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Abstract Human exposure to xenobiotics is usually estimat-
ed by indirect methods. Biological monitoring has emerged
during the last decade to improve assessment of exposure.
However, biomonitoring is still an analytical challenge, be-
cause the amounts of sample available are often very small yet
analysis must be as thorough and sensitive as possible. The
purpose of this work was to develop an untargeted
“exposomics” approach by using ultra-high-performance liq-
uid chromatography coupled to high-resolution mass spec-
trometry (UHPLC–HRMS), which was applied to the charac-
terization of pesticide metabolites in urine from pregnant
women from a French epidemiological cohort. An upgradable
list of pesticides commonly used on different crops, with their
metabolites (more than 400 substances) was produced. Raw
MS data were then processed to extract signals from these

substances. Metabolites were identified by tandemmass spec-
trometry; putative identifications were validated by compari-
son with standards and metabolites generated by experiments
on animals. Finally, signals of identified compounds were
statistically analyzed by use of multivariate methods. This
enabled discrimination of exposure groups, defined by indi-
rect methods, on the basis of four metabolites from two
fungicides (azoxystrobin, fenpropimorph) used in cereal pro-
duction. This original approach applied to pesticide exposure
can be extended to a variety of contaminant families for
upstream evaluation of exposure from food and the
environment.
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Introduction

The total amount of active pesticide ingredients used world-
wide was estimated to be approximately 2.4 million tons in
both 2006 and 2007 [1]. In France, the main European
consumer of pesticides, total consumption of these active
ingredients was estimated to be approximately 62 thousand
tons in the period 2010–2011 [2]. Use of such amounts of
industrial chemical pesticides raises the question about their
possible effect on health, not only to workers who apply the
chemicals but also to the residents of the areas in which they
are used and, more broadly speaking, the general population.
Pesticides can have adverse health effects on humans, in-
cluding endocrine and neurological disorders [3–6], repro-
ductive and developmental toxicity [7–10], and cancers
[11–14]. However, assessment of human exposure to pesti-
cides still limits of the quality of the evidence that observa-
tional studies can provide and the risk-assessment process.
More refined techniques are needed to provide solid evi-
dence of exposure.
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In the general population, levels of exposure to pesticides
in the diet are usually estimated by combining analysis of the
shopping basket with data on the concentration of pesticides
in food (obtained via monitoring programs). However, for
most consumers sources of exposure to pesticides are not
restricted to contaminated food or drink only. The population
may come into contact with pesticides as a result of their
occupation, domestic use, or by being in proximity to rural
areas where pesticides are applied. A complete appraisal of
exposure of the general population to different sources of
pesticide residues in France was published by the French
Agency for Food, Environmental, and Occupational Health
and Safety (ANSES) in 2010 [15]. Because of the different
routes by which exposure may occur, measurement of the
parent compound and/or its metabolites in an accessible
biological sample, for example urine, is the method of choice
for evaluation of total exposure [16]. During the last decade,
biological monitoring in general [17], and of pesticides in
particular, has been developed on the basis of analysis of
blood (or serum, or plasma), milk, saliva, and urine [18–22].
Among these samples, urine has frequently been used for the
determination of pesticides because it is collected non-
invasively and generally contains non-persistent pesticides
or their corresponding metabolites in higher concentrations
than in other biological samples [23–25]. In addition, moni-
toring of pesticide metabolites in urine has been shown to be
appropriate for farm workers [25]. Nevertheless, most pu-
blished data obtained from analysis of urine specimens have
dealt with organophosphorus, carbamate, or pyrethroid insec-
ticides and triazine and chloroacetamide herbicides [15, 26].

Several analytical approaches are available for multi-
residue analysis. Methods for biomonitoring of pesticides
have recently been reviewed [27–29]; more recently,
methods for the screening of veterinary drugs have also been
reviewed [30]. Such methods can be split into two main
strategies: targeted or untargeted analysis. The most sensitive
way to detect a compound is to design the most specific
analytical method possible, from sample preparation to de-
tection. This targeted approach is well adapted to the
biomonitoring of known and hazardous compounds, for
which accurate measurements of biological concentrations
are required, to place results in e.g. a public health risk
context. In this way, exposure to chlorpyrifos has been
characterized by monitoring specific metabolites by use of
mass spectrometry [31], exposure to permethrin by enzyme-
linked immunosorbent assay [32], or exposure to
imidacloprid by fluorescence polarization immunoassay
[33]. The targeted approach could be extended, by use of
mass spectrometry, to monitoring of several members of the
same class of contaminants, for example pesticides [34].
Mass spectrometry coupled to liquid chromatography has
become the method of choice for screening and quantifica-
tion of molecules and their metabolites in biological matrices

[35], particularly use of triple-quadrupole mass spectrome-
ters operating in multiple reaction monitoring mode (MRM).
Similarly, information-dependent acquisition (IDA) enables
screening for up to 700 compounds by use of Q-trap-type
instruments [36]. Survey scans are conducted by MRM for
the 700 compounds, which trigger a product ion scan as
dependant scan. Compound identification is achieved by
use of library search on product-ion spectra.

