Anal Bioanal Chem (2014) 406:995-1010
DOI 10.1007/s00216-013-7130-8

REVIEW

Characterization of glycosyl inositol phosphoryl ceramides
from plants and fungi by mass spectrometry

Corinne Buré - Jean-Luc Cacas - Sébastien Mongrand -
Jean-Marie Schmitter

Received: 25 April 2013 /Revised: 3 June 2013 /Accepted: 6 June 2013 /Published online: 26 July 2013

© Springer-Verlag Berlin Heidelberg 2013

Abstract Although glycosyl inositol phosphoryl ceramides
(GIPCs) represent the most abundant class of sphingolipids
in plants, they still remain poorly characterized in terms of
structure and biodiversity. More than 50 years after their
discovery, little is known about their subcellular distribution
and their exact roles in membrane structure and biological
functions. This review is focused on extraction and charac-
terization methods of GIPCs occurring in plants and fungi.
Global methods for characterizing ceramide moieties of
GIPCs revealed the structures of long-chain bases (LCBs)
and fatty acids (FAs): LCBs are dominated by tri-
hydroxylated molecules such as monounsaturated and satu-
rated phytosphingosine (t18:1 and t18:0, respectively) in
plants and mainly phytosphingosine (t18:0 and t20:0) in
fungi; FA are generally 14-26 carbon atoms long in plants
and 16-26 carbon atoms long in fungi, these chains being
often hydroxylated in position 2. Mass spectrometry plays a
pivotal role in the assessment of GIPC diversity and the
characterization of their structures. Indeed, it allowed to
determine that the core structure of GIPC polar heads in
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plants is Hex(R1)-HexA-IPC, with R1 being a hydroxyl, an
amine, or a N-acetylamine group, whereas the core structure in
fungi is Man-IPC. Notably, information gained from tandem
mass spectrometry spectra was most useful to describe the
huge variety of structures encountered in plants and fungi and
reveal GIPCs with yet uncharacterized polar head structures,
such as hexose—inositol phosphoceramide in Chondracanthus
acicularis and (hexuronic acid),—inositol phosphoceramide
and hexose—(hexuronic acid);—inositol phosphoceramide in
Ulva lactuca.

Keywords Glycosyl inositol phosphoryl ceramide - Plants -
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Abbreviations

CID Collision-induced dissociation
DHA 2,6-dihydroxy-acetophenone
ESI Electrospray ionization

FA Fatty acid

FAME  Fatty acid methyl ester

Gal Galactose

GIPC Glycosyl inositol phosphoryl ceramide
GlcA Glucuronic acid

GIcN Glucosamine

GIcNAc  N-acetyl glucosamine

Hex Hexose

IPC Inositol phosphoryl ceramide
IT Ion trap

LCB Long-chain base

MALDI Matrix-assisted laser desorption ionization
Man Mannose

MRM Multiple reaction monitoring
MS/MS  Tandem mass spectrometry
NAc N-acetyl

Q Quadrupole

TIC Total ion current

ToF Time of flight
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Introduction

Lipids having sphingoid backbones, namely sphingolipids,
are ubiquitous and essential components of biological mem-
branes. They can represent up to 30 % of total lipids in the
plasma membrane of cells [1, 2]. Detected for the first time in
1870 in brain samples, their name comes from the Sphinx,
because of their enigmatic and mysterious roles at the time of
their discovery. The complex structural diversity of
sphingolipids arises from the possible occurrence of three
building blocks connected to the sphingoid backbone: a
polar head, a fatty acyl chain (FA) linked by an amide bond
(to form a ceramide) to a long-chain amino-alcohol called
long-chain base (LCB) (Fig. 1). A systematic nomenclature
of sphingolipids has been proposed in which d and ¢ desig-
nate di- and tri-hydroxylation, respectively, and two colon-

delineated numbers designate the numbers of carbon atoms
and unsaturation(s).

Sphingomyelin, i.e., a ceramide molecule (Fig. 1b) to which a
phosphocholine head group is attached (Fig. 1c), is a highly
representative structure of animal sphingolipids. However, plants
and fungi do not possess these sphingolipids. Instead, they
contain complex glycosphingolipids known as glycosyl inositol
phosphoryl ceramides (GIPC) [3]. The core structure of GIPCs
consists of a ceramide moiety linked to an inositol-glucuronic
acid unit via a phosphodiester bond. Many diverse saccharides
can be added to this core structure, forming compounds such as
Gal-Glc(R1)-GlcA-inositol-1-phosphoceramide in plants or
Man-inositol-1-phosphoceramide in fungi as shown in Fig. 1d,
[1, 4, 5] (where Gal refers to galactose, GlcA to glucuronic acid
and Glc to glucose, with R1 being a hydroxyl, an amine or a N-
acetylamine group).

