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Abstract Capillary electrophoresis coupled with time-of-
flight mass spectrometry was used to explore new serum
biomarkers with high sensitivity and specificity for diabetic
nephropathy (DN) diagnosis, through comprehensive anal-
ysis of serum metabolites with 78 diabetic patients. Multi-
variate analyses were used for identification of marker
candidates and development of discriminative models. Of
the 289 profiled metabolites, orthogonal partial least-
squares discriminant analysis identified 19 metabolites that

could distinguish between DN with macroalbuminuria and
diabetic patients without albuminuria. These identified metab-
olites included creatinine, aspartic acid, γ-butyrobetaine, cit-
rulline, symmetric dimethylarginine (SDMA), kynurenine,
azelaic acid, and galactaric acid. Significant correlations be-
tween all these metabolites and urinary albumin-to-creatinine
ratios (p<0.009, Spearman’s rank test) were observed. When
five metabolites (including γ-butyrobetaine, SDMA, azelaic
acid and two unknowns) were selected from 19 metabolites
and applied for multiple logistic regressionmodel, AUC value
for diagnosing DN was 0.927 using the whole dataset, and
0.880 in a cross-validation test. In addition, when four known
metabolites (aspartic acid, SDMA, azelaic acid and galactaric
acid) were applied, the resulting AUC was still high at 0.844
with the whole dataset and 0.792 with cross-validation. Com-
bination of serum metabolomics with multivariate analyses
enabled accurate discrimination of DN patients. The results
suggest that capillary electrophoresis-mass spectrometry
based metabolome analysis could be used for DN diagnosis.

Keywords Diabetic nephropathy . Capillary electrophoresis-
mass spectrometry . Metabolome . Biomarker . Multiple
logistic regression . Orthogonal partial least-squares
discriminant analysis

Introduction

Diabetic nephropathy (DN) is one of the major complications
of diabetes mellitus (DM) and has become the most prevalent
cause of end-stage renal disease worldwide [1]. DN is also one
of the most significant long-term diseases in terms of morbid-
ity and mortality for individuals with diabetes [2]. Recent

A. Hirayama :M. Sugimoto :M. Tomita : T. Soga (*)
Institute for Advanced Biosciences, Keio University,
246-2 Mizukami, Kakuganji,
Tsuruoka, Yamagata 997-0052, Japan
e-mail: soga@sfc.keio.ac.jp

E. Nakashima
Japan Labour Health and Welfare Organization Chubu Rosai
Hospital,
1-10-6 Koumei-cho, Minato-ku,
Nagoya, Aichi 455-8530, Japan

E. Nakashima
Department of Endocrinology and Diabetes, Nagoya University
Graduate School of Medicine,
65 Tsurumai-cho, Showa-ku,
Nagoya, Aichi 466-8550, Japan

M. Sugimoto
Medical Innovation Center, Kyoto University Graduate School of
Medicine,
Yoshida Konoe, Sakyo-ku,
Kyoto 606-8501, Japan

S.-i. Akiyama :W. Sato : S. Maruyama : S. Matsuo :Y. Yuzawa
Department of Nephrology of Internal Medicine, Nagoya
University Graduate School of Medicine,
65 Tsurumai-cho, Showa-ku,
Nagoya, Aichi 466-8550, Japan

Anal Bioanal Chem (2012) 404:3101–3109
DOI 10.1007/s00216-012-6412-x



studies have shown that several interventions can slow the
progression of DN, and their impact is greater if they are
started at an early stage of the development of nephropathy
[3]. Although renal biopsy is the most accurate diagnostic
method for DN, routine renal biopsies are not acceptable in
current clinical practice because of their invasiveness. Micro-
albuminuria is an alternative, non-invasive marker that can be
used for DN risk assessment, and the urinary albumin-to-
creatinine ratio (UACR) on first-void urine sample is recom-
mended for DN screening. However, large prospective studies
have revealed poor accuracy of this marker, even though urine
samples are collected two or three times a day to normalize
day-to-day variation [4]. Therefore, identifying reliable and
versatile biomarkers for risk assessment of DN is important.

Mass spectrometry-based urinary proteomics is used for
biomarker discoveries of DN. Dihazi et al. used surface-
enhanced laser desorption/ionization time-of-flight mass
spectrometry to identify three urinary proteins that differen-
tiated patients with DN from patients with type 2 DM
without nephropathy, patients with type 2 DM with micro-
or macroalbuminuria, patients with proteinuria caused by
non-diabetic renal disease, and healthy controls [5]. Mis-
chak et al. profiled urinary polypeptides using capillary
electrophoresis-mass spectrometry (CE-MS) and found that
the MS patterns could be used to differentiate type 2 DM
from healthy controls [6]. However, urinary protein markers
sometimes show a wider variation than blood samples.
Thus, it is necessary to discover biomarkers with small diurnal
variations.