Nevertheless, these targeted approaches can be applied
only to known compounds for which standard compounds
are available to enable setup of the decomposition reactions
to be monitored by triple-quadrupole mass spectrometry. In
2008 the database of known pharmacologically and toxico-
logically relevant compounds (PTRC) included approxi-
mately 50,500 compounds [37]. Although this database is
extensive, it is still not exhaustive (in particular for emerging
contaminants, novel metabolites, or illegal substances), and
only few reference compounds are commercially available.
To meet the challenge of multi-exposure to complex conta-
minant mixtures, alternative untargeted or semi-targeted an-
alytical approaches are required. When dealing with urine,
these approaches must ensure detection of, mostly, polar
metabolites, and electrospray ionization is usually the me-
thod of choice for ionization. To achieve detection of the
maximum number of compounds with a variety of physico-
chemical properties, use of both positive and negative ioni-
zation modes is also usually required. Replacing MRM sur-
vey scans of the targeted approach by a full scan performed
by high-resolution mass spectrometry (HRMS) is a promis-
ing alternative enabling detection of substances whose num-
ber is limited only by the size of the database used [38–40].
The method is simple to set up and raw HRMS data are
generated independently of the list of compounds screened,
which enables retrospective study of the data without the
need to re-analyze samples. For these reasons, although less
sensitive than MRM mode, use of high-resolution mass
spectrometry with time of flight (TOF) or Orbitrap mass
analyzers for screening and biomonitoring applications [41]
is becoming more popular.

In this context, this work was performed to develop an
analytical method enabling linking of (possibly unknown)
end-products of pesticide metabolism with exposure to com-
plex contaminant groups, for example pesticides, which
could be used for screening and biomonitoring. The
“exposomics” procedure proposed herein combines an
untargeted analytical approach using HRMS with an
“omics” type of data mining and in vivo generation of
metabolites for structure confirmation. As a first step, urine
samples were analyzed by high-resolution mass spectrome-
try combined with ultra-high-performance liquid chromato-
graphy to generate a dataset which can be queried retrospec-
tively. Post-analysis raw data mining was then conducted to
extract signals fitting a list of metabolites of interest. These
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signals were then analyzed by multivariate statistical
methods. For differently exposed populations the statistical
model generated from identified compounds enabled disco-
very of metabolites (and therefore pesticides) enabling dis-
crimination of the samples. This approach was developed
and applied as proof of concept to study environmental
exposure to pesticides and was based on the analysis of urine
samples from pregnant women from the PELAGIE cohort
recruited in an agricultural region of Brittany in France.

Materials and methods

Chemicals

Methanol and acetic acid were analytical grade and
were purchased from Scharlau (Barcelona, Spain).
Ultrapure water from a Milli-Q system (Millipore,
Saint Quentin en Yvelines, France) was used for mobile
phases. All standard pesticides (fenitrothion, fenpropimorph,
azoxystrobin, procymidone, quizalofop-p-ethyl ,
chlorpropham, carbofuran, ethephon, trifluralin, dichlorvos,
malathion, and cymoxanil) were purchased from Sigma–
Aldrich Chemie (Saint-Quentin Fallavier, France) and were
Pestanal grade.

Population and biological samples

Samples were obtained from members of the PELAGIE
cohort of 3,421 women in early pregnancy from Brittany
(France) enrolled, by gynecologists, from the general popu-
lation between 2002 and 2006. The objective of the
PELAGIE study is to assess the consequences of environ-
mental exposure (solvents, persistent organic pollutants, pes-
ticides…) on pregnancy, birth outcome, and infant develop-
ment. This cohort is described in detail elsewhere [42]. Each
woman in the cohort had to collect the first urine sample of
the morning, transfer this to vials containing nitric acid to
avoid bacterial degradation, and mail the samples to the
study laboratory in a pre-stamped package at ambient tem-
perature, with routine delivery taking, on average, from 1 to
3 days. On receipt, the 10-mL samples were stored at −20 °C
until analysis. They were available for 95 % of the cohort. At
the same time, data on social and demographic features, diet,
and lifestyle were retrieved by questionnaire.

This exploratory study was restricted to women with an
available urinary sample collected in 2004, to achieve similar
likelihood of pesticide exposure on the basis of agricultural
use and to avoid potential variability as a result of storage of
biological samples for different times. Ten samples were
randomly selected from among urban participants
(>200,000 inhabitants), and ten samples from within each
of three other groups discriminated by land surface (%)

devoted to cereals crops in the municipality of residence.
Thus, four groups of 10 samples were available for this
study. The proportion of land devoted to cereal crops within
each municipality was estimated from the French National
Agricultural Census [43]. Exposure groups were defined as
“urban”, “weak exposure” (less than 17 % of land devoted to
cultivation of cereals), “medium exposure” (between 17 and
25 % of land devoted to cultivation of cereals), and
“high exposure” (more than 25 % of land devoted to
cultivation of cereals).

Animal experiment

To corroborate identification of detected metabolites, a mix-
ture of 200 μg of each of the seven pesticides (fenitrothion,
fenpropimorph, azoxystrobin, procymidone, quizalofop-p-
ethyl, chlorpropham, and carbofuran) dissolved in corn oil
was administered by gavage to a female Wistar rat (Charles
River) weighing 250 g. Immediately after treatment, the
animal was placed in a metabolic cage and allowed ad
libitum access to water and to a standard commercial diet
(SAFE, Augy, France). Urine was collected 24, 48, and 72 h
after exposure and stored at −20 °C until analysis. Finally,
urine samples were analyzed under the same conditions as
for human urine samples.

