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Abstract Mass-spectrometry-based proteomics is continuing
to make major contributions to the discovery of fundamental
biological processes and, more recently, has also developed into
an assay platform capable of measuring hundreds to thousands
of proteins in any biological system. The field has progressed at
an amazing rate over the past five years in terms of technology
as well as the breadth and depth of applications in all areas of the
life sciences. Some of the technical approaches that were at an
experimental stage back then are considered the gold standard
today, and the community is learning to come to grips with the
volume and complexity of the data generated. The revolution in
DNA/RNA sequencing technology extends the reach of proteo-
mic research to practically any species, and the notion that mass
spectrometry has the potential to eventually retire the western
blot is no longer in the realm of science fiction. In this review,
we focus on the major technical and conceptual developments
since 2007 and illustrate these by important recent applications.
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Abbreviations
AP Affinity purification
DDA Data-dependent acquisition
ESI Electrospray ionization
HCD Higher-energy collision-induced dissociation
HDAC Histone deacetylase
HPLC High-pressure liquid chromatography
ICP Inductively coupled plasma
IMAC Immobilized metal affinity chromatography
iTRAQ Isobaric tags for absolute and relative quantification
LC Liquid chromatography
MRM Multiple reaction monitoring
MS Mass spectrometry
MS/MS Tandem mass spectrometry

PAI Protein abundance index
PrEST Protein epitope signature tag
PSAQ Protein standard absolute quantification
PSM Peptide-to-spectrum match
PTM Post-translational modification
QTOF Quadrupole time of flight
SILAC Stable isotope labeling with amino acids in cell

culture
SRM Selected reaction monitoring
TMT Tandem mass tag
UPLC Ultra-high-pressure liquid chromatography
XIC Extracted ion chromatogram

Introduction

Investigating living systems at the protein level is continu-
ing to provide important insights into many biological pro-
cesses across all kingdoms of life. Mass spectrometry (MS)-
based proteomics [1] has fundamentally changed the way in
which biological systems are interrogated because of its
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ability to measure thousands of proteins and posttranslation-
al modifications (PTMs) in parallel. This enables investiga-
tions at all levels of biological complexity, ranging from
protein complexes to human patient populations [2]. Where-
as 5 years ago, most proteomic experiments mostly enumer-
ated the protein constituents of a biological system,
quantitative measurements are at the heart of practically
every proteomic study today. This shift was once more
significantly driven by developments in MS and associated
sample preparation, separation, and data analysis methods,
and MS is now the de facto standard for quantitative meas-
urements in proteomics. Numerous experimental strategies
and schemes have been devised, some of which have come
and gone, whereas others have been adopted more broadly.
The rough division of the proteomic workflow into (1)
sample preparation, (2) protein and peptide separation, (3)
MS, and (4) data analysis allows scientists to put together
modular workflows incorporating elements that fit best for a
particular task at hand (Fig. 1). Important such modules
include stable-isotope encoding of proteins and peptides,
high-resolution and multidimensional liquid chromatogra-
phy (LC), and targeted and discovery-type MS, as well as
tailored signal processing algorithms, database searching
tools, and downstream biostatistics.

We last reviewed the field for this journal in 2007 [3],
when we explained the main concepts and methods. In this
update, we focus the presentation on such methods and
applications that have been adopted widely, extension to
these methods, and a number of new ideas which show
considerable promise. The use of stable-isotope coding of
proteins and peptides is now commonplace, but so-called

label-free quantification strategies are also increasingly suc-
cessful (Fig. 1). There is a clear trend in peptide LC toward
increasing peak capacity, e.g., by using ultra-high-pressure
reversed-phase systems as well as two-dimensional LC sep-
arations employing crude (i.e., low fraction number) first-
dimension separations using, e.g., peptide charge [4]. Many
new mass spectrometers based on triple-quadrupole, quad-
rupole time-of-flight (QTOF), and Orbitrap technology have
been introduced, all of which are characterized by drastical-
ly improved sensitivity (ten to 50 times) and data acquisition
speed (five to ten times). These modern LC-MS systems are
capable of identifying and quantifying 5,000–10,000 pro-
teins from a given proteome [5, 6]. The massive increase in
primary data has spurred the development of a large collec-
tion of commercial and public software tools for protein
identification and quantification, some of which have been
assembled into pipelines [7, 8] designed to enable noninfor-
matics scientists to analyze and interrogate their data. As for
any other large-scale data scenario, proteomic data are often
“noisy” or incomplete, which requires the right level of
statistical treatment [9]. Much has been tried and tested in
this area in the past few years, and one important conclusion
is that there is no “one size fits all” type of statistics for
quantitative proteomics data. This has important implica-
tions not only for the interpretation of individual results, but
also for the development of (too restrictive, too loose) com-
munity standards and journal policies.

The increased technical capabilities of proteomics have
given rise to an amazing growth of biologically, biomedi-
cally, or pharmacologically motivated fields of application.
For instance, MS-based proteomics is challenging traditional

Fig. 1 Common quantitative mass spectrometry (MS)-based proteomics
workflows. Blue boxes and yellow boxes represent two experimental
conditions. Horizontal lines indicate when samples are combined.

Dashed lines indicate the points at which experimental variation and thus
quantification errors can occur. (Adapted from [3, 230])
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hypothesis-driven research in basic biology (i.e., one protein
at a time) because the technology allows the massive multi-
plexing of primary data generation with generally better qual-
ity than established methods such as western blots. This may
be illustrated by the recent “explosion” of quantitative data on
protein modifications such as phosphorylation and acetylation
[10, 11] which has a profound impact on how cell signaling
and epigenetics research is developing. Similarly, in the area
of protein biomarker discovery, LC-MSmethods are challeng-
ing traditional assays (such as ELISAs) because the need for
the generation of high-quality antibodies is markedly reduced
by the ability of the mass spectrometer to identify and quantify
a protein unambiguously and accurately from a biofluid di-
rectly or following enrichment using straightforward-to-
generate peptide antibodies [12]. Drug discovery is another
beneficiary of the above-mentioned advances in technology,
as quantitative chemoproteomics in particular can now be
used more routinely to identify the spectrum of protein targets
of a pharmacologically active substance in an unbiased way or
to elucidate its molecular mechanism of action in a relevant
model system [13]. In the following, we review the different
modules of quantitative MS with extra emphasis on recent
developments in label-free approaches as well as the analysis
of quantitative MS data and thereby also hope to provide
readers with some ideas with respect to finding the right
technical approach for a particular application.

Metabolic labeling

The general idea behind stable-isotope labeling for peptide
and protein quantification is that the physicochemical prop-
erties of labeled and natural peptides, including the MS
signal response, are largely the same, if not identical. There-
fore, relative and absolute quantification of a sample of
interest can be performed by comparing its MS intensity
with that of a labeled peptide standard present in the same
sample. In metabolic labeling strategies, the isotope label is
introduced into every protein during cell growth and divi-
sion, which generates a labeled standard for every protein in
a sample of interest. It also represents the earliest possible
step in a proteomic workflow, thereby offering both high
quantification accuracy and high precision because system-
atic errors arising from sample handling can be largely
eliminated. Already, introduced more than a decade ago,
one of the most popular metabolic labeling methods is stable
isotope labeling with amino acids in cell culture (SILAC)
[14]. In recent years, several new quantification strategies
using SILAC have been developed (summarized in Fig. 2).
In the classical SILAC experiment (Fig. 2a), typically iso-
topically labeled arginine and lysine (13C, 15N) are added to
the culture medium, in this way ensuring that most of the
peptides following tryptic digestion contain at least one

labeled amino acid. Relative quantification is achieved by
comparing the intensities of the isotope clusters of the
labeled and unlabeled peptides in peptide ion mass spectra.
Combining more than two samples in a single analysis run is
possible; however, the repertoire of useful heavy labeled
amino acids is still limited and, therefore, a maximum of
three samples are typically combined in practice. Extending
SILAC to four of five labels is possible by using deuterated
amino acids; however, as this may lead to retention time
shifts during reversed-phase LC (deuterium isotope effect)
[15] and hence hamper accurate quantification, deuterated
metabolic labels are not frequently used. Another clear
disadvantage of multiplexing SILAC-labeled samples is the
possibility of overlapping isotope clusters, complicating
proper quantification (see “Analysis of quantitative MS data”).

