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Abstract Three important technical innovations are
reported here towards Raman-activated cell sorting. First-
ly, a microfluidic chip made of quartz is introduced
which integrates injection of single cells, trapping by
laser fibres and sorting of cells. Secondly, a chip holder
was designed to provide simple, accurate and stable
adjustment of chips, microfluidic connections and the
trapping laser fibres. The new setup enables to the col-
lection of Raman spectra of single cells at 785 nm
excitation with 10 s exposure time. Lastly, a new type
of modelling the various background contributions is
described, improving Raman-based cell identification by
the classification algorithm linear discriminant analysis.
Mean sensitivity and specificity determined by iterated
10-fold cross validation were 96 and 99 %, respectively,
for the distinction of leucocytes extracted from blood,
breast cancer cells BT-20 and MCF-7, and leukaemia
cells OCI-AML3.
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Introduction

Raman-activated cell sorting (RACS) offers prospects to
complement the widely applied fluorescence-activated cell
sorting. The term RACS denotes that Raman spectroscopy
provides information to characterize and identify cells.
Advantages of Raman spectroscopy include the obtaining
of highly specific, fingerprint-like information without ex-
ternal labels in a non-destructive fashion, so the method is
also compatible with live cells [1]. Limits of RACS are
longer acquisition times and lower throughput due to
weaker Raman signal relative to fluorescence emission. A
key element of RACS is the microfluidic infrastructure. Our
previous manuscript described two setups to trap single cells
in microfluidic environments, collect Raman spectra and
classify five cell types based on their spectral fingerprint
[2]. The integrated setup used a microfluidic chip made of
glass from which Raman spectra could only be obtained at
514 nm excitation. However, this excitation wavelength
induces degradation of living cells at the required high
intensities even at short exposure times. High Raman back-
ground in the fingerprint region below 1,500 cm−1, which
contains most of the diagnostically relevant spectral infor-
mation, is generated in glass chips with 785 nm excitation.
The Raman background is significantly lower for substrates
made of quartz at near-infrared laser excitation. This was
demonstrated in another setup using a quartz capillary as
microfluidic channel from which Raman spectra could be
obtained at 785 nm. Signal-to-noise ratios and classification
accuracies were inferior compared with the integrated setup.
Three important innovations are reported here. Firstly, the
processing steps were transferred to quartz wafers to pro-
duce microfluidic chips made of quartz. Secondly, a chip
holder was designed to integrate chips, microfluidic con-
nections and the trapping laser fibres. Thirdly, a spectral
data processing approach was introduced with improved
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background correction. The performance of the new setup
was tested for a tumour cell model that consisted of leuco-
cytes extracted from blood, breast cancer cells BT-20 and
MCF-7 and leukaemia cells OCI-AML3. Cells were identi-
fied based on Raman spectra by the classification algorithm
linear discriminant analysis. Sensitivity and specificity were
determined by iterated 10-fold cross validation, and the
results were compared with previous data.

Experimental section

Design of quartz chip and chip holder

To enable Raman measurements of single cells in microfluidic
chips at 785 nm excitation, quartz is preferred over other glass
qualities, like borofloat33, due to the superior optical proper-
ties such as lower Raman background signals in the finger-
print region. Therefore, the processing procedures were
optimized for amorphous quartz wafers (UV-grade fused sil-
ica; diameter, 100 mm) as described in detail elsewhere [3].
The chip comprises the same three main operation units as the
previously presented borofloat33 chip (see Fig. 1).

A new chip holder enabled fluidic connections and direct
fibre laser coupling at any optical setup. The holder was
designed as described elsewhere [4].

Raman spectroscopy

The microfluidic setup was installed at a Raman microscop-
ic system (RXN1, Kaiser Optical Systems, USA) equipped
with a 785-nm single-mode diode laser (Xtra, Toptica, Ger-
many) for excitation (Fig. 1, right). To reduce the refractive
index gradient, the space between the objective and the chip
was filled with water, and a ×60, NA 1.0 water immersion
objective (Nikon, Japan) was used. Single-cell suspensions
were prepared as described before [2] and injected at a flow

rate of 1nl/s. Altogether, 405 cell spectra were collected at
an exposure time of 10 s each: 100 leucocytes “Leuco”, 104
“BT-20” and 100 “MCF-7” breast tumour cells, and 101
acute myeloid leukaemia cells “OCI-AML3”. All cells were
trapped manually by the 1,070-nm trapping lasers, and the
acquisition of the Raman spectra was started. Afterwards,
the cells were released and the next cell was trapped. In
addition, 21 spectra were collected without cells and used
for background compensation as described in Section 2.3.