Liquid chromatography–mass spectrometry

Analysis was by ultra-high-performance liquid chromatogra-
phy combined with high-resolution mass spectrometry
(UHPLC–HRMS). UHPLC was performed with a
RSLC3000 (Dionex–Thermo Scientific, Les Ulis, France).
The chromatographic pump was operated at a flow rate of
0.25 mL min−1. The mobile phase was a gradient prepared
from 95:5:0.1 (v/v) H2O–CH3OH–CH3CO2H (component A)
and 100:0.1 (v/v) CH3OH–CH3CO2H (component B). The
gradient program was: 0 min, 0 % B; from 15 to 20 min,
100 % B, from 21 to 31 min, 0 % B. Chromatographic
separation was achieved on a Hypersil Gold C18 column
(100 mm×2.1 mm, 1.9-μm particles) (Thermo Scientific,
Les Ulis, France) maintained at 35 °C.

Urine samples were diluted with an equal volume of
mobile phase component A before analysis. The injection
volume was 5 μL. Eluted compounds were detected by use
of an LTQ-Orbitrap XL mass spectrometer (Thermo
Scientific) equipped with an electrospray ionization source.
Ionization settings used in negative mode were: spray poten-
tial −3 kV, sheath gas (N2) flow rate 35 arbitrary units (au),
auxiliary gas (N2) flow rate 0 au, and capillary temperature
320 °C. In positive ionization mode the settings were: spray
potential 3.6 kV, sheath gas flow rate 53 au, auxiliary gas
flow rate 27 au, and capillary temperature 320 °C. High-
resolution mass spectra were acquired at a resolution of

Untargeted profiling of pesticide metabolites by LC–HRMS 1151



30,000 from m/z 60 to 800. Identification was performed by
tandem mass spectrometry (MSn) using the ion-trap mass
analyzer of the LTQ-Orbitrap mass spectrometer.

Data processing and statistical treatment

Signals corresponding to ions of potential pesticides and
their metabolites were extracted from raw data by use of
MetWorks 1.3 (Thermo Scientific), on the basis of the
HRMS signal of the exact mass of each [M + H]+ or [M −
H]− ion, in accordance with a mass measurement error of
±5 ppm. After their detection, structural characterization of
potential metabolites was achieved by processing MSn spec-
tra with Xcalibur QualBrowser (Thermo Scientific).
UHPLC–HRMS signals of identified metabolites were also
measured with Xcalibur QuanBrowser, on the basis of chro-
matographic peak area normalized to the signal from an
internal standard. Normalized signals were then analyzed
by multivariate methods using SIMCA-P software (V12;
Umetrics, Umea, Sweden). Principal-components analysis
(PCA) was first used to detect intrinsic clusters or outliers.
Partial least squares–discriminant analysis (PLS–DA) was
then used to model the relationship between exposure con-
ditions (“urban”, “weak exposure”, “medium exposure”, and
“high exposure”) and UHPLC–HRMS data. PLS–DA is a
supervised method which maximizes separation between
groups. Data were preprocessed by use of orthogonal signal
correction (OSC), with exposure as a correction factor. OSC
filtering [44] was used to remove confounding variation
(variation not linked to, e.g., physiological, experimental,
or instrumental variation). Proportion of explained variance
(R2) and predictive ability (Q2) were used to assess the
robustness of PLS-DA models. Cross-validat ion
(sevenfold) was used to determine the number of latent vari-
ables to include in the PLS-DAmodel and to calculate the Q2

value. A permutation test (200 iterations) was used to eva-
luate the validity of models. The variable importance in the
projection (VIP), a global measure of the importance of each
metabolite in the PLS-DA model, and the Kruskal–Wallis
test (threshold of significance=0.05), a non-parametric ver-
sion of analysis of variance, were finally used to confirm the
source of metabolites.

Results and discussion

Set-up of the untargeted data-acquisition method

The procedure used in the “exposomics” approach deve-
loped in this work is shown schematically in Fig. 1. First,
samples were analyzed by use of an untargeted mass spec-
trometric technique. In a second step, a list of compounds to
be sought was edited, and screening of raw data for these was

performed on the basis of exact mass matching. Detected
compounds were then identified by MS–MS and/or MSn

experiments, and the corresponding chromatographic peaks
(which are representative of their concentration) were inte-
grated. These resulting data were statistically analyzed to
classify samples in accordance with collected exposure data.
If necessary, the list of monitored compounds can be
upgraded, and the “exposomics” procedure can be performed
again, without the need for re-injection of samples.

For untargeted data acquisition, a typical metabolomics
UHPLC–HRMS method [45] was applied. Liquid chroma-
tography was used for separation, because it is highly suit-
able for analysis of metabolites in urine. The efficiency of the
chromatographic separation was improved by use of ultra-
high-performance liquid chromatography, and by favoring
chromatographic resolution rather than high-throughput
analysis. By using a C18-based stationary phase and water–
methanol gradient elution, this UHPLC method enabled the
separation and detection of a large number of metabolites
with different physicochemical properties, for example me-
tabolites of different classes of pesticide. To achieve maxi-
mum metabolite coverage, this method of separation was
combined with high-resolution mass spectrometry with
electrospray ionization in the positive and negative modes.
Classical electrospray ionization conditions were used, and
mass spectra were acquired at high resolution to obtain
accurate mass measurements and therefore gain access to a
restricted set of proposed chemical formulas for the ions
detected.