Metabolomics is the comprehensive analysis of low weight
molecules in a sample, and has become a powerful tool in the
biomarker discovery field. Nuclear magnetic resonance [7],
gas chromatography-mass spectrometry [8], liquid
chromatography-mass spectrometry (LC-MS; [9]), and CE-
MS [10–12] are currently used for metabolomics. Targeted
profiling, that is, detection of only a few sets of metabolites,
has been used to discover biomarkers for DN. Xia et al.
analyzed six intermediate metabolites of the purine degrada-
tion pathway in plasma from patients with non-DN and DN
using LCwith or withoutMS [13]. They found that adenosine,
inosine, uric acid, and xanthine were useful biomarkers for
monitoring DM progression. Jiang et al. used LC-tandem
mass spectrometry to simultaneously quantify eight amino-
thiols in the homocysteine metabolic cycle in plasma and
found two sulfur-containing metabolites, S-adenosylmethio-
nine and S-adenosylhomocysteine, as potential biomarkers for
DM and DN [14].

Compared to targeted profiling, comprehensive metabo-
lome analysis of all metabolites in the given sample is a
more powerful technique. Zhang et al. used non-targeted
LC-MS to detect potential biomarker candidates of DN and
type 2 DM, and observed significant differences in the serum
levels of leucine, dihydrosphingosine, and phytosphingosine

[15]. However, there are few published comprehensive metab-
olome profiles of DN.

Recently, we developed a non-targeted CE-MS-based
metabolome profiling technique [11, 16] and applied it to
biomarker discovery for acetaminophen-induced hepatotoxici-
ty in mice [11] and several types of cancer-specific profiles in
human saliva [12]. In the present study, we used CE-MS to
identify serum metabolite biomarkers for DN diagnosis. Fur-
thermore, classification models incorporating multiple bio-
markers were constructed for discriminating DN from non-DN.

Materials and methods

Sample collection and metabolite extraction

All experiments were conducted in accordance with study
protocol approved by the Institutional Ethics Committee of
Chubu Rosai Hospital. Informed consent was obtained from
all patients according to the Declaration of Helsinki as
revised in 2000. Serum samples from 78 type 2 DM patients
were collected and classified into the following three
groups: DM group without nephropathy and albuminuria
(non-DN, UACR<30 mg/g, n020), early DN group with
microalbuminuria (micro-DN, 30<UACR<300 mg/g, n0
32), and overt DN group with macroalbuminuria (macro-
DN, UACR>300 mg/g, n026). All serum samples were
stored at −80 °C.

To extract metabolites, the frozen sera samples were
thawed and 100 μl aliquots were put into 900 μl of methanol
that contained internal standards (20 μmol/l each of methio-
nine sulfone and camphor 10-sulfonic acid). The internal
standards were used to normalize the extraction efficiency of
metabolites during sample preparation for both cationic (me-
thionine sulfone) and anionic (camphor 10-sulfonic acid) me-
tabolite analysis. The solutions were mixed well and then
400 μl of Milli-Q water and 1 ml of chloroform were added,
followed by centrifugation at 4,600×g for 5 min at 4 °C. The
aqueous layer was transferred to a 5-kDa cutoff centrifugal
filter tube (Millipore, Billerica, MA, USA) to remove large
molecules. The filtrate was centrifugally concentrated at 35 °C
and reconstituted with 50 μl of Milli-Q water that contained
reference compounds (200 μmol/l each of 3-aminopyrrolidine
and trimesic acid) immediately before CE-TOFMS analysis.
These reference compounds were added to eliminate the var-
iation in migration time of individual peaks in electrophero-
gram among multiple datasets.

Reagents

Methionine sulfone (internal standard) was purchased
from Alfa Aesar (Ward Hill, MA), and hexakis-(2,2-
difluoroethoxy)-phosphazene (Hexakis) from SynQuest
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Laboratories (Alachua, FL). All other reagents were
obtained from Sigma-Aldrich (St. Louis, MO) or Wako Pure
Chemicals Industries Ltd. (Osaka, Japan). All chemicals
used were of analytical or reagent grade. Water was purified
with a Milli-Q purification system (Millipore, Billerica,
MA).