A relative new variation on the SILAC idea is the so-
called pulsed SILAC method (Fig. 2b). Essentially, this is
the classical pulse-chase experiment but using stable argi-
nine and lysine isotopes rather than radioactive amino acids.
The first such experiments were used to measure protein
turnover in cell lines and even model organisms. Examples
include the measurement of the accumulation and degrada-
tion of ribosomal proteins in the nucleus [16], the turnover
of peptides presented by the major histocompatibility com-
plex [17], and chicken muscle protein turnover. In those
types of experiments, cells or model organisms are pulse-
labeled with heavy isotopes for a certain period of time, and
subsequently the protein turnover can be estimated by de-
termining the ratios of heavy and light peptides. However,
when introducing a differential treatment into this scheme
(say, a drug treatment), one can no longer distinguish the
effect of the treatment from the normal turnover kinetics of
the cells. The refined pulsed SILAC strategy developed by
the Selbach group [18] deals with this issue by first culturing
cells in normal (light) medium and only upon some differ-
ential biological treatment are cells transferred to cell culture
medium containing either medium-weight labeled amino
acids or heavy labeled amino acids. After a certain incuba-
tion time, cells from both conditions are harvested and
combined. The heavy-to-light ratio is now a true reflection
of the differences in protein translation between the two
conditions as the already existing proteins (in the light form)
do not influence the measurement. The Mann group [19]
refined the method further to deal with the possibility that
unlabeled amino acids derived from protein degradation
products may be recycled into the newly synthesized pro-
teins rather than using labeled amino acids supplied by the
culture medium, which would lead to an underestimation of
the protein turnover rate. As this study shows, recycling
does occur, but uptake and incorporation of externally sup-
plied labeled amino acids was strongly favored under the
conditions employed. In addition, the same group also
showed that protein turnover can be measured by first
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growing cells in a 1:1 mix of heavy and light SILAC and
subsequently transferring them to 100 % heavy SILAC. In
this way, it becomes easier to measure proteins with slow
turnover without compromising the measurement of pro-
teins with high turnover. Because changes in protein trans-
lation and turnover can be measured for thousands of
proteins in a single experiment, numerous studies have
already taken advantage of the various forms of the pulsed
SILAC method [20–22].

Another quite recent development is the application
of SILAC-labeled cells for the quantification of proteins
from animal or human tissue. In the so-called super
SILAC method, a mixture of different SILAC-labeled
cell lines [23, 24], serves as an internal standard for
quantifying proteins in tissue (Fig. 2c). In contrast to
ordinary SILAC, the super SILAC method is a two-step
procedure in which, first, the proteins from each (unla-
beled) tissue are quantified against the (labeled) refer-
ence standard and, second, the differences between the
tissue samples are quantified by calculating the ratio of
the two SILAC ratios obtained in the first step. The

super SILAC method extends the classical SILAC ap-
proach to tissue analysis without the need for metabol-
ically labeling the animal, which is a significant
practical advantage. In addition, the use of a spike in
the standard obtained from a mixture of cell lines rather
than a from single cell line increased quantification
accuracy because the combined cell lines better repre-
sent the total proteome of a tissue [23]. Although the
approach offers great opportunities for large-scale rela-
tive quantification studies in tissues samples, the limi-
tations lie within the need to produce a reference
standard that does contain (ideally) all proteins present
in the tissue to be analyzed.

Whereas SILAC is mostly used in cell culture (although
even mice have been SILAC-labeled [25]), 15N metabolic
labeling is still used to analyze microorganisms, such as
bacteria and yeast and, to a lesser extent, higher multicellu-
lar organisms such as Arabidopsis thaliana, Caenorhabditis
elegans, Drosophila melanogaster, and mice (more compre-
hensively reviewed in [26]). In contrast to SILAC, which
adds a fixed number of labels to a peptide (mostly just one

Fig. 2 The use of stable
isotope labeling with amino
acids in cell culture (SILAC) in
different quantification
strategies. a Original SILAC
setup as introduced in 2002 by
Ong et al. [14]. Cells are grown
in normal medium (light) or are
metabolically labeled with
stable-isotope-labeled amino
acids (heavy). Following, e.g.,
an external stimulus, cells are
mixed and samples are mea-
sured together by liquid chro-
matography (LC)–tandem MS
(MS/MS). The ratio of heavy to
low signals in peptide mass
spectra is a measure of the rel-
ative change in protein expres-
sion in response to the external
stimulus. b In the pulsed
SILAC approach, cells are
grown in normal medium and
pulse-labeled for a certain time
with heavy SILAC. The ratio of
heavy to low signals in such
experiments is a measure of
protein synthesis and degrada-
tion. c In the super SILAC
strategy, unlabeled tissues from,
e.g., an animal model system,
are compared with a represen-
tative mixture of heavy-SILAC-
labeled cell lines that act as a
common internal standard. The
ratio of two (or more) such
experiments allows comparison
of protein expression between
animals
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heavy Lys or Arg), the number of 15N labels varies from
peptide to peptide, thus complicating subsequent data anal-
ysis. This is likely why 15N metabolic labeling is not so
frequently used in proteomics. Finally, the SILAC approach
has also been explored for the absolute quantification of
proteins [27], the details of which are presented in
“Absolute quantification.”

Chemical protein and peptide labeling

Labeling of proteins and peptides via chemical means after
biosynthesis has become very widely used in proteomics in
recent years. We have discussed the many published
approaches extensively before in this journal [3] and, there-
fore, we confine ourselves here to a select few that are either
widely used or have shown significant potential. In chemical
protein and peptide labeling methods, any reactive group
may be modified using stable-isotope labels. However, most
current techniques target the peptide/protein N-terminus and
the ε-amino group of lysine. Perhaps the two most popular
chemical labeling methods at this time are tandem mass tags
(TMTs) and isobaric tags for absolute and relative quantifi-
cation (iTRAQ), both of which target primary amines and
are so-called isobaric tags [28–30]. These reagents are built
such that peptides from differentially labeled samples have
identical mass (isobaric) but can be distinguished following
fragmentation inside the mass spectrometer by the differen-
tially isotope encoded reporter ions in the lower mass range
region of tandem MS (MS/MS) spectra. The intensities of
the reporter ions form the basis for quantification. In con-
trast to most other labeling methods, isobaric labeling is
well suited for the multiplexed analysis of different biolog-
ical samples because (1) the reagents are available in up to
eight different versions, (2) the complexity of LC separa-
tions is not increased because the labeled peptides are pre-
cisely co-eluted, and (3) the complexity of peptide mass
spectra is not increased because the differentially labeled
peptides are isobaric. As a result, the often observed reduc-
tion in the number of proteins that can be identified and
quantified from multiplexed analysis using, e.g., SILAC,
can thus be avoided. As the reporter ions of isobaric tagging
have masses of less than 150 Da, the ion trap mass
spectrometer as one of the major workhorses in proteo-
mics could initially not be used for such analysis because
this instruments cannot efficiently trap peptide fragment
ions of low m/z values (typically 20-30 % of the peptide
precursor m/z). Today, these issues have been overcome
by methods such as pulsed Q dissociation with linear ion
traps [31–33] as well as higher-energy collision-induced
dissociation (HCD) [31, 34, 35] and electron transfer
dissociation [36–38] with recent generations of Orbitrap
instruments.

A common problem in isobaric labeling strategies is the
interference of contaminating near isobaric ions in a sample
that are co-isolated and co-fragmented and thereby compro-
mise accuracy in protein quantification measurements (see
also later) [31, 39]. Recently, two different methods have
been introduced that address this issue. In the MS3-based
method published by the Haas laboratory [40], the most
intense fragment ion of the MS2 spectrum, which is used
for deriving sequence information, is selected for subse-
quent fragmentation by HCD, from which reporter ion in-
tensities are derived. This method effectively eliminates
interference of near isobaric ions [40] but requires special-
ized software to connect the information from the different
spectra. In the gas-phase purification method published by
the Coon group [41], the precursor ion is first isolated and
charge-reduced to increase the m/z differences between the
interfering peptide species and the charge-reduced ion is
then selected for HCD fragmentation, generating both se-
quence information and reporter ion intensities for quantifi-
cation. Both methods have downsides notably in that they
reduce the sensitivity and data acquisition speed.

Alongside the isobaric labeling methods discussed above,
two noteworthy new approaches have gained popularity.
The first is the mTRAQ label, which uses the same chem-
istry as iTRAQ but adds isotope labels to peptides such that
these are distinguishable in peptide mass spectra rather than
tandem mass spectra [42]. These reagents are mainly used
for the rapidly growing area of targeted proteomic assays
using selected ion monitoring (see later). A very recent
report, however, indicated that iTRAQ labeling is superior
to the mTRAQ method for global, large-scale protein and
phosphopeptide quantification [43]. The second new meth-
od is stable-isotope dimethyl labeling, which offers a
straightforward alternative for the chemical labeling of pro-
tein digests [44–47]. As in the methods described above, all
primary amines of peptides (i.e., N-termini and Lys side
chains) are labeled by formaldehyde in combination with
reduction of the initially formed Schiff base using cyano-
borohydride. Combining different isotopomers of the
reagents theoretically results in many possible label combi-
nations with distinct mass shifts. In practice, however, du-
plex and triplex reactions that introduce mass differences of
a minimum of 4 Da are most commonly used to avoid issues
with overlapping isotope envelopes. Dimethyl labeling has a
number of features that make it attractive for many labora-
tories: first, the reagents are very inexpensive; second, the
labeling reaction can be performed either in solution or
directly in reversed-phase chromatography columns (or
solid-phase-extraction devices), which avoids losses during
sample workup; third, protein quantities from micrograms to
milligrams can be labeled practically without a change in
protocol or reagent cost. One limitation is the fact that
deuterium is used as part of the label, which can lead to
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small retention time differences of differentially labeled
peptides during LC-MS/MS analysis. This can, however,
be dealt with using data analysis software, such as
MaxQuant, that integrates the signal over the whole
chromatographic peak rather than deriving the relative
quantities from a single MS1 scan [7].