Fig. 1 Structure of OH
sphingolipids: a 4-
hydroxysphig-8-enine, b a
ceramide, ¢ sphingomyelin, d HO =
example of GIPC with its three NH, OH
building blocks (FA, LCB, polar
head) and where R1 could be a
hydroxyl, an amine or a OH
N-acetylamine group
b HO =
NH OH
O)\/\/\/\/\/\/\/\/
0]
+ [l
c (CHy)NCH,CH,0—F—0 OH
OH
7
NH OH
O)\/\/\/\/\/\/\/\/
d Polar head

LCB
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The work of Carter et al. [6] described the first isolation
process of GIPCs, also providing insights into the structure
of polar heads and ceramide moieties of these plant lipids.
However, more than 50 years later, little is known about the
diversity of structures encountered for GIPCs from plant and
fungal origin, whereas these compounds are believed to be
involved in diverse cellular functions such as structuring of
membrane microdomains, membrane integrity, response to
abiotic stresses and regulation of programmed cell death
associated with resistance to pathogens [4].

This situation might be partly attributed to the physico-
chemical properties of GIPCs. Indeed, the solubility of
GIPCs in usual organic solvents is rather limited due to their
large hydrophilic polar head. This property has been a
major obstacle for their isolation and characterization.
Indeed, most lipid extraction methods relied on phase
partition in chloroform/methanol/water mixtures; this
method was largely inefficient to extract GIPCs that
remained insoluble for the most part, or were lost in the
aqueous phase and interphase [3, 7].

Global methods for characterizing ceramide moieties of
GIPCs revealed the structures of LCBs and FAs: LCBs are
dominated by tri-hydroxylated molecules such as monoun-
saturated and saturated phytosphingosine (#18:1 and ¢18:0,
respectively) in plants and mainly phytosphingosine (¢#18:0
and 720:0) in fungi, and FA are generally 14-26 carbon
atoms long in plants and 1626 carbon atoms long in fungi,
these chains being often hydroxylated in position 2 [1]. Further,
the characterization of polar heads encountered in GIPC struc-
tures is still incomplete: the exact nature of glycans and their
branching have not yet been completely identified in plants.
This situation hampers our understanding of the overall GIPC
functions in cell physiology as well as the role of specific GIPC
molecular species in peculiar molecular mechanisms.

The purpose of this review is to provide a state-of-the-art
description of purification and separation methods of plant
and fungal GIPCs, followed by their structure characteriza-
tion, essentially by means of mass spectrometry. The biodi-
versity of GIPCs will also be presented, with a compendium
of structures encountered in plants and fungi.

Extraction and purification of GIPCs

The first GIPC purification method took advantage of the
difference in solubility between GIPCs and glycerolipids at
low pH in 70 % ethanol, GIPCs being insoluble in this
solvent. Carter et al. [6] were the first ones who described a
method dedicated to the purification of phytoglycolipids (the
previous designation of GIPCs) from Phaseolus vulgaris
(bean) leaves. The extraction was performed by blending
the plant leaves in acidic solution and refluxing the residue
in aqueous acidic 70 % ethanol for 20 min. This step was

followed by several washes (cold acidic ethanol, acetone and
diethyl ether). The residue was then dissolved in
butanol/acetic acid/water (4/1/5, v/v/v) before purification
by ion exchange chromatography (diethyl-amino-ethyl-
(DEAE) cellulose column) to eliminate proteins and pep-
tides. A final desalting step was performed by size exclusion
chromatography (Sephadex G-25 column). Kaul and Lester
[8, 9] have reported on a similar procedure for the isolation of
GIPCs from tobacco leaves, except that they raised the pH of
the extraction solvent up to 8.5 before reflux, and sample
washing was carried out using only acetone. Prior to purifica-
tion, the residue was dissolved in chloroform/methanol/water
(16/16/5, viv/v). A separation between N-acetyl and amine
classes of phytosphingolipids was achieved by means of a
Porasil column and a second separation with an acetate form
of DES52-cellulose column allowed concentrating each
species.