Instruments

All CE-electrospray ionization (ESI)-TOFMS experiments
were performed using an Agilent CE capillary electropho-
resis system (Agilent Technologies, Waldbronn, Germany),
an Agilent G3250AA LC/MSD TOF system (Agilent Tech-
nologies, Palo Alto, CA, USA), an Agilent 1100 series
isocratic HPLC pump, a G1603A Agilent CE-MS adapter
kit, and a G1607A Agilent CE-ESI-MS sprayer kit. The CE-
MS adapter kit included a capillary cassette, which facilitat-
ed thermostating of the capillary, and the CE-ESI-MS spray-
er kit, which simplified coupling of the CE system with the
MS system, was equipped with an electrospray source. For
system control and data acquisition, G2201AA Agilent
Chemstation software was used for CE, and Agilent
TOF (Analyst QS) software was used for TOFMS. The
original Agilent SST316Ti stainless steel (Fe/Cr/Ni/Mo/Ti;
68:18:11:2:1) ESI needle was replaced with a platinum
needle for anion analysis [17]. The resolution of the TOFMS
instrument used in this study is higher than 3,000 at m/z 100
with high mass accuracy (<3 ppm).

CE-TOFMS analysis of cationic metabolites

CE-TOFMS analysis of cationic metabolites was performed
as described previously [10]. Cationic metabolites were
separated in a fused-silica capillary (50 μm i.d.×100 cm
total length) filled with 1 mol/l formic acid as the reference
electrolyte. The sample solution was injected at 5 kPa for 3 s
(approximately 3 nl), and a positive voltage of 30 kV was
applied. The capillary and sample trays were maintained at
20 °C and <5 °C, respectively. The sheath liquid was meth-
anol/water (50 %v/v) containing 0.1 μmol/l Hexakis and
was delivered at 10 μl/min. ESI-TOFMS was operated in
positive ion mode. The capillary voltage was set at 4 kV, and
the nitrogen gas (heater temperature 300 °C) flow rate was
set at 10 l/min. In TOFMS, the fragmenter voltage, skimmer
voltage, and octapole radio frequency voltage were set at 75,
50, and 125 V, respectively. An automatic recalibration
function was performed using the following masses of two
reference standards: [13C isotopic ion of the protonated
methanol dimer (2MeOH + H)]+, m/z 66.06306; and [pro-
tonated Hexakis (M + H)]+, m/z 622.02896. Mass spectra
were acquired at a rate of 1.5 cycles per second from m/z 50
to 1000.

CE-TOFMS analysis of anionic metabolites

The CE-TOFMS analysis of anionic metabolites was per-
formed as described previously [17]. Anionic metabolites
were separated in a commercially available COSMO(+)
capillary, which was chemically coated with a cationic poly-
mer. Ammonium acetate solution (50 mmol/l, pH 8.5) was
used as the electrolyte for CE separation. The sample solu-
tion was injected at 5 kPa for 30 s (approximately 30 nl) and
a voltage of −30 kV was applied. Ammonium acetate
(5 mmol/l) in methanol/water (50 % v/v) containing
0.1 μmol/l Hexakis was delivered as the sheath liquid at
10 μl/min. ESI-TOFMS was operated in negative ion mode.
The capillary voltage was set at 3.5 kV. In TOFMS, the
fragmenter voltage, skimmer voltage, and octapole radio
frequency voltage were set at 100, 50, and 200 V, respec-
tively. An automatic recalibration function was performed
using the following masses of two reference standards: [13C
isotopic ion of deprotonated acetic acid dimer (2CH3COOH-
H)]–, m/z 120.03834; and [Hexakis + deprotonated acetic acid
(M + CH3COOH-H)]

–, m/z 680.03554. Mass spectra were
acquired at a rate of 1.5 cycles per second fromm/z 50 to 1,000.

Data processing

The raw data were processed using our proprietary software
(MasterHands) [10, 12]. The overall data processing flow
consisted of noise filtering, baseline correction, peak detec-
tion, and integration of the peak areas from 0.02m/z-wide
sections of the electropherograms. Subsequently, the accu-
rate m/z of each peak was calculated by Gaussian curve
fitting in the m/z domain, and the migration times were
normalized to match the detected peaks among the multiple
datasets. The peaks were identified by matching m/z values
and normalized migration times of corresponding authentic
standard compounds. Processed peak lists were exported for
further statistical analysis.