In principle, intact proteins can also be labeled by any of
the above-mentioned methods. Although conceptually at-
tractive (samples may be combined before digestion, thus
avoiding sources of quantification error in this step), this
route is rarely followed in practice [30, 48] because of issues
of incomplete, variable, or nonspecific labeling as well as
limiting the effectiveness of proteases such as trypsin and
Lys-C. The above-mentioned factors typically increase sam-
ple complexity and often dilute the signal and thus render
quantification more difficult than in peptide labeling.

LC-MS/MS analysis of peptides

Shotgun proteome digestion approaches generate vastly
complex mixtures of (mostly tryptic) peptides that constitute
the analytes for both the identification and quantification of
proteins. The combination of nanoscale ion pairing
reversed-phase LC and electrospray ionization (ESI) MS/
MS is still by far the dominating analytical technology for
this purpose. The past 5 years has seen notable advances in
peptide separation and MS technology, and a number of
trends have emerged in the use of these technologies for a
further diversified set of applications. As far as LC separa-
tions are concerned, one can identify two major trends. The
first trend is that two-dimensional LC separations are be-
coming more and more popular. These are designed to
enhance the detection of posttranslationally modified pep-
tides (by specific enrichment), to increase the extent of
proteome analysis (i.e., detecting more peptides and thus
proteins), or to improve quantification accuracy (less matrix
interference). Whereas a few years ago strong cation ex-
change chromatography was primarily used as the first
separation dimension (e.g., enriching acetylated and phos-
phorylated peptides in early fractions [49, 50]), techniques
such as strong anion exchange [51] and high-pH reversed-
phase chromatography [52] are increasingly used to boost
the number of identified and quantified proteins in a pro-
teome. At the same time, titanium dioxide chromatography
[53] has developed into the second standard for the enrich-
ment of phosphopeptides alongside the classical immobi-
lized metal affinity chromatography (IMAC) technique [54].
Hydrophilic interaction chromatography is being increas-
ingly explored to achieve high proteome coverage and
phosphopeptide enrichment at the same time [55, 56]. In
addition to expanding the accessible proteome space, two-
dimensional (or multidimensional) LC separations also

reduce sample complexity and, therefore, also often improve
quantification accuracy because issues with overlapping
isotope signals in mass spectra of high peptide complexity
can be substantially reduced [57]. Somewhat against earlier
expectations, two-dimensional LC separations are currently
mainly performed “off-line” rather than “online.” This has
mainly practical reasons; the physical separation of the two
chromatographic steps allows more flexibility in terms of
matching sample quantities and solvent systems between the
separation dimensions. The second major trend in LC sep-
arations concerns the reversed-phase chromatography sys-
tem that is directly coupled to the mass spectrometer. Here,
the use of long columns (more than 20 cm), packed with
small particles (3 μm or less), and long gradient times (2 h
or more) is becoming more and more popular as a means to
increase peak capacity [58]. This in turn requires the use of
ultra-high-pressure LC (UPLC) systems or standard high-
pressure LC (HPLC) equipment operating at higher temper-
ature (40-60 °C) in order to deal with the resulting high
backpressure [59–61]. Average chromatographic peak
widths of 4-10–s (full width at half maximum) can now be
obtained fairly routinely (Fig. 3), which not only increases
the separation power [62] but also increases the sensitivity
and quantitative accuracy of the MS detection system
(higher sample concentration). A currently emerging ap-
proach with significant future potential is to perform sepa-
rations in a chip-based format [63–65]. One expects these
will eventually become attractive for nonexpert users and
for applications with high numbers of similar samples.
However, presently the consumable costs for such chips
are still quite high and not all available systems can be
combined with all mass spectrometers. We will therefore
have to wait to see if the conceptual advantages of chip
systems can be realized in practice.

The performance of mass spectrometers in terms of sen-
sitivity, speed, mass accuracy, and resolution is continuing
to rise at a rapid rate and there is currently no sign of this
slowing. This is particularly relevant for quantitative pro-
teomics as most investigated proteomes are very complex
(in terms of both numbers of proteins and dynamic expres-
sion range) and sample availability is low for many relevant
biological systems under investigation. The main platforms
for quantitative proteomics today are orbital traps, QTOF
instruments, and triple-quadrupole instruments mostly using
ESI as an interface for chromatographic systems and
collision-induced dissociation as the peptide fragmentation
technique (with electron transfer dissociation playing a use-
ful complementary role for large, posttranslationally modi-
fied or cross-linked peptides [66]). Together, these
instruments enable the characterization of proteomes to a
depth of 5,000-10,000 proteins [5, 6]. Today, the two main
approaches for the quantification of peptides and proteins
from LC-MS data are (1) extracting the LC-MS intensities
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of peptide precursor ions in the classical data-dependent
aquisition (DDA) experiment in which peptide precursors
are subjected to fragmentation (sequencing) as they are
eluted from the LC system and (2) extracting the LC-MS/
MS intensities of peptide fragment ions (or iTRAQ/TMT
reporter ions) of peptides either from DDA experiments or
from so-called selected reaction monitoring experiments
(SRM; also often referred to multiple reaction monitoring,
MRM) in which LC-MS monitors a predefined list of pep-
tide and fragment ions corresponding to the proteins of
interest (discussed in more detail later and recently reviewed
in [67]). The main merits of the two approaches are that in
the DDA experiment, there is no need to define the peptides
for quantification before doing the experiment (needed for
SRM), and the SRM experiment is exquisitely sensitive
(because LC-MS collects the signal for a given peptide even
if the peptide precursor cannot be detected above the noise).
Both approaches can be highly selective and yield accurate
quantification data (coefficients of variations below 20 %),
which is mainly determined by the peptide concentration in
a sample and the complexity of the proteome analyzed (the
more complex the proteome, the less accurate the

quantification of all proteins, particularly those of lower
abundance). Despite significant progress, further improve-
ments are still required because the molecular complexity
and dynamic expression range of proteomes still over-
whelms current LC-MS systems [68] despite their now
having sensitivity in the attomole range, total peak capaci-
ties of more than 100,000 peaks per hour, a sequencing
speed of two to ten peptides per second, and sophisticated
on-the-fly decision making algorithms [68–71].

It has been argued that to overcome these issues, the MS
data acquisition regimen needs to change from the current
sequential mode of operation (data-dependent, one peptide
at a time) to a parallel mode of operation (data-independent,
many peptides at a time) akin to modern DNA/RNA se-
quencing methods [72]. Some steps have been taken toward
this, e.g., by submitting a range of co-eluted peptide precur-
sor ion masses (say, 10-100 Th) to simultaneous fragmenta-
tion [69, 73, 74] or, indeed, all peptides eluted at the same
time [75, 76]. Peptide identification is achieved in such
experiments by aligning the chromatographic retention
times of the peptide precursor and fragment ions (which
must be precisely the same), and quantification can then

Fig. 3 Examples illustrating advances in LC and MS for isotope
labeling for quantification methods. A Ultra-high-pressure LC of com-
plex proteome digests increases the separation power (peak widths of
4-10 s, full width at half maximum), sensitivity, and accuracy of
quantification. B Peptide mass spectrum at 29-min retention time
showing that dozens of peptides are eluted at the same time, often
negatively affecting the measurement speed of even the most modern

instruments. c Expanded regions of the peptide mass spectrum showing
dimethyl-labeled peptide precursor ions (4-Da mass shift; in either 1:1
ratio, left, or 1:2 ratio, right). Owing to the very high mass resolution,
low mass error, and high dynamic signal intensity range of modern
mass spectrometers, even low-abundance peptides can be accurately
quantified
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be performed by using either the precursor ion or the frag-
ment ion intensities as discussed earlier in this section. The
available literature indicates that these ideas work in princi-
ple, but the challenge clearly is the specificity of identifica-
tion and the accuracy of quantification derived from mixed
peptide and fragment mass spectra [77, 78]. High-resolution
mass spectrometers should have inherent advantages in this
setting because of the high mass accuracy obtained for
peptide precursor and fragment ions, and further specificity
can be provided by the use of additional techniques such as
ion mobility spectrometry, which takes advantage of the
effects of differences in secondary structure (shape) of pep-
tides on the mobility of ions in the gas phase [79]. Albeit
still a niche, parallel data acquisition has great potential and
it will be interesting to follow how these approaches devel-
op (for further aspects of the above-mentioned techniques,
see the next sections on label-free quantification).