More recently, Markham et al. [7] reported four different
extraction methods from frozen plant tissues (A4ra-
bidopsis thaliana, tomato and soybean leaves): (1) addi-
tion of methanol/chloroform/water (2/1/0.35, v/v/v), ex-
traction with chloroform and back-extraction in the pres-
ence of KCI; (2) extraction with 2-propanol and then with
chloroform/2-propanol (1/1, v/v); (3) three rounds of ex-
traction with ethanol/water/diethylether/pyridine/ammonia
(15/15/5/1/0.018, v/v/viviv) at 60 °C; (3) extraction three
times with 2-propanol /hexane/water (55/20/25, v/v/v) at
60 °C. The latter solvent combination was preferred for
its relatively innocuous character and for the capacity of
2-propanol to inhibit lipases. Moreover, adequate solubili-
zation of GIPCs was observed at 60 °C, a temperature that
did not affect their composition. Neutral (ceramide, 2-
hydroxy-ceramide, monohexosylceramide) and anionic
(GIPC) sphingolipids were separated by normal-phase lig-
uid chromatography. In another study, Markham and
Jaworski [10] extracted sphingolipids from frozen A.
thaliana leaves with the same 2-propanol/hexane/water
solvent mixture at 60 °C, but the extract was dissolved in
THF/methanol/water (2/1/2, v/v/v) containing 0.1 % formic
acid prior to analysis by liquid chromatography—tandem
mass spectrometry (LC-MS/MS).

More recently, we have slightly modified the original pro-
tocol from Carter and Koob [11] for GIPC extraction and
purification [12]. Protocol optimizations merely consisted in
(1) getting rid of proteins and (2) finding a solvent mixture that
was ensuring total GIPC solubility and compatibility with
MALDI- and electrospray ionization (ESI)-MS experiments.
A two-phase partition step with water/butan-1-ol (1:1, v/v)
was found to be optimum for GIPC recovery without any
significant protein contamination. The extraction residue
was further dissolved in THF/methanol/water (4/4/1,
v/v/v) containing 0.1 % formic acid before analysis by
mass spectrometry.
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é ;; § § ié In most instances, GIPC extraction from fungi relied on
EEREEE similar procedures. Toledo et al. [13] extracted glyco-
N I sphingolipids from frozen fungi (4spergillus fumigatus)
g g % é g % g six times with each of the following solvent mixtures:
| O0oooodJ isopropanol/hexane/water (55/20/25, v/v/v) and chloroform/-
é methanol (2/1, v/v). Then, the residue was partitioned with
g water/1-butanol (1/1, v/v). The sample dissolved in chloroform/-
_JE methanol/water (30/60/8, v/v/v) was loaded on top of a DEAE-
B Sephadex A-25 column (acetate form) to separate acidic
g glycosphingolipids from neutral ones. GIPCs from 4. fumigatus
< cultures were extracted in a similar way by Simenel et al. [14]
2 g § 22 g using a chloroform/methanol/water (10/10/3, v/v/v) solvent
< | 22323 combination. The final separation step of the various GIPC
g g g :% § g § species was achieved by normal phase chromatography (silica
60). Heise et al. [15] extracted GIPC from frozen Cryptococ-
cus neoformans fungi with aqueous phenol at 75 °C. After
injection on a Bio-Gel P-6DG column, excluded material was
extracted three times with chloroform/methanol/water
L g (10/10/3, v/v/v) and separated on a Florisil column. This
i %‘i z g o method was also used by Loureiro y Penha et al. [16] and
o g % § o E E Gutierrez et al. [17]. Jennemann et al. [18, 19] extracted
§ E 3 :E x &; GIPCs three times from frozen Agaricus bisporus and
g p f,'; s Agaricus campestris fungi with chloroform/methanol/water
;§ j—? p i E J‘—? z (60/35/8, v/viv) at 50 °C. GIPCs were separated by ion
S| EEEEEE exchange chromatography (DEAE-Sephadex A-25 column,
acetate form).
;5 Analysis of fatty acids released from GIPCs
% Hydrolysis of FA chains has been widely used for structure
£ characterization of GIPCs. Fatty acid chains were released
é and frans-methyl-esterified with hot acidic methanol [8, 9,
- 12, 13, 20] or, less currently, diazomethane [11]. Most often,
the resulting free fatty acid methyl esters (FAMEs) were
trimethyl-silylated to facilitate their analysis by gas chroma-
- tography. Sometimes, FA chains of GIPCs were analyzed
£ after methylamine treatment, in order to eliminate contami-
nating ester bond-containing lipids such as galactolipids and
glycerophospholipids [10, 12]. Identification and quanti-
tative analysis of FAMEs were performed by GC and/or
GC-MS (Table 1).
Wells et al. [21] saponified samples before HPLC,
and FA chains were identified by comparison with stan-
c dard molecules.
g Jennemann et al. [19] liberated the ceramide moiety by
£ mineral acid hydrolysis. Fatty acid chains were identified
El ;ti by ESI-MS/MS in the negative product ion mode giving
é the [RCO,] ion, R corresponding to the chain with (n—1)
§ . . carbon atoms. Buré et al. [12] identified some fatty acids
: § 2 E é E by ESI-MS/MS in the negative mode on the basis of the
) I -~ % &2 % occurrence of a new fragment ion named Fa in their
gl &l = NNNN publication.
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Fatty acids were also characterized without hydrolysis,
using ESI-MS and ESI-MS/MS. Levery et al. [5] and Toledo
et al. [13] used the fact that Li" cationization increased
sensitivity and fragmentation of the pseudo-molecular ion
[M+Li]", compared to [M+H]" or [M+Na]" ions, to char-
acterize the ceramide moiety. Markham et al. [7] exploited
ESI-MS? fragmentation of [M+Na]" precursor ions for iden-
tification of the FA and LCB chains. In the same way,
Markham et al. [10] and Salas et al. [22] used ESI-multiple
reaction monitoring (MRM) to analyze the transition
[M+H]"/Z0 ions permitting the identification of FA chains
and LCBs (see below and Fig. 2).