Statistical analysis

The relative ratio of the detected peak area to that of the
internal standard was used to eliminate systematic bias
derived from injection volume variance and MS sensitivity.
Data were analyzed with GraphPad Prism 5.0 (GraphPad
Software, Inc., San Diego, CA, USA) for statistical tests.
The Kruskal–Wallis test and Dunn’s post test were used to
assess the statistical significance of differences among non-
DN, micro-DN and macro-DN samples. The Spearman’s
rank correlation test was used to calculate correlations
among UACR, eGFR, and the relative ratios of peak areas
of the metabolites. Multiple logistic regression (MLR) mod-
els were developed to discriminate non-DN and DN cohorts.
Biomarker metabolites for these models were selected in
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two procedures. First, normalized data were subjected to
orthogonal partial least-squares discriminant analysis
(OPLS-DA) using SIMCA-P + software (Version 12.0,
Umetrics, Umeå, Sweden), and a model was built and used
to identify marker metabolites that accounted for differenti-
ation of non-DN and macro-DN cohorts. Next, a stepwise
variable selection method (forward and backward selection)
was conducted with a threshold of p<0.25 for adding and
eliminating features using JMP 8.0 (SAS Institute Inc., Cary,
NC, USA). The generalization ability of the developed
MLR model was evaluated using cross-validation methods.
Tenfold cross-validation was conducted 20 times with differ-
ent random seeds using WEKA (ver. 3.6.1, The University of
Waikato, Hamilton, New Zealand) to split the datasets into
training and validation data [18]. Bootstrap analysis was also
conducted to estimate the optimistic bias in the given datasets.
Two hundred replicates, including the same number of
patients, were computationally generated with a random
selection of individuals, this permitted redundant selection,
and MLR models were developed and cross-validation tests
were conducted on each generated dataset.

Results

Metabolome analysis of serum samples obtained from non-
DN and DN patients

Serum metabolome profiles of 78 patients in three succes-
sive stages of DN were collected using a single standard
protocol [non-DN (n020), micro-DN (n032) and macro-
DN (n026)] and analyzed. Age distribution, gender and
other clinical characteristics are listed in Table 1. The ages
in the micro-DN and macro-DN groups were slightly higher
than in the non-DN group (p00.0226). The macro-DN
group had significantly higher creatinine contents and lower
estimated glomerular filtration rates (eGFR) than the other
groups (p<0.0001), while no significant difference was seen
between the non-DN and micro-DN groups. The macro-DN
group also showed significantly higher triglycerides and
systolic blood pressure (SBP) compared with the non-DN
group (p00.0172 and 0.0083, respectively). The other clin-
ical parameters showed no significant difference among all
groups (p>0.05).

On average, 4400 peaks were detected from each
serum sample with CE-TOFMS. After eliminating re-
dundant peaks, such as noise, fragments and adduct
ions, 289 metabolites remained. Using this dataset, we
firstly performed principal component analysis (PCA),
but the resultant score plots of the PCA showed no
unequivocal stage-specific clusters (data not shown).
Next, OPLS-DA was performed to discriminate between
DN patients (micro-DN and macro-DN) and non-DN

patients based on the profiled metabolites. The OPLS-
DA model demonstrated satisfactory separation between
non-DN and micro-DN patients (Fig. 1a) using one
predictive component and one orthogonal component
(R2Xcum00.21, R2Ycum00.676, Qcum

200.179), and clear
separation between non-DN and macro-DN patients
(Fig. 1b) using one predictive component and three
orthogonal components (R2Xcum00.353, R2Ycum00.946,
Qcum

200.599). These results indicate that serum metab-
olome profile can be used to distinguish DN patients
from non-DN patients.

The resultant S plot of the developed OPLS-DA model
between non-DN and macro-DN patients identified 19
metabolites (Table 2) that were highly correlated in the
separation of the groups (|p(corr)|>0.5). Of these, we were
able to assign metabolite identities to eight metabolites by
matching their m/z values and migration times with those of
standard reagents. These metabolites were creatinine,
aspartic acid, γ-butyrobetaine, citrulline, symmetric dime-
thylarginine (SDMA), kynurenine, azelaic acid, and galac-
taric acid. The composition formulae of the other
metabolites were calculated based on their isotope distribu-
tion patterns as follows: C5H8N2O2 [metabolite ID (MID)
17], C9H17NO (MID 51), C9H19NO (MID 52), C2H4N2O3

(MID 158), and C6H6N4O (MID 202). Only the m/z values
of the other metabolites are listed in Table 2 because of
insufficient isotope peak size. The AUC values of MID 202
(0.765, 95 % CI); 0.649–0.880, p04.47×10−4) gave the best
discriminating ability among these markers (Table 3).

