was no significant
difference between controls and each drug addicted-group be-
fore addiction; this was also confirmed by the overlap of results
from the groups in the PCA score plots (Figs. 2a, 4a, and 6a).

Effect of MOR addiction on the metabolic profiles of urine
and plasma

The concentration of L-tryptophan decreased significantly in
the plasma of MOR-addicted rats. There have been reports of
the relationship between MOR addiction and L-tryptophan
concentration in brain or blood. Messing et al. reported an L-

Plasma after morphine addiction

3-Hydroxybutyrate L-Tryptophan Cystine
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a

Fig. 3 (a, b) Box-and-whisker plots for significantly changed metab-
olites in plasma (a) and urine (b) after morphine addiction. (c) Box-
and-whisker plots of the metabolites in urine before addiction. Whis-
kers extend to the extreme data points, and p values calculated by use of

Welch’s test are shown for significantly different metabolites between
controls and addicted rats. There was no significant difference for each
metabolite before addiction
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Urine after morphine addiction

2-Ketoglutaric acid Fumaric acid Malic acid

p= 0.049 p= 0.015 p= 0.024(×10-3) (×10-3) (×10-3)

Glutamic acid Isoleucine L-Valine

p= 0.025 p= 0.019 p= 0.026(×10-3) (×10-3) (×10-3)
R

el
at

iv
e 

in
te

ns
ity

R
el

at
iv

e 
in

te
ns

ity

R
el

at
iv

e 
in

te
ns

ity

R
el

at
iv

e 
in

te
ns

ity

R
el

at
iv

e 
in

te
ns

ity

R
el

at
iv

e 
in

te
ns

ity

L-Aspartic acid Oxamic acid

p= 0.033 p= 0.037(×10-3) (×10-3)

2-aminoethanol

Indoxyl sulfate Creatinine L-Threonine

p= 0.041

p= 0.042 p= 0.045 p= 0.049

(×10-3)

(×10-3) (×10-3) (×10-3)

R
el

at
iv

e 
in

te
ns

ity

R
el

at
iv

e 
in

te
ns

ity

R
el

at
iv

e 
in

te
ns

ity

R
el

at
iv

e 
in

te
ns

ity

R
el

at
iv

e 
in

te
ns

ity

R
el

at
iv

e 
in

te
ns

ity

b

Fig. 3 (continued)
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c Urine before morphine addiction
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Fig. 3 (continued)
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a

b

Methamphetamine

Control

Methamphetamine

Control

c

Methamphetamine

Control

Fig. 4 PCA score plots for urine
and plasma of control and
methamphetamine groups. The
control group and the
methamphetamine group are
shown in green and blue plots,
respectively. (a) Urine before
methamphetamine addiction,
and (b) urine and (c) plasma after
methamphetamine addiction.
Each ellipse was given by
Hotteling’s T2 (0.95)
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tryptophan decrease in rat blood plasma and an increase in rat
brain even after single administration of MOR at 10 mg kg−1

[29]. Our result is in agreement with their findings, in that the

plasma L-tryptophan level decreased in MOR-addicted rats.
Larson and Takemori investigated L-tryptophan uptake from
blood to brain after one pass by use of isotope-labeled L-

n-Propylamine Lauric acid

Plasma after methamphetamine addiction
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Fig. 5 (a, b) Box-and-whisker plots for significantly changed metab-
olites in plasma (a) and urine (b) after methamphetamine addiction. (c)
Box-and-whisker plots of the metabolites in urine before addiction.
Whiskers extend to the extreme data points, and p values calculated

by use of Welch’s test are shown for significantly different metabolites
between controls and addicted rats. There was no significant difference
for each metabolite before addiction
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a
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Cocaine

Control

Cocaine

Control

Cocaine

Control

c

Fig. 6 PCA score plots for urine
and plasma of control and
cocaine groups. The control
group and the cocaine group are
shown in green and yellow plots,
respectively. (a) Urine before
cocaine addiction, and (b) urine
and (c) plasma after cocaine
addiction. Each ellipse was given
by Hotteling’s T2 (0.95)
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tryptophan (14C-L-tryptophan) [30]. They revealed that uptake
of 14C-L-tryptophan by the brain increased significantly 72 h
after continuous subcutaneous administration of MOR. Our
result may imply that MOR addiction is related to uptake of L-
tryptophan from the blood by the brain.

As shown in Fig. 3b, 2-ketoglutaric acid, fumaric acid,
and malic acid levels were significantly increased in the
urine of MOR-addicted rats. These compounds are known
intermediates of the tricarboxylic acid (TCA) cycle, and
MOR addiction can affect the energy metabolism via TCA
cycle disruption. Yang et al. revealed that specific proteins
related to energy metabolism were significantly changed in
the frontal lobe cortex of MOR-addicted rats [31], and Deng
et al. reported that chronic morphine treatment causes dis-
turbance of energy metabolism in the brain of rhesus mon-
keys [14]. Chen et al. also reported ATP synthesis down-
regulation in the rat hippocampus after tenfold-repeated ad-
ministration of MOR [5]. Although it is difficult to directly
compare our results with theirs, because of the different

sample region targeted, our results also indicated that energy
metabolism disruption is deeply relevant to MOR addiction.
It was noteworthy that the urinary metabolomic approach
could detect such disruption.