Analysis of long-chain bases released from GIPCs

Hydrolysis was also used for the characterization of LCBs
released from GIPCs. After hydrolysis of GIPCs by
methanolic HCI, LCBs were identified by TLC using refer-
ence molecules, but most often were trimethyl-silylated [8, 9,
11,13, 14, 20, 23-25]. Identification and quantification were
then performed by GC and/or GC-MS (Table 1).

Alternatively, hydrolysis with methanolic HCI could be
followed by a derivatization step to convert LCBs into their
N-biphenylcarbonyl derivatives [21] prior to a separation by
liquid chromatography. The LCBs were then identified by
comparison with standards.

Another way leading to the characterization of LCBs was
followed by Cacas et al. [2, 12] who established a protocol
consisting in (1) release of the LCB from sphingolipids by
treatment with barium hydroxide at 110 °C; (2) their oxida-
tion into their corresponding aldehydes by sodium periodate,
and (3) the quantification of these aldehydes by GC-MS.

Jennemann et al. [19] liberated the ceramide moiety by
mineral acid hydrolysis. The long-chain base was identified
by ESI-MS/MS in the positive product ion mode giving m/z
318, 300, 282, and 264 ions for ¢18:0 phytosphingosine.

As in the case of FAs, LCBs have also been identified by
ESI-MS and ESI-MS/MS without the use of degradation
chemistry. As for FA analysis, Levery et al. [5] and Toledo
et al. [13] characterized the ceramide moiety by fragmenting
the pseudo-molecular ion [M+Li]". ESI-MS? and ESI-MRM
were used in the positive ion mode for the identification of
FA and LCB chains [7, 10, 22], whereas Buré et al. [12]
characterized the ceramide moiety by ESI-MS/MS using the
fragmentation of the pseudo-molecular ion [M-2H]*".

Characterization of the glycan moiety
Characterization of glycan moieties of GIPC polar heads

was often accomplished after hydrolysis. In some in-
stances, released oligosaccharides were analyzed without
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derivatization [18, 19], but they were most often submit-
ted to permethylation [15-17, 23, 24], or trimethyl-
silylation [8, 14]. Structure characterization was achieved
by TLC and comparison with standards [11], GC and/or
GC-MS or by ESI-MS/MS [15] (Table 1). In another
approach, Hsieh et al. [26] removed the phosphoceramide
moiety by a treatment with a phosphatase. Free oligosaccha-
rides were acetylated (acetic anhydride/pyridine), separated
by normal and reverse HPLC, purified by TLC and identified
by GC-MS.