Data analysis

Pre-processing The data were imported into R using
package hyperSpec. The spectral range was cut to
650–1,800 cm−1. Next, 17 spectra were excluded from
further analysis (thereof, 15 with cosmic ray spikes, two
grossly deviating from all other spectra). After automat-
ic linear baseline correction, a principal component
analysis (PCA) model was calculated for the 21 back-
ground spectra, and the first four principal components
(without centring) were used to model these contribu-
tions. As the loadings were rather noisy while the
signals are known to be rather broad, the loadings were
smoothed with a fourth-order Savitzky–Golay filter
(window width, 201 points or 60 cm−1). The smoothed
loadings together with an offset and a linear polynomial
term served as reference “spectra” of background com-
ponents for an extended multiplicative signal correction
(EMSC) of the cell spectra using the EMSC implemen-
tation in package cbmodels. As no reference cell spectra
were available, the resulting spectra have a mean inten-
sity of 0, and the EMSC correction could not include
normalization to the cell spectra intensity. Instead, the
resulting spectra were offset corrected setting the 5th
percentile of intensity of each spectrum to 0 and then
normalized by the median intensity of the spectrum. The
spectral regions below 810 and between 1,497 and

Fig. 1 Right: Scheme of the integrated setup with quartz chip, chip
holder, micro fluidic pumps, fibre lasers and a Raman micro-spectrom-
eter. Left: Raman chip 2 (RC2) made from quartz encompassing a

channel for cell injection, two channels for hydrodynamic flow focus-
ing, four channels for laser fibres, two channels for cell sorting and
channels for immersion fluid
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1,597 cm−1 contained residual contributions of the
quartz signal and the trapping laser and were excluded
from subsequent classification and validation.

Classification models Linear discriminant analysis (LDA)
using 25 partial least square (PLS) latent variables as input
was chosen as classifier (cbmodels, relying onMASS and pls).
As a final step, only predictions were accepted that reached a
posterior probability of at least 99 % according to the LDA,
thus considering ca. 5 % of the predictions too uncertain.

Validation The performance of the classifiers was measured
using a 100 times-iterated 10-fold cross validation, and
validation folds were stratified with respect to the classes.
In general, all pre-processing that depends on multiple or all
spectra of a data set should be done inside the cross-
validation loop, i.e. the respective parameters need to be
calculated for each training set. In our case, this applies to

1. Estimation of PCA background components
2. Centring of the spectra matrix
3. The PLS model

Consequently, PCA estimation of the background com-
ponents and all further pre-processing steps were done in-
side the cross-validation loop.

Results and discussion

The Raman spectra of the cells grossly agree with spectra
from previous publications ([2] and references cited there-
in). The signal-to-noise ratio is increased by one order of
magnitude, from 2.8 to 33. Spectral contributions are
assigned to proteins, nucleic acids and lipids. A difference
spectrum was calculated between leucocytes and all other
cell line mean spectra (Fig. 2, top).

Difference bands near 1,580, 1,557, and 1,373 cm−1 have
been observed before [2]. Although these differences are small,
the reproducibility is consistent with their biological signifi-
cance. Exact agreement is impaired by different signal-to-noise
ratios and confounding signals of substrates and trapping lasers.
An assignment of these difference bands is not straightforward.
Spectral contributions of nucleic acids can be excluded because
key marker bands near 1,100 and 1,092 cm−1 are not evident.
Spectral contributions of lipids can be excluded because key
marker bands near 1,440 and 1,300 cm−1 of the fatty acid
moieties are missing. Spectral contributions of proteins are
unlikely because key marker bands near 1,660 and
1,260 cm−1 of amide bands are missing. The observed differ-
ence bands point to the fact that other biomolecules besides
nucleic acids, lipids and proteins significantly contribute to the
Raman spectra and difference spectra between cells. Further
Raman studies are under progress to assign these biomolecules.