Correlation between biomarker candidates and clinical
parameters

Correlation analysis between these 19 serum biomarker
candidates and currently available clinical parameters
showed all candidate metabolites were significantly corre-
lated with UACR (p<0.009) (Table 4). The correlation
coefficients for creatinine (r00.5701), aspartic acid (r0
0.4993), γ-butyrobetaine (r00.4942), citrulline (r0
0.4300), SDMA (r00.4820), kynurenine (r00.5351), MID
17 (r00.4968), MID 97 (r00.5223), MID 152 (r00.5336),
MID 158 (r00.4980), and MID 202 (r00.6352) were pos-
itively correlated with UACR. Those of azelaic acid (r0–
0.5210), galactaric acid (r0–0.4596), MID 51 (r0–0.4728),
MID 52 (r0–0.4871), MID 96 (r0–0.3085), MID 114 (r0–
0.3638), MID 127 (r0–0.2961), and MID 134 (r0–0.3669)
were negatively correlated. Furthermore, 15 of 19 metabo-
lites were significantly correlated with eGFR (p<0.035).
The correlation coefficients of creatinine (r0–0.8832),
aspartic acid (r0–0.3912), γ-butyrobetaine (r0–0.6492),
citrulline (r0–0.6531), SDMA (r0–0.7111), kynurenine
(r0–0.5627), MID 17 (r0–0.5808), MID 97 (r0–0.7651),
MID 152 (r0–0.7687), MID 158 (r0–0.6302), and MID
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202 (r0–0.7455) showed negative correlation with eGFR.
This indicates that they were positively associated with renal
dysfunction. By contrast, those of azelaic acid (r00.3739),
galactaric acid (r00.4152), MID 51 (r00.2204), and MID
134 (r00.2397) showed positive correlation with eGFR.

MLR model development

For the discrimination of DN (micro-DN and macro-DN)
from non-DN patients, we developed a MLR model. Of the
19 biomarker candidates, γ-butyrobetaine, SDMA, azelaic
acid, MID 114, and MID 127 were selected by stepwise
feature selection as MLR variables. The developed model

yielded high AUC values (0.927, 95 % CI, 0.870–0.983, p<
0.0001, Fig. 2a). The model also yielded high AUC values
(±SD; 0.880±8.62×10−3) in the cross-validation test. In a
bootstrap test, the AUC values were 0.946±0.0262 and
0.895±0.0364 for training and cross-validation, respective-
ly. To evaluate only the eight identified metabolites, we
independently developed a MLR model. Stepwise feature
selection selected aspartic acid, SDMA, azelaic acid, and
galactaric acid as MLR variables. This MLR model also
yielded high AUC values (0.844, 95 % CI, 0.754–0.934,
p<0.0001, Fig. 2b), although it performed slightly worse
than the model with all metabolites, including unknown
peaks. This model also yielded high AUC values (±SD;

A) B)

t[1]

to
[1

]

t[1]

to
[1

]

Fig. 1 OPLS-DA based on comprehensive metabolites data from (A) non-DN (blue dots) and micro-DN (pink triangles) samples and (B) non-DN
(blue dots) and macro-DN (red triangles) samples. The ellipse in each figure indicates the Hotelling T2 (0.95) range for this model

Table 1 Clinical characteristics
of diabetic nephropathy patients

The number in parentheses indi-
cates the number of patients for
which clinical values were
missing. The p values were cal-
culated using the data from the
patients without missing values.
Data are means±SD
aSignificantly different com-
pared to non-DN group
bSignificantly different com-
pared to micro-DN group

Non-DN Micro-DN Macro-DN p value

Number 20 32 26

Male/Female 9/11 22/10 17/9

Age (years) 57.5±12.9 66.6±9.2a 67.3±8.7a 0.0226

BMI (kg/m2) 26.9±5.0 24.6±3.4 (1) 24.8±3.0 0.3074

HbA1c (%) 6.8±1.0 7.2±1.1 6.8±0.7 0.3931

UACR (mg/g) 12.1±6.7 103.9±77.8a 1055.3±741.3a, b <0.0001

Creatinine (enzymatic, mg/dL) 0.71±0.18 0.84±0.28 1.39±0.66a,b <0.0001

Triglycerides (mg/dL) 134.6±131.5 133.5±55.2 179.7±110.3a (3) 0.0172

Cholesterol (mg/dL) 190.4±53.5 (2) 198.5±25.7 (2) 218.0±41.9 (1) 0.0838

HDL cholesterol (mg/dL) 56.3±18.9 50.9±14.6 52.9±21.1 (1) 0.5011

LDL cholesterol (mg/dL) 120.4±31.7 120.5±26.2 (1) 125.8±34.1 (1) 0.8421

Systolic BP (mmHg) 132±21 143±23 152±22a 0.0083

Diastolic BP (mmHg) 74±13 79±14 81±10 0.0711

eGFR (mL/min/1.73 m2) 81.9±24.0 70.5±21.9 47.2±25.6a,b <0.0001

Medication (number)