Label-free quantification—spectrum count approaches

As the name implies, label-free quantitative methods in MS
aim at quantifying peptides and proteins without the use of
stable-isotope labels. This rapidly growing area in proteo-
mic technology may be divided roughly into methods that
(1) directly utilize a peptide’s response (intensity) in the
mass spectrometer as a quantitative measure and (2) infer
quantity indirectly from, e.g., the number of peptide-to-
spectrum matches (PSMs; spectrum count) obtained for
each protein.

Spectrum count approaches (Table 1) are based on the
observation that the number of PSMs, the number of distinct
peptides identified, and the sequence coverage obtained for
a protein of interest in an LC-MS/MS experiment correlate
with protein quantity. Among these three measures, the
spectrum count has been shown to offer the highest dynamic
range of quantification and the best reproducibility [80–82].
Since we last reviewed the subject, spectrum count
approaches have gained in popularity, in particular for proj-
ects where large sets of experimental data need to be com-
pared (a limitation of all labeling methods). Relative
quantification of protein abundance in sets of samples is
straightforward since it basically only requires comparison
of the spectrum counts for each protein and this information
is typically generated during database searches for protein
identification using conventional search engines. However,
a number of additional considerations should be taken into
account. As any sampling approach, spectrum-count-based
quantification requires a sufficient number of data points
[83]. This is influenced by experimental parameters such as
dynamic exclusion of precursor ions, chromatographic peak
width, and MS instrument scan speed. In addition, protein-
specific parameters are important, such as the length

distribution of the peptides generated by proteolytic cleav-
age (which is different for every protein). This determines
how many different peptides can be detected within the
mass range applied for the MS experiment and thus directly
influences the number of measurable spectrum counts. As a
consequence, relative quantification of very short (i.e., less
than 20 kDa) proteins tends to be more variable than that for
equal amounts of longer proteins. In addition, saturation
effects occur at high protein concentrations, thus limiting
the dynamic range of detectable protein expression.

Once protein identification has been performed, one has
to decide how PSMs should be filtered for protein quantifi-
cation—a task that is far from trivial. Intuitively, one might
apply filters similar to those used for protein identification
(say, 95 or 99 %) [81]. Indeed, limiting the spectrum counts
to high-confidence PSMs has been shown to enable statisti-
cally significant detection of smaller changes compared with
applying less stringent criteria (e.g., threefold vs. fivefold
for an abundant protein in [84]). However, a higher dynamic
range and more robust quantification of low-abundance
proteins has been observed when including low-scoring
PSMs [84, 85]. Another important question associated with
the protein identification process is if or how to weigh
spectrum counts for peptides that are shared between pro-
teins or protein isoforms (the so-called protein inference
problem) [86, 87]. Some insight has come from experiments
using six albumins from different species added to a yeast
lysate digest. The results indicate that the most accurate and
reproducible results were obtained when shared spectrum
counts were distributed to the different albumins proportion-
ally to the number of unique spectrum counts obtained for
each albumin [88].

Since all samples in a label-free study are separately
analyzed by LC-MS/MS, stable and comparable operation
has to be ensured throughout. This is usually best accom-
plished by running all samples in a single sequence in the
same instrument. Nonetheless, some variation even for rep-
licate runs of the same sample is often observed and might
be attributed to small differences in the amounts of loaded
sample, variation in the chromatographic gradient, and the
semirandom nature of data-dependent data acquisition. A
very simple way to account for these variations is to nor-
malize the data for the total number of spectrum counts
determined in each sample [83, 89]. Asara et al. [90] added
an intensity dimension to spectrum counting and showed
that division of the spectrum count by the average total-ion
count in the matching tandem mass spectra resulted in the
accuracy and dynamic range of quantification being sub-
stantially improved and saturation effects often observed for
very high abundance proteins being removed. For example,
LC-MS/MS analyses of 50 fmol and 1 pmol of a tryptic
bovine serum albumin digest yielded only a fourfold differ-
ence in the spectrum counts but a 20.8-fold difference with
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the intensity-adjusted method. Including intensity informa-
tion of PSMs was also reported to be an efficient means to
account for run-to-run variation in replicate experiments
[91]. For each protein, a spectral index was defined as the
sum of all fragment ion intensities of all PSMs in an LC-
MS/MS experiment and was divided by the sum of all
protein spectral indexes obtained in the experiment. When
compared with normalization strategies omitting the inten-
sity dimension, the spectral index strategy achieved superior
normalization. The approach was further refined by sum-
ming up the fragment ion intensities of all PSMs for each
peptide. Differential display of two experiments in this
setting was first performed at the peptide level (considering
only peptides identified in both experiments), and relative

protein quantification can then achieved by averaging the
log 2 ratios obtained for peptides matching a protein [92].
Obviously, from intensity refinements of the spectrum count
idea, it is only a small step to using solely the intensity
dimension of a detected peptide for quantification, which is
the subject of the next section.

Label-free quantification—MS1-intensity-based
approaches

Intensity-based label-free quantification employs the MS
signal response of intact peptides and, by inference, that of
proteins for quantification. In bottom-up LC-MS/MS

Table 1 Selected methods for label-free quantification based on spectrum counting

Method Principle Comments References

Peptide count Use of the number of peptides
for an identified protein as a
measure of abundance

Less useful than spectrum
count

[80]

Spectrum count Use of the number of PSMs for
an identified protein as a
measure of abundance

Higher dynamic range and
better reproducibility than
peptide counting

[81]

MS/MS intensity Average total intensity of all
fragment ion spectra matched
to a protein

Intensity dimension provides extended
dynamic range and better accuracy
than spectrum counting

[90]

PAI and exponentially
modified PAI

Protein abundance index and
exponentially modified PAI
(10PAI-1). PAI is the number of
identified peptides divided by the
number of observable peptides

Implemented in some search
engines such as Mascot.
Designed for absolute
quantification

[165]

Spectrum count/
molecular weight

Spectrum count is divided by the
molecular weight of a protein

Similar to SAF [162]

SAF The spectrum count is normalized
for protein length

Absolute and relative
quantification

[163]

NSAF SAF normalized for the sum of all
protein abundances in the sample

Absolute and relative
quantification

[89, 220]

RSC Includes normalization of run-to-run
variations and a correction factor

Relative quantification [83]

APEX Improves spectral counting by
focusing on counting peptides that
will likely be detected by MS
techniques

Uses machine learning
classification to derive peptide
detection probabilities. This can
be used to predict detectable
peptides for any protein. Absolute
and relative quantification

[145, 166]

SIn Combines spectrum count with
fragment-ion intensity (sum of
all fragment ion intensities of all
PSMs for a protein)

Variants include normalization by the
sum of all protein spectral indexes in
an experiment and normalization for
the length of the protein. Absolute and
relative quantification

[91]

mSCI Number of observed peptides divided
by protein relative identification probability

Conceptually similar to APEX.
Absolute and relative quantification

[231]

RIBAR Average of log 2 peptide ratios for a
protein. Peptide ratios are calculated
using the sum of all fragment ion
intensities across all PSMs

Pairwise relative protein
quantification

[92]

APEX absolute protein expression, MS mass spectrometry, mSCI modified spectrum count index, MS/MS tandem mass spectrometry, NSAF
normalized spectral abundance factor, PAI protein abundance index, PSM peptide-to-spectrum match, RIBAR robust intensity-based averaged ratio,
RSC relative spectral count, SAF spectral abundance factor, SIn normalized signal intensity
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experiments, this is typically accomplished by integrating
the ion intensities of any given peptide over its chromato-
graphic elution profile. Early work by Bondarenko et al. [93,
94] indicated linearity of the signal response over four
orders of magnitude and excellent correlation with the con-
centration of the measured peptide. In comparative experi-
ments, the integrated signal response of individual peptides
is compared between LC-MS(/MS) runs of the different
samples. Changes in protein abundance between the sam-
ples can then be estimated by aggregation of differences
measured for all peptides (or a subset thereof) matching
the protein of interest. This aggregation may take the form
of averaging peptide fold changes or summing up peptide
responses (see “Analysis of quantitative MS data” for more
details). In contrast to stable-isotope labeling, the number of
conditions that can be compared is not predefined (i.e., by
the number of different isotope labels). Hence, and similarly
to spectrum counting, intensity-based relative quantification
is particularly attractive when many samples are to be
compared.