The purpose of this data acquisition was to compare
different samples on the basis of signals representative
of the concentration of the corresponding metabolites in
urine, by using statistical analysis of the generated
datasets. Taking into account that differences between
samples were expected to be very small, the repeatabil-
ity of data acquisition had to be carefully checked. To
check this, six blank samples (mobile phase component

Fig. 1 The “exposomics” procedure
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A) were analyzed within an analytical sequence of 40
urine samples, to confirm the absence of carry-over
effects (results not shown). Second, internal standards
were added to samples to normalize the signals of de-
tected metabolites, reducing the analytical variability.
Pesticides not detected in any of the urine samples from
preliminary UHPLC–HRMS analysis were chosen as in-
ternal standards. On this basis, ethephon was chosen as
internal standard for analysis performed in negative ESI
mode and trifluralin, dichlorvos, and malathion for
analysis in positive ESI mode. Finally, a quality-control
(QC) sample, prepared by combining all the urine
samples, was analyzed in replicate (n=6) during the
analytical sequence. From the extracted ion chromato-
gram of a randomly selected ion in the QC results, no
modification of chromatographic performances (shifts
and variability of retention times (RT); and no significant
variations of detector response (decrease and variability
of the absolute signal) were observed during analytical
sequences performed in both negative and positive-
ionization modes. In the negative ionization mode, the
m/z 283.0825 ion (within the m/z range of expected
pesticide metabolites) observed at RT=8.4 min (almost
in the middle of the chromatogram) was used for
checking chromatographic and mass spectrometric per-
formance stability. No changes of the RT were observed
during the analytical sequence; the relative standard de-
viation (RSD) of RT was 0.3 %. The RSD of the corre-
sponding chromatographic peak area was 9.9 %, with no
significant downward trend of the signal along the se-
quence. The same results were obtained in positive-
ionization mode on the basis of the m/z 257.1492 ion
eluted at RT 9.1 min (RSD of RT=0.1 % and RSD of
peak area=2.9 %).

Generation of the pesticide metabolite list

The objective of this work was to develop an “exposomics”
approach able to discriminate individuals according to their
living environment, focusing in particular on their environ-
mental exposure to pesticides. Thus, the pesticides and
metabolites monitored corresponded to pesticides used
in local agricultural practice at the time the urine sam-
ples were collected (ca 2004). Pesticides were selected
by using data from the results of surveys of Brittany,
France, between 2001 and 2006, for crops which in-
cluded corn, wheat, colza, peas, potatoes, and fresh
vegetables (plus strawberries and melons) [46]; and
recommendations of the French agricultural chamber
and phytosanitary index published by ACTA [47].

From all these data, an initial list of 47 pesticides most
likely to have been used in this area during the period of
urine collection was produced (Table 1).

Data available on the metabolism of these 47 pesticides
were then collected from the International Program on
Chemical Safety (IPCS) database [48], the European Food
Safety Authority report on pesticide residues in food [49],
the Pesticide Properties Database from the University of
Hertfordshire [50], and from “Metabolic Pathways of
Agrochemicals” [51, 52]. Further information from the pub-
lished scientific literature was added when available.
Supplementary theoretical phase II metabolites of the al-
ready listed phase I metabolites were also added to the
resulting metabolite list. This resulted in several metabolites
considered to be relevant to mining of raw data for one given
pesticide, as indicated in Table 1. Because of the structural
similarity of some pesticides, some of their metabolites
could be identical. For example, the organophosphorus
compounds dichlorvos, malathion, and chlorpyrifos are
all metabolized into (among others) dimethyldithiophosphate
or dimethylthiophosphate. Thus, these metabolites may be
regarded as biomarkers of exposure to organophosphorus in-
secticides in general but not to one specific compound [53]. In
most cases evidence of the presence of pesticides was
based on specific metabolites, e.g. dichlorvos glucuro-
nide or desmethyl-dichlorvos for dichlorvos. However,
the situation is more complex for some pesticides. For
example, of 18 known metabolites of azinphos methyl,
no specific metabolite could be used to monitor this
pesticide (Table 1). Similarly, the same metabolites were
monitored for such compounds as propachlor and
dimethachlor. Therefore, for these compounds, only detec-
tion of the parent molecule would enable their specific
identification. Despite these problems, all metabolites, in-
cluding those with several possible origins, were monitored to
assess exposure to at least one of the parent molecules listed.
Finally, a list of 425 compounds (i.e. 378 metabolites and 47
parent molecules) was used when searching raw HRMS data.

Detection and identification of urinary pesticide metabolites

From the raw data acquired in an untargeted manner, com-
pounds were screened on the basis of the theoretical mass of
their quasi-molecular [M + H]+ or [M − H]− ions, with mass
measurement precision set at ±5 ppm. The theoretical exact
masses of screened pesticides and metabolites were automa-
tically calculated from their raw formula by using
MetWorks. Signal detection and treatment were also
performed by using MetWorks to study all 47 parent mole-
cules. No signal-to-noise threshold was set, because, owing
to the signal cut-off of the Fourier transform used to process
the transient signal, the Orbitrap mass analyzer does not
generate a noise level. To overcome this problem, an abso-
lute signal threshold was set at 5×103 during at least five
consecutive HRMS scans for ion selection. Thus, from the
previously described list, 33 signals were detected in data
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Table 1 The pesticides monitored and the corresponding number of metabolites screened