Diabetic drug 17 27 25

Hypolipidemic drug 10 16 14

Antihypertensive drug 10 19 22
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0.792±1.21×10−2) in the cross-validation test. In a boot-
strap test, the AUCs were 0.875±0.0419 and 0.820±0.0543

for training and cross-validation, respectively. These results
indicate that the developed model is sufficiently accurate,
specific, and general.

Discussion

The aim of this study was to obtain metabolic markers for
early detection of DN from patient serum samples. We used
CE-MS-based metabolome analysis to find differences in
the serum metabolites from non-DN, micro-DN, and macro-
DN samples. OPLS-DA with 289 metabolites clearly sepa-
rated non-DN from macro-DN. Adequate separation of
micro-DN from non-DN was also achieved. These results
show that OPLS-DA is useful in this type of analysis. The
resultant S-plot of the developed OPLS-DA model identi-
fied 19 metabolites that were major contributors to the
separation of macro-DN from non-DN (|p(corr)|>0.5).
These metabolites showed a gradual increase or decrease
with progressive development of nephropathy. Among
them, eight metabolites were identified, and these markers
are discussed in comparison with other published reports
below.

The concentration of serum creatinine was significantly
increased in the micro-DN and macro-DN groups compared
with the non-DN group (p<0.0001), and positively correlated
with UACR (r00.5701, p<0.0001) and negatively correlated

Table 2 The 19 serum biomarker candidates that statistically differentiated the different DN stages

MID Modea m/z Non-DN Micro-DN Macro-DN p value Formula Metabolite

11 C 114.067 0.501±0.153 0.612±0.209 1.052±0.506 <0.0001 C4H7N3O Creatinine

17 C 129.067 0.046±0.035 0.065±0.049 0.125±0.079 <0.0001 C5H8N2O2

29 C 134.046 0.126±0.025 0.141±0.041 0.170±0.036 <0.0001 C4H7NO4 Aspartic acid

39 C 146.118 0028±0.007 0.032±0.008 0.039±0.010 <0.0001 C7H16NO2 γ-Butyrobetaine

51 C 156.139 0.006±0.005 0.005±0.004 0.001±0.003 0.0005 C9H17NO

52 C 158.154 0.063±0.020 0.055±0.022 0.040±0.012 0.0007 C9H19NO

69 C 176.104 0.194±0.053 0.199±0.060 0.275±0.081 0.0005 C6H13N3O3 Citrulline

78 C 203.150 0.006±0.002 0.007±0.002 0.010±0.005 0.0004 C8H18N4O2 SDMA

82 C 209.093 0.010±0.004 0.011±0.005 0.016±0.005 0.0002 C10H12N2O3 Kynurenine

96 C 243.184 0.026±0.013 0.019±0.012 0.015±0.007 0.0301

97 C 244.106 0.0006±0.001 0.0009±0.001 0.002±0.002 0.0003

114 C 276.128 0.008±0.006 0.006±0.004 0.003±0.003 0.0104

127 C 302.197 0.106±0.050 0.079±0.047 0.062±0.028 0.0372

134 C 316.213 0.010±0.009 0.006±0.007 0.003±0.002 0.0158

152 A 96.960 0.216±0.063 0.243±0.063 0.341±0.103 <0.0001

158 A 103.014 0.003±0.002 0.004±0.002 0.005±0.002 0.0001 C2H4N2O3

202 A 149.049 0.030±0.006 0.034±0.009 0.051±0.019 <0.0001 C6H6N4O

232 A 187.098 0.020±0.013 0.017±0.011 0.009±0.004 <0.0001 C9H16O4 Azelaic acid

246 A 209.031 0.029±0.012 0.024±0.009 0.016±0.013 <0.0001 C6H10O8 Galactaric acid

aMode “C” and “A” indicate that the candidate metabolites were obtained in cationic and anionic analysis, respectively