Experimental considerations

Despite the conceptual simplicity of the overall approach,
several experimental considerations have to be taken into
account to ensure robust quantification. Typically, full-scan
survey spectra are used to generate extracted ion chromato-
grams (XICs). Conversely, peptide identification is based on
tandem mass spectra that are acquired either in the same or
in additional LC-MS/MS runs. In either case, it is essential
that the individual XICs can be unambiguously assigned to
the respective peptides. To this end, the use modern mass
spectrometers with high resolving power and high mass
accuracy is advantageous since the former minimizes the
influence of interfering signals from co-eluted peptides of
similar mass and the latter ensures reliable mapping of XICs
to identified peptides.

A robust UPLC/HPLC-MS setup is another important
prerequisite for accurate quantification. Narrow LC peak
widths produce better signal-to-noise ratios also for low-
abundance ions, thus extending the dynamic quantification
range [95, 96]. Retention time stability (on the order of 1 %)
is generally advantageous, particularly in cases where the
identity of a peptide could not be established in all experi-
ments and XICs are therefore mapped solely by aligning
accurate masses and retention times. A further complication
arises from the fact that the ionization efficiency of a peptide
is strongly influenced by the presence of co-eluted species
(peptides and contaminants) [97]. Therefore, shifts in reten-
tion time can also affect ionization efficiency and thus
introduce a bias which may affect the accuracy of quantifi-
cation. In short, a robust LC-MS setup minimizes the chal-
lenges for chromatographic peak alignment software, thus

leading to fewer false assignments and more accurate
quantification.

Many current LC-MS data acquisition schemes aim to
achieve protein identification and quantification simulta-
neously. In the conventional DDA regimen, each survey
scan (MS1, relevant for quantification) is typically followed
by multiple tandem mass spectra (relevant for peptide iden-
tification). However, care must be taken to find the right
balance. On the one hand, precision of quantification is
aided by a large (i.e., eight to ten) number of MS1 scans
across an LC peak for reconstruction of the XICs, but, on
the other hand, maximal protein coverage is achieved by
collecting as many tandem mass spectra as possible. Hence,
maximizing proteome coverage usually sacrifices quantifi-
cation and vice versa [98]. Consequently, the resolution of
the LC system together with the data acquisition speed of
the mass spectrometer dictate where the right balance can be
found. For example, modern QTOF and orbital scanning
mass spectrometers provide productive scan rates of approx-
imately ten scans per second and LC peaks of UPLC sepa-
rations are typically 10 s at the base. Therefore, LC-MS/MS
rates of top10 should be feasible.

As an alternative to the classical DDA experiment, the
Smith laboratory suggested performing separate runs to
establish the identity and for quantification [99–102]. In this
workflow, samples are first analyzed by LC-MS/MS and the
peptide identification results are stored in a database. A
second set of experiments is then performed in LC-MS
mode to obtain optimal quantification data. Software tools
such as VIPER are then employed to match the LC-MS
features (retention time and mass) to the database of identi-
fied peptides. This so-called accurate mass and retention
time tag approach [101, 102] is of particular utility when
large pools of complex samples are analyzed for quantitative
changes such as blood plasma in biomarker studies [103].

Another alternative to data-dependent fragmentation of
precursor ions is data-independent switching between low
and high collision energy conditions in the mass spectrom-
eter whereby all co-eluted peptides are simultaneously frag-
mented [75, 104, 105]. Specialized software then correlates
the elution profiles of fragment masses to reconstruct tan-
dem mass spectra and enable peptide identification and
quantification at the same time [79, 106]. Recent studies
indicate that this strategy enables similar or better proteome
coverage to be achieved compared with DDAwith a QTOF
platform without compromising the precision of quantifica-
tion [107, 108]. In principle, data-independent approaches
also allow the use of fragment ion intensities for label-free
quantification, rather than relying on the signal response of
the intact peptide ions. For example, Gillet et al. [69]
employed a fast scanning, high-resolution double-
quadrupole time-of-flight instrument to cycle repeatedly
through 32 consecutive 25-Da precursor isolation windows
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(so-called swaths). This acquisition setup generates time-
resolved fragment ion spectra for all analytes detectable
within the 4,00-1,200m/z precursor range and a user-
defined retention time window. Combinations of fragment
ions can then be used to identify and quantify peptides over
a large dynamic range (four orders of magnitude) and the
queried peptides can be quantified with reproducibility and
accuracy similar to those in SRM (see later).

Software considerations

In contrast to spectrum counting, intensity-based quantifica-
tion requires additional data extraction and processing. Pro-
cedures typically involve mass calibration, noise and data
reduction steps, followed by feature detection and genera-
tion of peptide elution profiles. In a next step, peptide
features from different LC-MS/MS experiments are aligned
in the time and mass dimensions, and intensities are nor-
malized. Finally, relative quantification is achieved by
matching the intensities of the individual peptide features
across all experiment in the set. An array of software sol-
utions has been developed for this purpose. Public, free
tools include OpenMS [109–111], Viper [101], Maxquant
[7, 112], Mapquant [113], Census [114], and Superhirn
[115]. Commonly used commercial software packages in-
clude Genedata Expressionist, GE Decyder MS, Progenesis
LC-MS, and Mascot Distiller. In addition, several manufac-
turers of MS instrumentation have implemented label-free
quantification capabilities into proprietary software pack-
ages. For a more detailed discussion of available algorithms
and packages, we recommend some excellent specialized
review articles on this subject [73, 116–118].

Recent comparative studies indicate a reasonably good
correlation between intensity-based quantification and spec-
trum counting approaches. At the same time, intensity-based
methods offer better overall performance [119, 120], partic-
ularly when high-performance (mass accuracy, mass resolu-
tion) mass spectrometers are employed. As these and
specialized software and statistical methods (see later) are
becoming increasingly available, intensity-based label-free
methods will continue to gain utility simply because more
and more proteomic applications require the analysis of
many samples.

Selected reaction monitoring

In the last 5 years, enormous progress has been made in
establishing SRM as a technology for precise and accurate
quantification in proteomics. Although it was initially lim-
ited to the simultaneous measurement of a small number of
peptides in complex samples, innovations in instrumenta-
tion and software have now allowed the detection and

quantification of hundreds of analytes in a single experi-
ment. Recent reports have demonstrated the use of SRM as a
directed discovery tool for a diverse set of applications
ranging from biomarker research to protein interaction net-
works, analysis of signaling pathways, and comparative
proteomics [5, 121–123]. Targeted SRM approaches deter-
mine the presence and quantity of a defined set of peptides
by monitoring the generation of (multiple) fragment ions
upon collision-induced dissociation. The pairs of precursor
and fragment m/z values are referred to as “transitions.”
Such transitions are detected with very high sensitivity in
triple-quadrupole mass spectrometers by using the first and
the third mass analyzers as mass filters and monitoring the
signal of the fragment ion over the chromatographic elution
time. Thus, each transition effectively constitutes an inde-
pendent MS assay that allows one to identify and quantify a
specific peptide and, by inference, the corresponding protein
in complex matrices. The technique has been shown to
provide very high sensitivity (femtomole to attomole range)
and a dynamic quantification range covering four to five
orders of magnitude [124].

Setting up SRM assays for a set of proteins is a relatively
slow and iterative process, and the considerable effort in
assay development is therefore mostly undertaken if a de-
fined (and reasonably small) set of peptides has to be mea-
sured in a large number of samples. Building an SRM assay
essentially comprises the following steps: (1) selection of
the most suitable proteotypic peptides, (2) identification of
suitable fragment ions thereof, (3) optimization of instru-
ment parameters for each transition, (4) validation of the
specificity of the assay in the matrix under investigation, (5)
determination of the lower limits of detection and quantifi-
cation in that same matrix, and (6) compilation of the final
assay parameters, including precursor m/z, fragment ion m/z,
elution time, collision energy, and dwell time, for all pep-
tides of interest. We discuss some of these in the following,
but see some excellent specialized articles on the topic for
more details [67, 124, 125]. Suitable peptides for SRM
assays must be unique for the protein of interest to avoid
the generation of misleading results [126]. Such peptides are
frequently selected on the basis of their consistent identifi-
cation in previous experiments. In addition to in-house
generated data, public data repositories such as PeptideAtlas
[127, 128] and PRIDE [129–131] are excellent and con-
stantly growing resources for SRM peptides. If experimental
data are not available, computational approaches allow pre-
diction of the best responding peptides with reasonable
precision [132, 133]. Peptides containing amino acids prone
to chemical modifications (Cys, Met, Trp) and miscleaved
peptides are frequently avoided in order to avoid ambiguous
quantification results. If proteins are present in different
isoforms or are otherwise posttranslationally processed,
multiple peptides covering both conserved and variable
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regions of the protein sequence should be selected to quan-
tify variants [124, 126]. In a next step, transitions to high-
abundance fragment ions are selected to maximize sensitivity.
Traditionally, suitable fragment ions are selected from full
tandem mass spectra acquired with a comparable instrument/
collision cell and this often involves synthesis of the peptide of
interest. More recently, the aforementioned database tools
(PeptideAtlas, SRMAtlas) [134] have become invaluable
resources for method development, particularly for highly
multiplexed SRM assays, and often also provide dedicated
software solutions to assist in the selection process [135] (for a
recent review on available software solutions, see [136]). A
shortcoming of almost any data stored in public repositories is
that the experimental conditions under which the reference
data were acquired are not comprehensively listed and will
likely not perfectly match those in another laboratory. Cali-
bration of collision energies, pressure of the collision gas,
geometry of the collision cell, etc. all influence the relative
abundance of fragment ions to some extent. Consequently,
SRM assays solely built on theoretical data or data from public
repositories might not achieve the best possible sensitivity and
specificity.