Common Name Chemical group Primary use Screened metabolites

Acephate Organophosphorus Insecticide 17

Anthraquinone Quinone Fungicide 5

Azinphos-methyl Organophosphorus Insecticide 18

Azoxystrobin Strobin Fungicide 26

Benfuracarb Carbamate Insecticide 9

Carbendazim Carbamate Fungicide 6

Carbofuran Carbamate Insecticide 10 (plus nine in common with benfuracarb)

Carbosulfan Carbamate Insecticide 2 (plus nine in common with benfuracarb and ten
in common with carbofuran)

Chlormequat Quaternary ammonium Growth regulator 5

Chlorothalonil Substituted benzene Fungicide 0

Chlorpropham Carbamate Herbicide 9

Chlorpyrifos Organophosphorus Insecticide 3 (plus 18 in common with azinphos-methyl)

Clomazone Unclassified Herbicide 6

Cymoxanil Unclassified Fungicide 3

Cypermethrin Pyrethroid Insecticide 3 (plus seven in common with lambda-cyhalothrin)

Deltamethrin Pyrethroid Insecticide 3 (plus seven in common with lambda-cyhalothrin)

Dichlorvos Organophosphorus Insecticide 5 (plus 18 in common with azinphos-methyl)

Dimethachlor Acetanilide Herbicide 4

Epoxiconazole Azole Fungicide 9

Ethephon Organophosphorus Growth regulator 5

Fenitrothion Organophosphorus Insecticide 10

Fenpropimorph Morpholine Fungicide 12

Glyphosate Organophosphonate Herbicide 5

Imidacloprid Neonicotinoid Insecticide 19

Iprodione Dicarboximide Fungicide 6

Kresoxim-methyl Strobin Fungicide 6

Lambda-cyhalothrin Pyrethroid Insecticide 7

Linuron Urea Herbicide 13

Malathion Organophosphorus Insecticide 10 (plus 18 in common with azinphos-methyl)

Metazachlor Acetanilide Herbicide 6

Metconazole Azole Fungicide 5

Methidathion Organophosphorus Insecticide 5 (plus 18 in common with azinphos-methyl)

Naled Organophosphorus Insecticide 8 (plus 18 in common with azinphos-methyl and
five in common with dichlorvos)

Napropamide Amide Herbicide 12

Omethoate Organophosphorus Insecticide 2 (plus 18 in common with azinphos-methyl)

Oxydemeton-methyl Organophosphorus Insecticide 5

Paclobutrazol Azole Growth regulator 8

Pencycuron Urea Fungicide 13 (plus three in common with cymoxanil)

Permethrin Pyrethroid Insecticide 0 (plus seven in common with lambda-cyhalothrin
and three in common with cypermethrin)

Phosalone Organophosphorus Insecticide 3 (plus 18 in common with azinphos-methyl)

Procymidone Dicarboximide Fungicide 19

Propachlor Acetanilide Herbicide 0 (plus four in common with dimethachlor)

Pirimicarb Carbamate Insecticide 10

Quizalofop-p-ethyl Aryloxyphenoxy propionic acid Herbicide 5

Tebuconazole Azole Fungicide 26

Thiophanate-methyl Carbamate Fungicide 9

Trifluralin Dinitroaniline Herbicide 6
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acquired in the positive-ionization mode (128 signals in the
negative-ionization mode) which fitted the exact masses of
the listed pesticide metabolites (i.e. detection of an ion
with an accurate mass in agreement with the theoretical
mass of one of the screened metabolites). Several factors
can affect efficiency of electrospray ionization, including
the physicochemical properties of the analytes (e.g. pKa).
Consequently, detection of all the metabolites listed (if
present) cannot be guaranteed in such an untargeted
approach. At this stage, use of this method for quantita-
tive purposes is precluded, because we deal mostly with
compounds for which no reference standard is available.
At best, only semi-quantitative data can be provided.
Nevertheless, seeking a large set of metabolites increases
the likelihood of detecting one of them under the expe-
rimental conditions used in this work.

When a potential metabolite was detected, structure was
confirmed by a three-step process. The first step consisted in
analyzing the isotopic pattern of the detected ion. This en-
abled confirmation (or not) of the possible identity of me-
tabolites, in particular for sulfated, chlorinated, or bromi-
nated compounds, which have characteristic isotopic pat-
terns. An example of this process is illustrated in Fig. 2,
which depicts structural characterization of an azoxystrobin
metabolite detected in the negative ion dataset at a retention
time of 6.6 min (Fig. 2a). The m/z ratio measured for the
suspected metabolite of azoxystrobin (m/z 287.0232, Fig. 2b)
corresponded to the chemical formula C11H11O7S with a
measurement error of 0.4 ppm (theoretically calculated m/z
ratio=287.0231; Fig. 2c). This chemical formula was in

agreement with the deprotonated form of methyl-2-(2-
hydroxyphenyl)-3-methoxyacrylate sulfate, one of the 26
screened metabolites of azoxystrobin (Table 1). Moreover,
the isotopic pattern of this ion was in good agreement with the
chemical formula C11H11O7S, with an [M + 2] ion corre-
sponding to the 34S isotope (Fig. 2) measured atm/z 289.0186
(theoretical m/z 289.0189, Δ=−1.0 ppm). It should also be
noted that the resolving power (R=30,000) used in this
work enabled separation of the 12C11

1H11
16O7

34S and
13C2

12C9
1H11

16O7
32S ions at [M + 2].