The relative ratio of peak area of each metabolite is shown as the mean±SD

Table 3 AUC values for individual markers

Metabolite AUC 95 % CI p value

Creatinine 0.7526 0.6423 0.8629 8.06×10−4

MID 17 0.7319 0.6128 0.851 2.09×10−3

Aspartic acid 0.7069 0.5871 0.8267 6.05×10−3

γ−Butyrobetaine 0.7379 0.6149 0.8609 1.60×10−3

MID 51 0.644 0.5021 0.7858 0.0561

MID 52 0.7078 0.5853 0.8302 5.84×10−3

Citrulline 0.6431 0.5158 0.7704 0.0576

SDMA 0.731 0.6098 0.8522 2.18×10−3

Kynurenine 0.7284 0.6122 0.8447 2.44×10−3

MID 96 0.6828 0.5475 0.818 0.0153

MID 97 0.6655 0.5396 0.7914 0.0281

MID 114 0.6836 0.5399 0.8274 0.0148

MID 127 0.6707 0.5321 0.8093 0.0235

MID 134 0.6552 0.5102 0.8001 0.0395

MID 152 0.7302 0.6048 0.8555 2.26×10−3

MID 158 0.7108 0.5809 0.8407 5.16×10−3

MID 202 0.7647 0.6492 0.8801 4.47×10−4

Azelaic acid 0.731 0.6151 0.8469 2.18×10−3

Galactaric acid 0.7591 0.6169 0.9012 5.89×10−4
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with eGFR (r0–0.8832, p<0.0001). Accumulation of serum
creatinine was also observed in DN patients by metabolic
analysis [19]. In clinical practice, creatinine is widely used
as a marker of DN that reflects the renal function. Although
serum creatinine had high specificity for detecting decreased
GFR, the sensitivity is not sufficient because its levels do not
significantly increase until the GFR is reduced to less than
50 % of normal levels [20].

The levels of amino acids, including aspartic acid (p<
0.0001), citrulline (p00.0005), SDMA (p00.0004), and

kynurenine (p00.0002), were significantly elevated in the
DN groups compared with the non-DN group. These metab-
olites showed high positive correlations with UACR
(aspartic acid, r00.4993, p<0.0001; citrulline, r00.4300,
p<0.0001; SDMA, r00.4820, p<0.0001; kynurenine, r0
0.5351, p<0.0001) and negative correlations with eGFR
(aspartic acid, r0–0.3912, p00.0004; citrulline, r0–
0.6531, p<0.0001; SDMA, r0–0.7111, p<0.0001; kynure-
nine, r0–0.5627, p<0.0001). Aspartic acid and citrulline are
involved in the urea cycle. Urea, is a major end product of

Table 4 Correlation analysis
between the 19 biomarker can-
didates and clinical parameters
(urinary albumin-to-creatinine
ratio (UACR) or estimated glo-
merular filtration rate (eGFR))

ap<0.001
bp<0.01
cp<0.05

MID Metabolite UACR eGFR

Coefficients p value Coefficients p value

11 Creatinine 0.5701 <0.0001a −0.8832 <0.0001a

17 0.4968 <0.0001a −0.5808 <0.0001a

29 Aspartic acid 0.4993 <0.0001a −0.3912 0.0004a

39 γ-Butyrobetaine 0.4942 <0.0001a −0.6492 <0.0001a

51 0.4728 <0.0001a 0.2204 <0.0001a

52 −0.4871 <0.0001a −0.0678 0.053

69 Citrulline 0.4300 <0.0001a −0.6531 <0.0001a

78 SDMA 0.4820 <0.0001a −0.7111 <0.0001a

82 Kynurenine 0.5351 <0.0001a −0.5627 <0.0001a

96 −0.3085 0.006b 0.1975 0.083

97 0.5223 <0.0001a −0.7651 <0.0001a

114 −0.3638 0.001b 0.1392 0.224

127 −0.2961 0.009b 0.2035 0.074

134 −0.3669 0.001a 0.2397 0.035c

152 0.5336 <0.0001a −0.7687 <0.0001a

158 0.4980 <0.0001a −0.6302 <0.0001a

202 0.6352 <0.0001a −0.7455 <0.0001a

232 Azelaic acid −0.5210 <0.0001a 0.3739 0.0007a

246 Galactaric acid −0.4596 <0.0001a 0.4152 0.0002a
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Fig. 2 ROC curve analyses in combination with (A) γ-butyrobetaine, SDMA, azelaic acid, MID 114, and MID 127, and (B) aspartic acid, SDMA,
azelaic acid, and galactaric acid to discriminate non-DN and DN patients
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nitrogen metabolism, and is produced by free ammonia and
aspartic acid. Citrulline is normally taken up by the kidneys
and converted to urea via arginine. Chuang et al. found
significant accumulation of urea cycle intermediates in the
patients with end-stage renal disease [21]. Because the
kidneys are important in conversion of citrulline to arginine,
the increase in the serum level of citrulline in DN patients
could be attributed to degradation of this function.