Perhaps the most fundamental parameter in building an
SRM assay is its selectivity (i.e., does the assay actually
measure what it is supposed to measure?). Despite the
power of the aforementioned theoretical methods, the selec-
tivity of each transition needs to be evaluated in the sample
matrix under investigation (e.g., a tryptic digest of a cell
extract or blood plasma) in order to learn about the contri-
butions of fragment ions arising from near-isobaric co-
eluted peptides (or other components). The identity of a
particular peptide is typically determined by monitoring
the retention time of individual transitions in SRM traces,
which can be assessed computationally by cross-correlation
analysis [137]. However, full confirmation of peptide iden-
tity typically requires triggering full MS/MS spectra once a
specific transition reaches a predefined threshold [138]. This
requirement significantly impaired the development of mul-
tianalyte SRM assays using triple-quadrupole instruments,
which inherently suffer from relatively slow scan speeds.
The intelligent SRM approach provided a noteworthy solu-
tion to this problem [139]. In this data-dependent SRM
approach, multiple confirmatory transitions (eight to ten) are
triggered close to the peak apex of the actual assay transition.
This generates a pseudo MS/MS spectrum that can be
matched to a reference library, which greatly facilitates the
confirmation of a peptide’s identity and allowsmonitoring of a
relatively high number of analytes at any point in time.

For large-scale SRM experiments, the number of analytes
that can be actually monitored with good sensitivity, preci-
sion, and accuracy depends on the number of transitions
measured for each peptide, the time allocated for measuring
each transition (dwell time), and the lag time between

transitions (interscan delay, required to adjust instrument
parameters and to avoid cross-over between transitions;
see also [125]). An obvious way in which the number of
analytes monitored can be increased is to partition SRM
experiments into small time segments during which only
those peptides are measured that are eluted within that time
window (time-scheduled SRMs [140]). As long as the re-
tention times of the targeted peptides are known (easily
established by prior experiments), the number of analytes
monitored can be drastically increased (say, ten to 50 times)
without compromising sensitivity. The combination of time-
scheduled SRMs with the aforementioned intelligent SRM
approach now allows hundreds of peptides to be quantified
in a single experiment with confidence and sensitivity. Still,
the complexity of proteomic samples impacts sensitivity and
selectivity of SRM experiments performed with triple-
quadrupole instruments. Further selectivity may be gained
by including an ion mobility separation step into an LC-
SRM analyses [141]. In addition, Fortin et al. [142] recently
introduced an MS3-based SRM workflow coined MRM3

that significantly extended the dynamic range and limit of
quantification by a second collision-induced-dissociation
step of the monitored fragment ion in a triple-quadrupole
linear ion trap instrument. At this point, the ion mobility and
the MS3 SRM techniques are not yet ready for high through-
put but their positive impact on the selectivity of SRM
assays has been convincingly demonstrated. It can be ar-
gued that further selectivity can be gained by high mass
resolution and accuracy as this will drastically reduce the
number of possible transition conflicts. The recent intro-
duction of QTOF and quadrupole–Orbitrap instruments
with high data acquisition speed may well provide this
capability, with the added attraction that these mass
analyzers collect the entire fragment ion spectrum, so
the aforementioned measurement of confirmatory transi-
tions would no longer be required. Recent data suggest
that such high-resolution SRM techniques actually out-
perform the triple-quadrupole techniques in terms of the
limit of detection and the limit of quantification (Bruno
Domon, personal communication).

Absolute quantification

The aforementioned approaches all lead to the relative quan-
tification of proteins across samples, but no information is
obtained regarding their absolute quantities or concentra-
tions in a biological sample because the MS response is
different for every (peptide) analyte and is influenced by
the sample matrix. Still, MS-based methods for quantifica-
tion have been successfully devised. Whereas this area was
still underdeveloped some 5 years ago, it is maturing at a
rapid rate and has already led to noteworthy biological
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applications such as kinetic modeling of biological process-
es [143, 144], the calculation of protein half-lives and trans-
lation rates [145, 146], and determination of protein
complex stoichiometries [147–150].

Absolute quantification using stable-isotope-labeled
standards

Adding stable-isotope-labeled reference standards of known
absolute quantity to a sample allows one to determine the
absolute amounts of peptides (and proteins by inference) by
comparing their MS signal intensities with those of the
standards [151, 152]. Several methods utilizing such refer-
ence peptides and proteins exist, including the more estab-
lished methods of AQUA (for “absolute quantification”)
[151] and QconCAT [153], as well as more recent
approaches such as protein standard absolute quantification
(PSAQ) [154], absolute SILAC [27], and FlexiQuant [155].

For the AQUA strategy, proteotypic peptides [72] are
identified for a protein of interest, then synthesized to in-
clude heavy amino acids or stable-isotope-containing tags
[147]. These synthetic peptides are then quantified, e.g.,
using amino acid analysis to determine their quantity, and
subsequently added to a biological sample during or after
proteolysis [151, 152]. Today, AQUA peptides are commer-
cially available from several sources. Albeit relatively ex-
pensive, AQUA peptides are widely employed for absolute
quantification particularly for targeted approaches such as
SRM assays. However, the reference peptides are only
added relatively late in the biochemical workflow and thus
do not account for the often significant systematic errors
(e.g., sample losses) during the upstream sample preparation
steps. The best results are therefore obtained if sample
preparation is kept to an absolute minimum. The QconCAT
technology uses recombinant DNA techniques to construct
synthetic proteins in which large numbers of internal stan-
dard peptides are concatenated. The synthetic protein can be
expressed and purified in stable-isotope-labeled form from a
suitable host (Escherichia coli). The QconCAT protein is
then added to a sample and the reference peptides for the
desired proteins are generated in situ during the protease
digestion step. This allows not only the controlled addition
of many reference peptides, but also removes systematic
errors associated with the digestion step as these affect the
sample and the reference standard in the same way. The
utility of the approach has recently been demonstrated by
quantifying 27 enzymes in the glycolytic pathway of Sac-
charomyces cerevisiae using a 88-kDa QconCAT protein
encoding 59 tryptic peptides [156]. Instead of using peptides
as standards, the PSAQ, absolute SILAC, and FlexiQuant
approaches utilize metabolically labeled full-length proteins
expressed in cell-free or bacterial systems. The purified and
precisely quantified protein standards can be added directly

to cell extracts, enabling extensive sample fractionation
without compromising quantification results. In a recent
application a PSAQ strategy was employed to quantify the
staphylococcal virulence factor enterotoxin A in serum, and
coefficients of variation between 0.05 and 0.18 with an
SRM-based approach and a lower limit of quantification in
the range of 1 ng/ml were achieved [157]. Given the signif-
icant effort in generating the standards, these approaches are
particularly useful for focused projects in which only a small
number of proteins need to be quantified. However, a recent
study reported a modified absolute SILAC approach allow-
ing higher throughput in generating standards for large-scale
studies [158]. Here, the authors made use of protein epitope
signature tags (PrESTs), short stretches of (isotope-labeled)
protein sequences, which are produced in high numbers by
the Human Protein Atlas project for use as antigens for
antibody production [159–161]. Many such PrESTs can be
added to a sample simultaneously to quantify the respective
proteins. Because PrESTs are not full-length proteins, they
are not suitable for addition before protein fractionation.