When the exact mass and isotopic pattern were in agree-
ment with the chemical formula of the hypothesized meta-
bolite, the second step of the identification process consisted
in conducting UHPLC–HRMSn experiments on the targeted
metabolite, using the linear ion trap of the LTQ-Orbitrap
hybrid mass spectrometer. QC samples were used for this
procedure. Phase II conjugated metabolites (i.e. glucuronide,
sulfate, thiol, glutathione, etc.) could be easily identified by
observation of characteristic MS2 fragmentation patterns. In
this way, several glucuronide and sulfate conjugates could be
identified on the basis of the characteristic losses of 176 u
(C6H8O6) and 80 u (SO3), respectively. The structures of
phase II metabolites were also confirmed by MSn experi-
ments. As for metabolites produced by Phase I enzymes,
identifications were either invalidated when observed frag-
ment ions were inconsistent with the hypothesized structure
(e.g. observation of loss of NH3 with a hypothesized struc-
ture bearing no nitrogen atom) or were confirmed when
observed fragment ions were in agreement with the putative
metabolite structure. As an example, the MS–MS spectrum
of the suspected metabolite of azoxystrobin detected at
RT=6.6 min is reported in Fig. 3a. It contains a major
fragment ion corresponding to the characteristic loss of
SO3 at m/z 207.0663 (Δ=0.04 ppm), consistent with the
proposed sulfate conjugate structure of this metabolite. The
MS3 spectrum obtained from the m/z 207 fragment ion,
reported in Fig. 3b, reveals the formation of two frag-
ments ions, also in agreement with the structure of this
metabolite (loss of CO2, m/z 163.0767, Δ=1.4 ppm,
and loss of •C4H5O2, m/z 122.0376, Δ=2.1 ppm). In
accordance with the metabolomics standard initiative
(MSI) [54], metabolites identified at this stage were
labeled as putatively characterized (level 3). After these
UHPLC–HRMSn experiments, 24 metabolites were pu-
tatively characterized among the 128 compounds detected
in the raw data generated in the negative-ionization mode.
Only five compounds were putatively characterized un-
der positive-ionization conditions.

The final step of the identification process consisted in
validating putative characterizations by comparison with spec-
tral data obtained from authentic standards. Unfortunately,
metabolites of xenobiotics are rarely commercially available,
and none of the metabolites putatively characterized in this

Fig. 2 Extracted ion chromatogram of the suspected methyl-2-(2-
hydroxyphenyl)-3-methoxyacrylate sulfate ion (azoxystrobin) in urine
samples (a), accurate mass measurement and isotopic pattern observed at
RT=6.6 min (b), and theoretical isotopic pattern of [C11H12O7SH]

− (c)
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study was available. Moreover, when parent molecules were
available, they were not necessarily ionized with the same
ionization mode as their metabolites, thus preventing validation
of structures by using similarities of substructure spectra. The
only exception was fenitrothion which was fragmented during
the negative ionization process into 3-methyl-4-nitrophenol.
This latter underwent loss of NO (−30 u) whereas the putative
3-methyl-4-nitrophenol ion generated from the suspected me-
tabolite 3-methyl-4-nitrophenol sulfate underwent loss of 44 u.
This information invalidated our hypothesized structure for this
metabolite detected in the negative mode. For unchanged pes-
ticides detected in samples, for example cymoxanil and
carbofuran, the availability of the standard reference com-
pounds enabled validation or invalidation of hypothetical iden-
tities. The suspected detection of cymoxanil in the positive
mode (Table 2) was invalidated, because the standard com-
pound did not elute at the same retention time (RTStd=8.6 min,
RTSample=2.4 min). In contrast, identification of carbofuran in
the positive mode could be validated (level 1 [54]) by analysis
of the authentic standard, which resulted in the same retention
time (10.1 min), exact mass, isotopic pattern, and MS2 spec-
trum as those of the detected urinary metabolite (results not
shown).

Confirmation of metabolite structure
by use of in-vivo-generated metabolites

In the absence of commercially available compounds, a
small animal experiment was conducted to produce the hy-
pothesized metabolites in vivo by administration of the cor-
responding parent compounds. After pesticide administra-
tion, analysis of rat urine under the same conditions as for
human urine led to the detection of several metabolites with
the same RT and m/z values, the same isotopic pattern, and
the MS2 and MS3 spectra as detected for human metabolites.
Returning to the example of methyl-2-(2-hydroxyphenyl)-3-
methoxyacrylate sulfate detected in human urine as a puta-
tive metabolite of azoxystrobin, the MS2 and MS3 spectra
generated from the human urinary metabolite are displayed
in Fig. 3a and b, respectively, whereas the MS2 and MS3

spectra of the rat urinary metabolite detected at the same RT
are presented in Fig. 3c and d. The MS and MSn spectra of
these two metabolites could be superimposed, enabling iden-
tification (level 1) of this metabolite in human urine.

Of the 24 metabolites putatively characterized by negative
ESI analysis of human urine, 20 were successfully identified
(level 1) by comparison with rat urine metabolites (Table 2).