In addition, glutamic acid, which is biochemically rele-
vant to 2-ketoglutaric acid, decreased significantly in urine,
suggesting disruption of the biotransformation of glutamic
acid to 2-ketoglutaric acid. Glutamic acid is also a well-
known and important neurotransmitter related to MOR ad-
diction [32], and the decrease in urinary glutamic acid sug-
gests such a relationship.

3-Hydroxybutyric acid concentration also decreased sig-
nificantly in the plasma of the MOR-addicted rats. Starvation-
induced hypoglycemia depresses glycolysis and TCA cycle
[33]. Low turnover of the TCA cycle collaterally induces
accumulation of acetyl-CoA derived fromβ-oxidation of fatty
acids, which generally results in hyperproduction of such
ketones as 3-hydroxybutyric acid and acetone. Despite
fasting, however, elevation of some TCA cycle intermediates
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Fig. 7 Box-and-whisker plots for significantly changed metabolites in plasma after cocaine addiction. Whiskers extend to the extreme data points,
and p values calculated by use of Welch’s test are shown for significantly different metabolites between controls and addicted rats
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was observed in MOR-addicted rats, suggesting that MOR
addiction may downregulate the β-oxidation pathway from
fatty acids and/or ketone production from acetyl-CoA.

There were changes in other urinarymetabolites, for example
cystine and isoleucine, but the biological implications of these
are unknown.

Effect of MA addiction on the metabolic profiles of urine
and plasma

MA addiction induced some changes in the metabolic pro-
files of urine and plasma; n-propylamine and lauric acid
levels changed significantly in plasma (Fig. 5a), and lactose,
spermidine, and stearic acid fluctuated significantly in urine
(Fig. 5b). However, the biological significance of these me-
tabolites is unclear.

There were no observable changes in metabolites related to
energy metabolism; levels of glucose and TCA intermediates,
for example 2-ketoglutaric acid and malic acid, remained
unchanged in urine or plasma of the MA-addicted rats. Kim
et al., by use of positron emission tomography, revealed a
significant decrease in cerebral glucose metabolism in
the frontal white matter of abstinent MA abusers (at
least four weeks) [34]. However, their result is believed
to be mainly because of sudden MA extinction, and
glycolysis downregulation may become observable after
drug deprivation.

Interestingly, our previous study showed that some TCA
intermediates, for example 2-ketoglutaric acid, fumaric acid,
malic acid, and citrate, decreased in the urine of MA acute-
intoxicated rats [24]. The result was quite different in this
study, and implies that the biological state in MA addiction is
dissimilar to that in MA acute intoxication. It may also
indicate that several adaptations to chronic MA administra-
tion occurred in MA-addicted rats and resulted in no signif-
icant change in the metabolite levels.

Effect of COC addiction on the metabolic profiles of urine
and plasma

As shown in Fig. 7, plasma L-threonine level increased after
COC addiction. L-Threonine is known to protect against stress
and strengthen immune response [35, 36]. The relationship
between COC addiction and stress has been pointed out by
other researchers [37, 38]. Goeders reported that self-
administration of cocaine by rats increases plasma corticoste-
rone [34], a well-known glucocorticoid relating to immune
reactions and increased stress responses [39, 40]. Change in
the plasma L-threonine level may reflect this relationship; no
change of L-threonine level was observed in urine. The reason
urinary L-threonine level did not change in conjunction with
that of plasma is unclear. Because this may be a result of
masking by the longer sampling time for urine, the effect of
COC addiction on the metabolic profile of urine may be
clarified in more detail by use of a shorter sampling time.

Also, no changes in metabolites related to energy metabo-
lism were observed in COC-addicted rats. There have, howev-
er, been reports suggesting a relationship between COC addic-
tion and energy metabolism [41, 42]. Volkow et al. reported
that global brain glucose metabolism was significantly higher
in COC abusers in an early withdrawal state (less than one
week after last use of COC) than in those in a late withdrawal
state (1–4 weeks after last use) and in normal subjects [42].
They also reported that frontal brain metabolic change was not
observed in COC abusers in the late withdrawal state. These
interesting findings suggest COC addiction may affect energy
metabolism in the brain. Thus, further study is needed with
consideration of dose-dependent effects or shorter sample-
collection time to investigate the relationship between COC
addiction and energy metabolism in more detail.