Fig. 2 Top left: Mean spectra of the data after applying the EMSC
processing (The background was multiplied by a factor of 100). De-
tailed band assignment can be found elsewhere [2]. Top right: Differ-
ence spectra from the mean spectrum of all cell lines subtracted by the

mean leucocyte spectrum. Bottom: Average confusion matrix over 100
iterations, sensitivity and specificity if background is not independent.
The values are given in percentages relative to the true number of
spectra. The overall accuracy for cell identification is 98 %
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The table (Fig. 2, bottom) shows the obtained confusion matrix
for the trained classifier. The cell classes are recognized with
uniform high sensitivities between 97 and 100 % (average over
the 100 iterations; observed variation, 5th to 95th percentile
deviates max.±2 spectra). The lowest classification rate of
87 % was observed for the background spectra which consti-
tute the smallest class of 21 spectra. One incorrect classifica-
tion of the background decreases the sensitivity already from
100 to 95 % whereas one incorrect classification out of 100
cell spectra decreases the sensitivity by only 1 %. Improve-
ment is straightforward asmore background spectra need to be
collected. Compared with the Raman results obtained using
the microfluidic glass chip at 514 nm excitation [2], the overall
cell identification accuracy could be improved from 94.9 to
98 %. This is due to the higher signal-to-noise ratio of the
acquired spectra and the additional group “background”. The
additional group offers the advantage of assigning spectra
with low signal to the background group instead of to an
incorrect cell group. Furthermore, during real-time Raman-
activated cell sorting, acquisition of a Raman spectrum of a
cell which is assigned to background can be repeated and a
reclassification may be performed.

Conclusions

The progress and novelty of the current work are a
microfluidic quartz chip; a chip holder, which accommo-
dates syringe pump connections and laser fibres for op-
tical trapping; and data processing tools. The devices
simplify the coupling and accomplish high stability dur-
ing long-term data acquisition. We demonstrated that
Raman spectra from single cells could be collected, and
four cell types could be identified based on these spectra
with a new type of classification algorithm. In a few
cases, background spectra were assigned to cell classes,
which in practise can easily be avoided using visible

CCD camera information. More importantly, no cell spec-
trum was confused with a background spectrum.

One still challenging problem of the upright microscopic
setup is the continuous injection of single cells into the trap.
First, formalin-fixed tumour cells, such as BT20 and MCF7,
tend to agglomerate after detachment from the surface by
trypsin treatment. This is non-critical for the chips and the
periphery, but for future unsupervised and automated cell
sorting, this needs to be solved. A second issue is the
sedimentation of cells in the bottom loop of the injection
tube at low flow rates as depicted in Fig. 1 (red tube). The
subsequent injection of aggregated cell clusters causes com-
plications in optical trapping and automatic separation.
Therefore, an inverse setup would be advantageous for this
application.

Acknowledgments The authors thank C. Jörke (University Hos-
pital Jena) for providing the cells. Financial support from the
European Union through the Europäischer Fonds für regionale
Entwicklung EFRE and the “Thüringer Ministerium für Bildung,
Wissenschaft und Kultur” (project B714-07037) is highly
acknowledged.

References

1. Chan JW (2012) Recent advances in laser tweezers raman spectros-
copy (LTRS) for label-free analysis of single cells. J Biophoton.
doi:10.1002/jbio.201200143

2. Dochow S, Krafft C, Neugebauer U, Bocklitz T, Henkel T, Mayer
G, Albert J, Popp J (2011) Tumour cell identification by means of
Raman spectroscopy in combination with optical traps. Lab Chip 11
(8):1484–1490

3. Dochow S, Beleites C, Henkel T, Mayer G, Albert J, Krafft C, Popp
J (2012) Quartz microfluidic chip for tumour cell identification by
Raman spectroscopy in combination with optical traps. Lab Chip.
doi:10.1039/C2LC41169E, Accepted

4. Dochow S, Uhlemann W, Krafft C (2012) Justierbare Aufnahme-
vorrichtung für mikrofluidische Chips mit einzukoppelnder
optischer Faser. Germany Patent DE102010050676B3

2746 S. Dochow et al.

http://dx.doi.org/10.1002/jbio.201200143
http://dx.doi.org/10.1039/C2LC41169E

	Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps
	Abstract
	Introduction
	Experimental section
	Design of quartz chip and chip holder
	Raman spectroscopy
	Data analysis

	Results and discussion
	Conclusions
	References