Fig. 3 MS–MS spectra of the suspected methyl-2-(2-hydroxyphenyl)-
3-methoxyacrylate sulfate (azoxystrobin) ion obtained at RT=6.6 min
in (a) human urine samples and (c) a rat urine sample, and MS3 spectra

of m/z 207 obtained at RT=6.6 min in (b) human urine samples and (d)
a rat urine sample
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One metabolite was invalidated (3-methyl-4-nitrophenol sul-
fate), and three metabolites remained as putatively charac-
terized (level 3, [54]) because they were not detected in rat
urine (possibly because of different metabolism in humans
and rodents). By use of positive ionization, only five com-
pounds were putatively characterized (Table 2). As previ-
ously stated, the analysis of the authentic standard
invalidated the presence of cymoxanil, whereas carbofuran
was confirmed (level 1). 1,2-Dimethylcyclopropane-1,2-di-
carboxylic acid (Table 2) was detected at the same RT as in
the negative ionization mode experiment, enabling its vali-
dation. Hippuric acid and 2,6-dimethylaniline were detected
and identified in rat urine and can be attributed to
metabolism of pencycuron and metazachlor, respective-
ly. However, these compounds can also originate from
exogenous compounds other than pesticides or even

from endogenous substances, and thus were not valida-
ted as specific pesticide metabolites. Finally, only two com-
pounds (i.e. carbofuran and 1,2-dimethylcyclopropane-1,2-
dicarboxylic acid) were identified in the positive ionization
dataset. Because both corresponded to compounds also de-
tected (with better sensitivity) by use of negative ESI, relative
quantification of metabolites was performed considering only
the negative ionization dataset, on the basis of 23 metabolites
reported in Table 2, representing 23 variables for statistical
analysis.

Statistical data analysis

Semi-quantitative data (normalized peak areas for each of the
23 variables measured in urine samples from the 40 indivi-
duals) were first analyzed by use of PCA. This analysis

Table 2 Compounds identified in human urine

Name Ionization mode Identification level [54] Pesticide

Methyl-2-(2-hydroxyphenyl)-3-methoxyacrylate sulfate ESI− 1 Azoxystrobin

Methyl-2-(2-hydroxyphenyl)-3-methoxyacrylate glucuronide (1)a ESI− 1 Azoxystrobin

Methyl-2-(2-hydroxyphenyl)-3-methoxyacrylate glucuronide (2)a ESI− 1 Azoxystrobin

2-Methyl-2-phenylpropanoic acid ESI− 1 Fenpropimorph

2-Methyl-2-phenylpropanoic acid sulfate ESI− 1 Fenpropimorph

2-Methyl-2-phenylpropanoic acid glucuronide ESI− 1 Fenpropimorph

Hydroxy-2-methyl-2-phenylpropanoic acid (1)a ESI− 3 Fenpropimorph

Hydroxy-2-methyl-2-phenylpropanoic acid (2)a ESI− 3 Fenpropimorph

2-Methyl-2-[4-(2-carboxypropyl)phenyl)]propanoic acid ESI− 1 Fenpropimorph

2-Methyl-2-[4-(2-carboxypropyl)phenyl)]propanoic acid sulfate ESI− 1 Fenpropimorph

2-Methyl-2-[4-(2-carboxypropyl)phenyl)]propanoic acid glucuronide ESI− 1 Fenpropimorph

2-Methyl-2-{4-[2-methyl-3-(cis-2-hydroxymethyl-6-methylmorpholin-
4-yl]propyl)phenyl}propanoic acid glucuronide

ESI− 3 Fenpropimorph

3-Methyl-4-nitrophenol sulfate ESI− –
b Fenitrothion

1,2-Dimethylcyclopropane-1,2-dicarboxylic acid ESI−, ESI+ 1 Procymidone

2-(4-Hydroxyphenoxy)propanoic acid ESI− 1 Quizalofop-p-ethyl

2-(4-Hydroxyphenoxy)propanoic acid glucuronide ESI− 1 Quizalofop-p-ethyl

2-(4-Hydroxyphenoxy)propanoic acid sulfate (1)a ESI− 1 Quizalofop-p-ethyl

2-(4-Hydroxyphenoxy)propanoic acid sulfate (2)a ESI− 1 Quizalofop-p-ethyl

Propan-2-yl N-(3-chloro-4-hydroxyphenyl)carbamate sulfate ESI− 1 Chlorpropham

Propan-2-yl N-(3-chloro-4-hydroxyphenyl)carbamate glucuronide ESI− 1 Chlorpropham

Carbofuran ESI+ 1 Carbofuran

3,3-Dimethyl-2,3-dihydro-1-benzofuran-7-ol sulfate ESI− 1 Carbofuran

3,3-Dimethyl-2,3-dihydro-1-benzofuran-7-ol glucuronide ESI− 1 Carbofuran

7-Hydroxy-2,2-dimethyl-1-benzofuran-3(2H)-one ESI− 1 Carbofuran

7-Hydroxy-2,2-dimethyl-1-benzofuran-3(2H)-one glucuronide ESI− 1 Carbofuran

Cymoxanil ESI+ –b Cymoxanil

Hippuric acid ESI+ 3c Pencycuron

2,6-Dimethylaniline ESI+ 3c Metazalachlor

aE or Z
b Invalidated by comparison with the standard
c Not included in the statistical analysis because of the several possible origins of these compounds
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revealed neither intrinsic cluster nor outlier individual (results
not shown). PLS-DAwas then used to model the relationship
between exposure conditions and spectral data. In a first at-
tempt, the constructed model was unable to separate the “ur-
ban” and “low exposure” groups. These two groups were then
merged and a new model was constructed from three defined
groups: “urban + low exposure”, “medium exposure”, and
“high exposure”. The resulting model revealed two compo-
nents explaining 51.9 % of the variation (R2) and with a
predictive capacity (Q2) of 0.359. The model was validated
by use of a permutation test (results not shown). The score-plot
obtained from the PLS-DA analysis, presented in Fig. 4, en-
ables separation of the “urban + low exposure” group from the
“medium exposure” + “high exposure” groups along the first
axis, and between the “medium exposure” and “high expo-
sure” groups along the second axis. Discriminatingmetabolites
are reported in Table 3, with their variation trends between