In addition, Patkar et al. reported alterations in L-trypto-
phan and purine metabolism in COC abusers [12], but there
were no observable changes in urinary L-tryptophan and

Table 3 Variables and performance of the PLS regression model

Plasma Urine

Group Number of
selected variables*

Number of PLS
components

Model
performance

Group Number of
selected variables*

Number of PLS
components

Model
performance

R2 Q2 R2 Q2

MOR 4 1 0.950 0.599 MOR 12 1 0.509 0.015

2 0.995 0.938 2 0.940 0.713

MA 2 1 0.665 0.340 MA 3 1 0.102 -0.100

2 0.765 0.298 2 0.315 -0.210

COC 4 1 0.484 0.183

2 0.541 0.101

* Significantly changed metabolites in drug-addicted rats
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plasma purine metabolites (xanthine and uric acid). These
discrepancies can be explained as follows:

1. COC abusers in Patkar’s study were abstinent for at least
two weeks, and the effect of the absence of COC would
be reflected in COC abusers;

2. all COC abusers in their study had a different history of
drug use, and prior use of drugs could have affected the
results; and

3. the species difference between rats and humans.

Possibility of prediction of CPP scores by use
of the PLS-regression model

As described above, some metabolite concentrations were
significantly changed in urine or plasma in the drug-addicted
state, especially for MOR addiction. We further investigated
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Fig. 8 (a) One-component PLS-regression line of CPP scores and (b)
permutation test for plasma ofmorphine-addicted rats. (c) Two-component
PLS-regression line of CPP scores and (d) permutation test for plasma of
methamphetamine-addicted rats. (e) Two-component PLS-regression line

of CPP scores and (f) permutation test for urine of cocaine-addicted rats.
The y-intercept of the regression line in permutation graphs (b), (d), and
(f) shows a measure of the overfit; a near-zero slope of the line and a high
y-intercept value indicates insufficiency of the model
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the possibility that the degree of addiction, as represented by
CPP scores, can be predicted by PLS-regression. This is a trial
to assess the potential of the metabolomics approach to char-
acterize the state of drug addiction.

PLS-regression was performed with the significantly
changed metabolites in each sample as independent explana-
tory variables (X). The performance of the regression model
was not satisfactory for MA and COC addiction (Table 3). For
MOR addiction, however, performance was good for both
urine and plasma, and the model was further validated by
permutation tests [43], as shown in Fig. 8. Permutation test
results led to a one-component regression model (R2=0.950,
Q2=0.599, Fig. 8a) consisting of the four significantly-
changed metabolites in plasma which was acceptable as a
model for possible prediction of CPP scores in MOR addic-
tion. Although this model is not sufficient for practical use
without increasing sample size or performing further validation
with a new group (validation set), the result showed the
model’s potential to predict the degree of addiction from
the metabolic profile, implying future applicability of
metabolomics in drug addiction studies.

General overview and limitation of this study

MOR addiction induced changes in several metabolites in
urine and plasma. In comparison with results for MOR-
addicted rats, only slight changes in urine or plasma metabolic
profiles were observed for MA and COC-addicted rats. The
metabolic profile differences suggest that biological states
were different among MOR, MA, and COC addiction. Also,
the different metabolic profiles might be related to different
actions on the brain reward circuitry and the resulting adapta-
tion to chronic drug administration.

MOR inhibits GABAergic interneurons in the ventral teg-
mental area (VTA), and indirectly increases dopaminergic
transmission [6]. MOR also activates specific opioid receptors
(μ, δ, and κ) on nucleus accumbens (NAc) neurons [1, 6].

On the other hand, MA and COC only increase dopami-
nergic transmission in NAc, but their mechanisms of action
are slightly different; unlike COC, MA exerts multiple phar-
macological effects via various molecular processes [44].
MA causes neuronal storage vesicles in the cytoplasm to
release neurotransmitters to the synapse [45, 46]. In addition,
MA blocks the activity of monoamine transporters thereby
inhibiting monoamine reuptake [47]. MA also mildly in-
hibits the activity of monoamine oxidase [48]. In comparison
with MA’s somewhat complex mechanism of action, COC is
a potent blocker of plasma membrane transporters that reup-
take monoamines [49].

There is, however, a limitation to this study, and further
consideration is required. Urinary and/or blood plasma meta-
bolic profiling could not measure the direct contribution to the
central nervous system or peripheral regions. One of the

possible solutions to this problem may be to apply
metabolomics to the brain or cerebrospinal fluid at the future
study. In addition, to determine the specificity of the
significantly changed metabolites, it is imperative to
consider:

1. dose-dependent effects;
2. increasing the number of rats used for statistical analysis;

and
3. the results obtained when other addiction–producing

drugs are used.

In conclusion, we have demonstrated the possibility of
describing the different biological states in drug addiction by
use of metabolomics. In particular, urinary and blood plasma
metabolic profiles could enable detection of the slight disrup-
tion caused by drug addiction. The metabolomics approach
has the potential to predict the degree of drug addiction.
Results from this study indicate that metabolomics can be a
new approach to investigating drug addiction.
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