Absolute quantification using label-free methods

In their pioneering work in 2001 on multidimensional peptide
separation for large-scale protein identification, Washburn et
al. [80] observed that the codon adaptation index of yeast
proteins (a measure of abundance) correlated with the number
of identified peptides of a given protein. This suggested that
absolute quantification of proteins may be possible without
the use of stable-isotope-labeled reference standards. We have
already discussed that the spectrum count (or PSM) is a better
quantification measure than the peptide count, and several
research groups have hence explored spectrum counts for
absolute quantification. As discussed earlier, larger proteins
are expected to generate more peptides and therefore higher
spectrum counts than smaller proteins of equal abundance.
Consequently, normalization of spectrum counts on this basis
could take the form of dividing PSMs by the molecular weight
of the proteins [162], or by the number of amino acids in the
primary sequence [163] (termed spectral abundance factor).
Similarly, Rappsilber et al. [164] defined a protein abundance
index (PAI) by dividing the number of observed peptides by
the number of theoretically observable unmodified peptides.
The exponentially modified PAI (equal to 10PAI-1) was further
shown to be proportional to the protein content of a mixture
[165]. A more sophisticated algorithm termed APEX utilizes
machine learning classification based on experimental data to
estimate the detection probabilities of tryptic peptides of any
given protein. This can then be used to predict the number of
tryptic peptides expected to be detected for one molecule of a
particular protein, and this value is compared with experimen-
tal data to estimate absolute protein amounts [145, 166].
APEX-based quantification proved to be reasonably accurate
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(within an order of magnitude) for global proteomic profiling
and also showed good correlation to other quantitative meth-
ods [145, 167]. As for relative quantification approaches, the
implementation of an intensity dimension to spectrum count-
ing also leads to a higher dynamic range for absolute quanti-
fication. For example, normalization of the aforementioned
spectral index by protein length [91] allowed the quantifica-
tion of a 19-protein mixture over a range of 0.5-50,000 fmol
with a correlation coefficient (R2) of 0.92. Trudgian et al.
[168] recently applied a slightly modified version of this
approach to quantify 19 proteins of universal protein standard
(UPS2, Sigma) and obtained similar results. The successful
implementation of such methods requires rigorous validation
in each individual laboratory and for any sample type using
suitable standards.

Methods using signal intensity rather than spectrum
counting are increasingly being recognized as viable
approaches for absolute quantification. Schwanhaeuser et
al. [146] demonstrated that dividing the sum of all observed
peptide intensities by the number of theoretically observable
peptides provides a useful measure to approximate absolute
protein concentration. Alternatives to this idea consider
only, e.g., the three most intense peptides of a protein (high3
or top3 method) [105, 120, 169]. These “best-flyer”
approaches [170] are based on the assumption that a small
number of proteotypic peptides (unique, frequently ob-
served) exist for each protein of the proteome and that the
MS signal intensities of these peptides are approximately the
same. Using the ion intensity provides better quantification
accuracy over a larger dynamic range than spectrum count-
ing (less undersampling and saturation) [120]. However, the
robustness of the methods hinges on the reproducible iden-
tification of the very same peptides across all samples in the
analysis and on reliably matching MS/MS spectra to chro-
matographic peaks. Ludwig et al. [170] recently ported the
high3 method to SRM platforms and found the best preci-
sion and accuracy when the two most intense transitions of
the three most abundant peptides were used to calculate
protein abundance. In light of the above facts, label-free
absolute quantification is possible and very attractive as it
is easy to implement, is compatible with high-throughput
analysis, and can, in principle, even be applied retrospec-
tively. However, we stress that label-free methods are still a
lot less accurate than stable isotope labeling and should
therefore be used if only a rough estimation of protein
quantity suffices.

A specialty in absolute quantification analysis of proteins
is the use of inductively coupled plasma (ICP) MS (ICP-
MS). In this technique, a (protein) sample is completely
atomized in an argon plasma and the heteroatoms of the
proteins (either natural or synthetically introduced S, P, Se,
I, As, or lanthanides) are ionized and can be detected and
quantified by MS [171, 172]. However, the ICP source

requires pure samples for biospeciation analysis and is
therefore not compatible with the typically complex mix-
tures encountered in proteomic research. Recent work uti-
lized ICP-MS for absolute quantification of peptides or
proteins that either contain the above-mentioned heteroa-
toms (e.g., P, S) or have been modified with heteroatom-
containing tags (e.g., metal-coded affinity tags [173, 174]).
Precisely quantified peptides and proteins can then be used
as standards for absolute quantification using mass spec-
trometers equipped with standard ion sources [175–177].
Alternative applications of ICP-MS for absolute quantifica-
tion of proteins and peptides relied on the combined use of
elemental and molecular MS techniques, i.e., by analyzing
the samples separately with LC-ICP-MS and LC-ESI-MS
[174, 178].

Quantification of PTMs

As interest in PTM analysis of proteins rises, so does the
need to quantify PTMs in a multitude of experimental set-
tings. The analytical challenges are immense and to a large
extent reside in the often low abundances and stoichiome-
tries of these peptides and the fact that measuring the
changes in relative or absolute abundance can only be based
on a single peptide. To address abundance and stoichiome-
try, specific enrichment is generally required to be able the
detection of modified peptides from the high background of
nonmodified peptides. These steps can of course introduce
systematic error or bias, which must be reduced to an
absolute minimum. In addition, PTM quantification requires
correction by protein quantification to avoid misinterpreta-
tions arising from changes in protein expression over the
course of an experiment. In light of the above facts, good
precision and good accuracy of PTM quantification are
much harder to achieve than for protein-level quantification.
Practically all of the aforementioned quantification techni-
ques have also been applied to PTMs, mostly protein phos-
phorylation. The SILAC approach is, of course, attractive
for work in cell culture systems because samples can be
combined at the earliest possible step and all subsequent
steps are performed on the pooled samples, thus minimizing
systematic errors (Fig. 1). Consequently, SILAC has been
used extensively and in many cellular systems over the past
few years [179–184] (reviewed in [185]). Chemical peptide
labeling strategies share some of this advantage for shotgun
proteomics, where labeling is performed after protein diges-
tion, which is essentially the first step after cell harvesting
and lysis, and all further enrichment steps can be performed
on the pooled samples. If, however, protein fractionation is
required, chemical labeling rapidly loses ground because
protein fractionation techniques tend to suffer from large
variations from experiment to experiment. Peptides
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derivatized by any of the common labels can be subjected to
PTM-specific chromatography, and quantitative phospho-
proteomics using, e.g., dimethyl labeling is now performed
routinely on both phosphopeptides enriched by both IMAC
and TiO2 chromatography [186, 187] as well as affinity-
purified phosphotyrosine peptides [188, 189]. Likewise,
iTRAQ- and TMT-based quantitative phosphoproteomics
experiments have also been extensively implemented recent
years [190–193] and it can be safely expected that this area
is going to grow further. Label-free quantification of PTMs
can be done [194] but is problematic, because all steps,
including the final readout by LC-MS/MS, are done sepa-
rately. Hence, all the issues that may impair quantification
accuracy and precision accumulate. Therefore, the major
recommendations are to (1) keep experimental workflows
as short as possible (e.g., using IMAC or TiO2 chromatog-
raphy instead of hydrophilic interaction chromatography or
strong cation exchange chromatography for phosphopeptide
enrichment), (2) use very stable HPLC systems combined
with high-resolution, high-accuracy mass spectrometers,
and (3) process all samples in an experiment together.

Analysis of quantitative MS data

When we last reviewed the subject in 2007, data analysis
strategies and software packages compatible with high-
throughput quantitative proteomics were merely emerging.
In those days, a typical quantitative proteomics experiment
using, e.g., stable isotope labeling required a few days of
data acquisition followed by several weeks or months of
painful manual data annotation using, at best, semiauto-
mated software tools such as MSQuant [195]. This situation
has fundamentally changed. Now, researchers can choose
from a large variety of different software tools, both free and
commercial, that automatically process large data sets with-
in hours (Table 2 and reviewed in [196]). The impact of
well-designed software on quantitative proteomics research
cannot be underestimated. The MaxQuant software package
developed by Cox and Mann [7] is an excellent example.
Since its official release and publication in 2008, hundreds
of studies (judging from citations) have utilized this tool to
analyze small-scale and large-scale SILAC experiments.
The software package extracts raw data, performs mass
calibration and database searches for protein identification,
quantifies identified proteins, provides summary statistics,
including assessment of false discovery rates and the signif-
icance of fold changes, and even exports annotated tandem
mass spectra—a requirement for some journals. However,
software tools are usually only compatible with a narrow
range of experimental settings (e.g., data formats, data ac-
quisition methods, and quantification techniques). In addi-
tion, the underlying algorithms and assumptions are often

poorly described, particularly for commercial software.
Consequently, researchers tend to no longer manually
examine and annotate their data and, more or less,
blindly apply their favorite software tool. At the same
time, there is a steadily increasing body of specialized
publications reporting on refinements for analysis of
data generated with individual quantitative methods
which are not yet considered in commercial software.
Since MS-based proteomics is a very heterogeneous
field where the “one solution fits all” adage rarely
holds, it is important for scientists to understand the
nature of the data and how this impacts appropriate
computational analysis. In the following sections, we
recapitulate some of the basic principles for the analysis
of quantitative proteomics data.