Alternatively, spectral information obtained by NMR
analysis allows establishing the nature of the saccharide units
engaged in the GIPC polar heads, thus differentiating species
that have the same mass, i.e., mannose, glucose, and galac-
tose. NMR also allows establishing the conformation of the
bonds linking these units [13-20, 24, 25, 27] and the type of
bond (linear or branched) between saccharides [15, 17], i.e.,
if there is a unique chain of saccharide molecules, or several
chains that create a branching point.

Tandem mass spectrometry (ESI-MS/MS) was used for
the partial characterization of the glycan moiety in the pos-
itive [ 7] and negative ion modes [12]. As for the FA and LCB
analysis, Levery et al. [5] and Toledo et al. [13, 20] charac-
terized the saccharide moiety by the fragmentation of the
pseudo-molecular ion [M+Li]".

MALDI-MS analysis

MALDI ionization leads to singly charged ions of GIPCs,
and thus provides rather simple spectra that greatly facilitate
fast screening. Owing to the structure of GIPCs, several
options were tried for the selection of proper matrices and
associated ionization modes, such as: 2,5-dihydroxybenzoic
acid and positive mode [13], norharmane [15-17] and 7-
amino-4-methylcoumarin [23, 24] in negative mode, or
indole-2-carboxylic acid [18]. Plant GIPC extracts were
analyzed in the positive and negative ion modes with
several matrices (alpha-cyano-4-hydroxy-cinnamic acid, 2,5-
dihydroxybenzoic acid, 2,4,6-trihydroxy-acetophenone, 3-
hydroxy-picolinic acid and 2,6-dihydroxy-acetophenone) [12].
In the latter work, the best result in terms of sensitivity was
obtained with 2,6-dihydroxy-acetophenone in the negative ion
mode, with the clear advantage of the observation of the sole
[M-H] pseudo-molecular species (see above). This latter
approach revealed at a glance the occurrence of highly
glycosylated GIPCs for 4. thaliana and N. tabacum BY-2
cells samples [12].

The comparison of full-scan MALDI mass spectra and
global structure assignment of GIPC isolated from N.
tabacum and A. thaliana (cell culture and leaf samples) led
to the identification of 6 GIPC clusters having mass differ-
ences of either 162 or 132 Da, corresponding to additional
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hexose or pentose units. The series with the lowest masses
(m/z 1,200 to 1,340) contained two saccharides, whereas the
series with the highest masses (m/z 1,930 to 2,040) contained
seven saccharides [12].

Since pure reference GIPCs were not available at this
stage of the work, relative abundances of GIPC series could
not be safely assessed on the basis of full-scan MALDI mass
spectra, and should be taken as a rough indication of real
GIPC distributions according to their number of glycans.

ESI-MS analysis

In plants, ESI-MS full-scan spectra of GIPCs were usually
dominated by doubly charged pseudo-molecular ions, with
preferential sites of ionization likely located on the phos-
phate group and on the carboxyl group of hexuronic acid
[12]. In contrast, in fungi, spectra were dominated by single
charged pseudo-molecular ions since hexuronic acid was not
found in fungal GIPC structures and the preferential site of
ionization became the sole phosphate group.

Tandem mass spectrometry in ESI and MALDI
ionization modes

Full-scan MALDI-MS measurements can be achieved with a
mass accuracy of a few parts per million with a time of flight
(ToF) analyzer, providing a quick overview of GIPC struc-
tures, but are not sufficient for a safe assignment of all
detected species. Fragment ions produced by tandem mass
spectrometry using collision-induced dissociation (CID)
provide most of the information required for the description
of GIPC structures. The nomenclature of fragmentations was
proposed by Costello et al. [28] and Levery et al. [5].

In the positive ion mode, pseudo-molecular ions observed
for GIPC ions were mainly due to ammonium, sodium or
potassium adducts [7]; alternatively, the addition of Lil was
used to produce lithium adducts [5, 13]. In this case, the
pseudo-molecular ions [M+Na]’, [M+K]', [M+Li]’,
[M+NH,4]", more generally named [M+Cat]" (with Cat being
the cation Na, K, Li, or NH,), were observed in mass spectra
instead of [M+H]". CID mass spectra of [M+Cat]" precursor
ions showed fragment ions characteristic of glycosylinositol,
[B,+Cat]" and [C,+Cat]" and their complementary fragment
ions [Y,+Cat]" and [Z,+Cat]" (Fig. 2). It can be noticed that
the fragment ions kept the cation in their structure. Other
major fragment ions were glycosylinositol phosphate ions
[B,PO;+Cat]" and [C,PO;+Cat]", ceramide phosphate ions
[YoPOs+Cat]” and [Z,PO;+Cat]’, and ceramide ions
[Yo+Cat]" and [Zy+Cat]". Internal fragment ions were also
observed as [B,PO5-B,,,+Cat]", [B,PO5-C,,+Cat]", [C,PO;-
Bn+Cat]” and [C,PO;-C,+Cat]" [7]. Using CID of