groups. Eight metabolites were revealed to be significantly
different among groups, with a VIP value >1.0 and a
Kruskal–Wallis test p-value <0.05 (Table 3). Among these
metabolites, 2-(4-hydroxyphenoxy)propanoic acid sulfate con-
tributed to separation of the three groups (p-value <0.05) but
did not enable significant separation of the groups two by two.
For the seven other metabolites, a significant increase (+) of
their signal and, therefore, of their urinary concentration,
resulted from the exposure conditions (Table 3). For methyl-
2-(2-hydroxyphenyl)-3-methoxyacrylate sulfate, the E and Z
isomers of the glucuronide metabolites of methyl-2-(2-
hydroxyphenyl)-3-methoxyacrylate, and 2-methyl-2-
phenylpropanoic acid the p-value was <10−4, indicating
that these four metabolites made strong contributions to
discrimination between the groups. In contrast, the p-
values of the four other metabolites were >3×10−3. The
concentration variations of the four most significant

Fig. 4 Two-dimensional PLS-DA score plot of human urine samples for “urban + low exposure” (n=20), “medium exposure” (n=10), and “high
exposure” (n=10) (R2Y=51.9 % and Q2=0.359)

Table 3 Variation of signals as a result of exposure

Metabolite p-value (Urban + low)/medium (Urban + low)/high Medium/high

Methyl-2-(2-hydroxyphenyl)-3-methoxyacrylate sulfate 6.5×10−6 + + n.s.

2-Methyl-2-phenylpropanoic acid 2.2×10−5 + + n.s.

Methyl-2-(2-hydroxyphenyl)-3-methoxyacrylate glucuronide (1)a 9.6×10−5 + + n.s.

Methyl-2-(2-hydroxyphenyl)-3-methoxyacrylate glucuronide (2)a 6.3×10−5 + + n.s.

3,3-Dimethyl-2,3-dihydro-1-benzofuran-7-ol sulfate 0.0197 n.s. + n.s.

3,3-Dimethyl-2,3-dihydro-1-benzofuran-7-ol glucuronide 0.0409 + n.s. n.s.

7-Hydroxy-2,2-dimethyl-1-benzofuran-3(2H)-one glucuronide 0.0033 n.s. + +

2-(4-Hydroxyphenoxy)propanoic acid sulfate (2)a 0.0404 n.s. n.s. n.s.

aE or Z

+, increase in the signal

n.s., not significant
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metabolites according to exposure group are presented
in Fig. 5, which reveals significant increases in concen-
tration with increasing exposure. Therefore, according to
the statistical model generated by untargeted biomonitoring of
40 subjects, exposure could be characterized on the basis of
four metabolites of two fungicides, azoxystrobin and
fenpropimorph, classically used as pesticides for treatment
of cereal crops.

Conclusion

Exposure of a population to contaminants may be estimated
either by monitoring biological samples collected from the
population or by measurement of chemical concentrations in
the environment, including food [55, 56]. However, most of
the time, biomonitoring considers substances taken indivi-
dually, and current approaches do not address co-exposure.
This question is of growing concern and must be con-
sidered in future analytical strategies. This entails intro-
duction of techniques and concepts enabling identifica-
tion, without a-priori consideration, of a variety of (po-
tentially unknown or putative) metabolites representative
of a pattern of exposure.

The purpose of the “exposomics” method developed in
this work was to obtain untargeted evidence of urinary me-
tabolites resulting from exposure to pesticides. The method
is based on LC–HRMS measurements in both positive and
negative modes of electrospray ionization coupled to in-
vivo-generation of metabolites used as standards for confir-
mation of metabolite structure, as a preliminary step enabling
establishment of a link between urinary biomarkers and
exposure to several pesticides. In our study, among the 47
pesticides initially selected for data mining, only two

(azoxystrobin and fenpropimorph) were found to discrimi-
nate among the sub-populations according to their levels of
environmental exposure. Although designed for assessment
of feasibility and performed on a limited scale (40 subjects),
this study clearly showed that two pesticides used for cereal
crop treatment were present at higher levels in women living
close to areas where cereal crops were grown. This study also
confirmed the relevance of the exposure indicators used in
this kind of epidemiological approach (agricultural practice,
distance from agricultural fields). Our results may lead to
more comprehensive studies for discovery of other metabo-
lites suitable for screening in further biomonitoring studies.
This approach may also be useful for refining group defini-
tion in epidemiological studies by use of predictive statistical
models. Extension of this approach to a greater number of
urine samples is in progress, and could be part of a validation
process.

Work is also in progress to improve this approach, to
ensure wider xeno-metabolome coverage and to extend
its application to the identification of other metabolites
as markers of exposure to other types of contaminant,
for example mycotoxins or PAHs, to contribute meeting
the challenge of multiple exposure assessment.
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