SDMA and asymmetric dimethylarginine (ADMA),
which is a structural isomer of SDMA, are formed by the
enzymatic methylation of arginine residues within proteins.
These metabolites have been identified as biomarkers for
chronic kidney disease [22]. ADMA is metabolized by
dimethylarginine dimethylaminohydrolase (EC 3.5.3.18) in-
to citrulline and dimethylamine in the kidneys, whereas
SDMA is excreted directly into the urine without further
modification [23]. In this study, ADMA was under the
detection limit, but SDMA was positively correlated with a
decrease in function of kidney. Therefore, SDMA is a more
sensitive marker than ADMA of various renal diseases,
including DN.

Tryptophan is metabolized to kynurenine and further
metabolized to acetyl-CoA and NAD in the tryptophan-
kynurenine pathway. The rate limiting enzymes of this path-
way are indoleamine 2,3-dioxygenase (EC 1.13.11.52) in
the kidney and tryptophan 2,3-dioxygenase (EC 1.13.11.11)
in the liver. Both these enzymes metabolize tryptophan to N-
formylkynurenine, and N-formylkynurenine is subsequently
catabolized to kynurenine. Saito et al. showed the peripheral
kynurenine pathway accelerates in renal insufficient rats,
and the reaction rate was positively correlated with the
severity of the case [24]. They also found increased serum
kynurenine concentrations reflected increased tryptophan
2,3-dioxygenase and decreased kynureninase (EC 3.7.1.3)
activity in the liver [24]. Integration of profiling of these
enzyme activities and metabolites will increase understand-
ing of these mechanisms.

We detected a significant increase in γ-butyrobetaine in
DN patients (p<0.0001). Toyohara et al. showed a negative
correlation between γ-butyrobetaine and eGFR in plasma
from the patients with chronic kidney disease [25]. Because γ-
butyrobetaine is converted to L-carnitine by γ-butyrobetaine
dioxygenase (EC 1.14.11.1), it is assumed the increased γ-
butyrobetaine arises from inhibition of this enzyme in the
kidney.

The levels of azelaic acid (p<0.0001) and galactaric acid
(p<0.0001) were significantly lower in the DN groups than
the non-DN group. These metabolites also showed high
negative correlations with UACR (azelaic acid, r0–
0.5210, p<0.0001; galactaric acid, r0–0.4596, p<0.0001)
and positive correlations with eGFR (azelaic acid, r0
0.3739, p00.0007; galactaric acid, r00.4152, p00.0002).
Azelaic acid is a saturated C9 dicarboxylic acid derived

from oxidation of fatty acids and inhibits the generation of
reactive oxygen species on neutrophils [26]. Galactaric acid,
is a natural product found in various fruits, and acts as a
growth substrate for many organisms, including Escherichia
coli [27]. However, biological mechanisms of decreased
serum azelaic acid and galactaric acid after onset DN need
to be clarified.

In this study, the obtained 19 metabolites showed rela-
tively high separation abilities (AUC values of receiver
operating characteristic curves 0.643–0.765, Table 3). To
increase the separation ability, we then applied a MLR
model to this dataset. The developed MLR model included
five metabolites, γ-butyrobetaine, SDMA, azelaic acid,
MID 114, and MID 127. This model had a higher AUC
value for diagnosis of DN (0.927, p<0.0001) than single
markers, and shows the use of multiple markers is advanta-
geous (Fig. 2a). However, this model contained two uniden-
tified metabolites. The model using only identified
metabolites was even simpler and more versatile for actual
diagnosis because it could be used with quantification by
another technique, such as LC, LC-MS, or an enzymatic
method. Thus, we developed another MLR model using
only the identified metabolites, aspartic acid, SDMA, aze-
laic acid and galactaric acid (Fig. 2b). This model showed
high separation ability (AUC value 0.844, p<0.0001), and
could also be used to diagnose DN. However, there are
several limitations to be acknowledged for this study. For
example, the developed model should be further validated
using larger and independent new datasets. In addition,
although we evaluated the generalization ability of the de-
veloped model using cross-validation, the specificity of the
model was not assessed. Especially, the specificity for DN
using data obtained from study of other kidney diseases
(e.g., kidney cancer) should be addressed in future study.

In conclusion, we applied CE-MS-based metabolome
profiling to serum samples from diabetic patients with or
without existing DN. Biomarker candidates for the early
diagnosis of DN were obtained. Although a further valida-
tion study is needed, this technique has potential as a tool for
biomarker discovery studies.
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