[M(Cat)+Cat]" precursor ions, Levery et al. [5, 13] reported
more complex positive ion spectra, since fragments with two
cations could also be observed. In this study, the ions
[B,POs(Cat)+Cat]", [C,PO;(Cat)+Cat]", [Y,PO;(Cat)+Cat]"
and [Z,PO;(Cat)+Cat]” were also found in addition to the
ions mentioned above. In this paper, internal fragment ions
were called [Y/Co+Cat]", [Yi/Bn+Cat]", [Y/CoPO5(Cat)+-
Cat]", [Yu/B.POsy(Cat)+Cat]", [Z./B,POs(Cat)+Cat]", and
[Z/Ba+Cat]".

Tandem mass spectrometry experiments were conducted
in the negative ion mode on ESI-Q-IT and MALDI-Q-ToF
instruments by Buré et al. [12]. The Q-ToF instrument pro-
vided a narrow isolation width of precursor ions, and accu-
rate mass measurements for both precursor and fragment
ions, two features that were particularly useful for structure
assignment of plant GIPCs by means of MALDI-MS/MS.
Fragmentation patterns obtained by MALDI-MS/MS and
ESI-MS/MS were similar.

Nevertheless, complementary information was derived
from these two ionization modes, since the C3POj3 ion rep-
resentative of the carbohydrate moiety was only obtained by
MALDI-MS/MS and the Fa ion, representative of the cer-
amide moiety, was only obtained by ESI-MS/MS (Fig. 3).
When present, the Fa ion allowed identifying the fatty acid
chain of the ceramide moiety. Furthermore, ions at m/z 373
and 355 observed in the negative ion mode represent a useful
signature of the polar head when the arrangement of saccha-
rides is linear (Fig. 3).

Tandem mass spectrometry allowed distinguishing iso-
baric GIPC species. For instance, as encountered in the case
of BY-2 cell extracts, the R1 substituent could be either an
amine or an acetylamine, and the corresponding 42 Da mass
difference could be balanced by a difference of three carbon
atoms in the length of the fatty acid chain (Figs. 1 and 3). In
this particular case, such isobaric species occurring at m/z
1,259.76 in MALDI-MS (and doubly charged ion at m/z
629.38 in ESI-MS), could be differentiated and attributed
to hexose(NH;)-hexuronic acid—inositol phosphoceramide
(¢118:1h24:0) and hexose(NAc)-hexuronic acid—inositol
phosphoceramide (¢18:1421:0) [12].

HPLC-ESI-MS/MS

To our knowledge, studies concerning the characterization of
GIPC species by HPLC-ESI-MS/MS were carried out only
in plants: 4. thaliana [10, 29], Helianthus annuus (sunflower
seeds) [22, 29], Spinacia oleracea (spinach leaves), Brassica
oleracea (white cabbage), Glycine max (soybean), and
Lycopersicon esculentum (tomato leaves) [29]. All these
experiments were achieved in reversed-phase liquid chroma-
tography with solvents A and B containing THF/methanol/5-
mM ammonium formate or ammonium sulfate+0.1 %
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Fig. 2 CID fragmentation
pattern of [M+Li]* GIPC
precursors in the positive mode,
adapted from Levery et al. [5]

formic acid in different proportions. In this mode, the various
GIPC species were separated as a function of their chain
length and desaturation. Mass spectrometric parameters were
established by infusing each purified samples. The charac-
terization of GIPCs obtained by infusion was used to choose
precursot/product ions transitions for MRM experiments, i.e.
from [M+H]" to Z0 ions, the Z0 ion being characteristic of
the ceramide moiety. Low pH HPLC eluents were found to
favor positively charged GIPC species that were detectable
with great sensitivity. The positive ion mode was required to
detect the positively charged ceramide fragment. Combined
HPLC-ESI-MS/MS advantageously provides a third identi-
fication level with reference to the retention time, in addition
to the precursor mass and the MRM transitions. As no
commercial GIPC standard was available, the quantification
of GIPC species proposed by Markham et al. [10] was based

Fig. 3 CID fragmentation
pattern of GIPC precursor ions
in the negative mode, adapted
from Buré et al. [12]

X2 Ho Rl
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on a commercial ovine ganglioside standard, GM1. This
analytical method seemed to be influenced by some matrix
effects. In their approach, Blaas and Humpf [29] used
sphingosyl phosphoinositol (Lyso-IPC, commercially avail-
able) as a standard for semi-quantitative HPLC-ESI-MS/MS
of GIPCs, and C17-IPC (synthesized for this purpose) as
ionization standard, to minimize matrix effects.

Diversity of GIPC structures in plants and fungi

As indicated by the information on GIPC structures assem-
bled in Table 1, GIPC composition was found to be slightly
less complex in fungi than in plants. The simple distribution
reported for A. thaliana GIPCs containing mostly two

OH
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glycosylated residues [7] seems rather to be a special case in
the plant kingdom.

In plants, the core structure of GIPC polar heads is
Hex(R1)-HexA-IPC with R1 being a hydroxyl, an amine or
a N-acetylamine group, whereas the core structure in fungi is
Man-IPC. Additional saccharides linked to inositol were
arabinose, galactose, mannose and fucose in plants, and
mannose, galactose, xylose, fucose, GIlcN, and GIcNAc in
fungi. In plants, the ceramide moiety consisted in £16:0 to
h26:1,20:0 to 28:0, and 18:1, ¢18:0, d18:1, d18:0, d18:2 for
FA and LCB chains, respectively; in fungi, the composition
was rather 422:0 to £26:0, 2424:0 to 2425:0 and 16:0 to 24:0
and ¢18:0, 20:0 for FA and LCB chains, respectively
(Table 1).

Markham et al. found that sphingolipids from A. thaliana
differed by 28 Da, indicating fatty acid chains with even
carbon number only [7, 10]. In 4. thaliana (cells and leaves)
and BY-2 cells, our group found evidence for fatty acid
chains with odd and even carbon numbers. The occurrence
of fatty acid chains with odd carbon numbers has been
confirmed by GC-MS analysis of FAMEs, and is consistent
with fatty acid chain distributions reported for 4. fumigatus
and Nicotiana tabacum [1, 14].

The number of saccharides linked to inositol is rather
large in GIPC structures: up to 14 saccharides were found
in tobacco leaves [8] and up to 20 saccharides in Candida
albicans [27]. The arrangement of these saccharides is
thought to be linear in most cases, but Hsich et al. [26] have
found, by a combination of HPLC and GC-MS, a partially
atypical structure with two saccharides linked to the inositol
instead of one, GIcNAc-GlcA-Ins(Man)-P-Cer.

ESI-MS/MS analysis provided evidence for new GIPC
structures in algae. In Chondracanthus acicularis, an unusu-
al GIPC structure lacking hexuronic acid was identified by
ESI-MS/MS as hexose—inositol phosphoceramide. These
unusual GIPCs constitute a new GIPC series with a single
saccharide. In Ulva lactuca, other new structures were iden-
tified as (hexuronic acid)s—inositol phosphoceramide and
hexose—(hexuronic acid);—inositol phosphoceramide.

Thus, the exact molecular structure of GIPCs still leaves
us a certain number of enigmas to resolve.

Conclusion

By combining selective extraction, LC-MS/MS, MALDI-
MS/MS, and NMR, all methodologies allowing for complete
structure characterization of GIPCs from plant and fungal
origins are currently available. Evidence for a broad diversity
of GIPC structures has been found by applying these meth-
odologies, but leaves open a whole bunch of questions
related to the understanding of GIPC functions [4]: What
are the exact structures of the polar heads of GIPCs? How

many sugars are engaged in this polar head? Where are
GIPCs localized? In which membrane leaflet? How are they
structured in membranes? Do they influence membrane
thickness? Are they structuring elements for microdomains
formation? What are their roles in plant physiology? Are
they involved in host-pathogen relationships?

These questions give a clear indication for future work:
adequate answers will require molecular tools that are still miss-
ing at this moment. Indeed, there are no commercially available
GIPC standards that are needed for absolute quantitation by
MRM. Further, besides molecular tools required for quantitative
mass spectrometry, there are neither antibodies against GIPCs,
nor fluorescently labeled GIPCs to allow imaging.
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