Calculating peptide and protein ratios

In a way analogous to how the identification of a
protein becomes more reliable when multiple peptides
are identified, so also protein quantification becomes
more reliable (in terms of accuracy and precision of
the fold change) for each additional peptide quantified.
For protein quantification, the log-transformed peptide
fold changes can be combined to calculate the log-
transformed protein fold change. The log transformation
is necessary for the peptide fold change distribution to
attain a normal shape (i.e., symmetrical for upregulation
and downregulation), facilitating statistical analysis
(Fig. 4). A second underlying assumption is the absence
of any systematic bias in the measurements. As we will
see later, these assumptions are often not entirely true.
To illustrate the beneficial effect of combining peptide
log-transformed fold changes if the above-mentioned
assumptions hold, consider the following situation. N
peptide log-transformed fold changes (pepltfc) are mea-
sured for one protein (Fig. 4a). Let us assume that we
also know the sample standard deviation of a peptide
log-transformed fold change measurement, std(pepltfc). If
we define the protein log-transformed fold change as an
average over the N pepltfc measurements, the increase of
precision of the protein log-transformed fold change will
be proportional to the standard error of the peptide log-
transformed fold change distribution. The standard error
is equal to the standard deviation, std(pepltfc), divided
by the square root of N, which is the number of pep-
tides used to quantify the protein. Since the normality
assumption and the no bias assumption do not always
hold, the gain in the precision of the protein log-
transformed fold change estimation will be smaller than
in this idealized case. We now describe the physical
reasons for this and present the published strategies for
dealing with these issues.
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Peptide fold change precision and accuracy

In all techniques that utilize signal intensities to extract
information of relative/absolute quantity, one parameter that

affects the reliability of a peptide quantification value is the
intensity of the peak used for quantification. Here, a peak
may be either an MS1 signal for mTRAQ, metabolic label-
ing or label-free quantification or an MS2 reporter ion signal

Table 2 Merits of selected quantification methods and software for their analysis

Quantification
Method

Protein fold change
ratio determination

Precision Accuracy Software examples

Isobaric tag labeling
and MS/MS
readout

1. Fold change ratio
of bootstrapped
sum of reporter ion
intensities [202]

Very high precision owing to
good ion statistics in the
MS/MS scans, from which
the quantitative values are
read out. Good ion statistics
can be obtained even for
low-abundance ions by
data-dependent acquisition

A bias in accuracy arises
owing to the ratio
compression effect, which is
a function of sample
complexity

MS vendor software,
Mascot (TMT, iTRAQ),
Trans-Proteomic Pipe-
line(iTRAQ)

2. Fold change ratio
of weighted sum of
reporter ion
intensities [206]

Reported precision for iTRAQ
[209]: 99 % of all proteins
have log 2 fold changes
within ±0.18 in replicate
experiments3. Median of peptide

fold change ratios
[43]

4. Trimmed median
of peptide fold
change ratios [206]

5. Boosted median
of peptide fold
change ratios [206]

6. Trimmed mean of
variance-stabilized
peptide fold
change ratios [39]

Metabolic labeling/
mTRAQ and other
MS1-based stable-
isotope methods

Median of peptide
fold change ratios
[7, 43]

High-precision readout of
quantification values from
the same MS1 scan. Low-
abundance ions suffer from
poor ion statistics

No accuracy bias MS vendor software,
MaxQuant, Trans-
Proteomic Pipeline

Reported precision for SILAC
[7]: 99.3 % of all proteins
have log 2 fold changes
within ±0.58 in experiments
comparing EGF-treated
HeLa cells and untreated
HeLa cells

Label-free
quantification (by
precursor ion
intensity)

1. Median of all
ratios for common
peptides [112]

Medium precision due to read
out of quantification values
from separate MS1 scans
and MS experiments. Low
abundant ions suffer from
poor ion statistics.

No accuracy bias MS vendor software,
Nonlinear Dynamics
software, Trans-
Proteomic Pipeline,
MaxQuant

2. Fold change ratios
of sum intensities
of XIC peaks [22]

Reported precision for label
free quantification:

Average coefficient of variation,
CV for protein intensities in
replicate experiments is
reported to be 16 % [200, 208]

EGF epidermal growth factor, iTRAQ isobaric tags for absolute and relative quantification, SILAC stable isotope labeling with amino acids in cell
culture, TMT tandem mass tag, XIC extracted ion chromatogram
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for quantification based on isobaric tag labeling. Peptide
fold changes calculated from low-intensity peaks (i.e., poor
signal-to-noise ratios) have necessarily lower precision and
are more prone to produce outliers than peptide fold changes
calculated from high-intensity peaks with good signal-to-
noise ratios [39]. For quantification from MS/MS spectra,
one can partially compensate the low relative abundance of
a peptide in the sample by accumulating the signal for a
longer period of time to improve ion statistics for the report-
er ions. In ion trap instruments, this can be elegantly
achieved using automated gain control, which ensures that
(ideally) a constant number of precursor ions are accumu-
lated prior to fragmentation for each peptide. An analogous
mechanism for triple-quadrupole or time-of-flight instru-
ments unfortunately does not exist. For stable-isotope meth-
ods using MS1 spectra, boosting the peptide intensities of
low-abundance peptides is also not generally possible, un-
less selected ion monitoring is used [197]. However, select-
ed ion monitoring scans are rarely used for discovery mode
experiments because they significantly slow down the anal-
ysis [198], an issue of lesser importance for targeted
approaches. Fortunately, several MS1 measurements are
usually acquired along the LC elution profile of a peptide
in its labeled and unlabeled forms, which can be used to
improve the quality of the measurement. The measurements
at the tails of the elution profile are significantly less precise
than the measurements performed near the apex of the

elution profile because of the much lower intensities of the
peptide ions in these regions. In light of the above facts, the
choice of method for calculating the peptide fold changes
from individual measurements is not trivial, and often the
median value is used because it is relatively insensitive to
the variation introduced by low-intensity peaks [7, 43]. For
intensity-based label-free quantification, the situation is
quite different and more complex as the intensity of a
peptide in different conditions is measured in different LC-
MS runs. To calculate the peptide fold change, one needs to
determine and compare either the intensities at the apex of
the XICs or the area of the XICs of a peptide in the different
experiments [199]. An additional complication arises when
a peptide was identified in one experiment but not in the
other, in which case the XIC of the “missed” peptide has to
be found by aligning the two experiments within a narrow
retention time window, a narrow m/z window, and using
isotope distribution matching. If a mismatch does occur,
the calculated fold change will be erroneous, so great care
should be taken when interpreting such data. We and others
recommend using high-performance LC-MS instrumenta-
tion (resolution, accuracy, retention time stability) to mini-
mize the issue [112, 199, 200].

In quantitative measurements using isobaric tag labeling,
the well-described phenomenon of peptide ratio compres-
sion limits the accuracy that can be achieved [201, 202]. The
fold changes measured with iTRAQ- or TMT-labeled

Fig. 4 From peptide quantification to protein quantification. A–C Data
from a 1:1 mixture of the same sample (i.e., no protein changes). Blue lines
represent the experimental data distribution, and red lines represent the
theoretically expected Gaussian data distribution. A Simple peptide fold
change plot showing that the experimental data are not strictly normally
distributed (the two distributions are not perfectly superimposed on either
side of the apex).B The data distribution following log 2 transformation of
the same peptide level data leads to much better normality, which allows

the application of statistical tests of significance. c Distribution of protein
fold changes calculated from the log 2-transformed peptide fold changes.
The aggregation of peptide quantification into protein quantification leads
to a narrower fold change distribution for proteins quantified from several
peptides (here four or more). D–E Same as A–C except that two different
samples with actual protein changes are shown. It is evident that some
proteins deviate from the expected Gaussian distribution, indicating sta-
tistically significant changes in protein quantity
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peptides in complex samples are often smaller than the
“true” fold changes. This has been verified in a number of
works by analyzing samples where the protein fold changes
were known [31, 40, 41, 202]. The physical origin of this
effect is the co-isolation of other ions along with the pre-
cursor ion of the peptide of interest when selecting ions for
MS/MS analysis. The co-isolated ions will also produce
reporter ions upon fragmentation, and these are indistin-
guishable from the reporter ions generated by fragmentation
of the peptide of interest (the one with an identification).
Since the reporter ions of the co-isolated ions will most
likely have a fold change close to 1 (assuming experiments
with little changes), they will “compress” the measured fold
change of a potentially upregulated or downregulated pep-
tide of interest closer to 1 (Fig. 5a). The effect can be very
substantial, particularly for low-abundance peptides/pro-
teins. This issue can be partially dealt with by using narrow
isolation windows (i.e., less than 1.5 Th), and by fragment-
ing the precursor ion closer to the apex of its elution profile
[202]. Although the compression effect has only been de-
scribed and studied for isobaric labeling, it should also
occur, albeit to a lesser extent, in MS1 measurements (with
or without stable isotope labeling techniques). Even when
analyzing complex samples with high-resolution mass

spectrometers, there is a nonnegligible probability that two
distinct peptides with very similar m/z values will be co-
eluted. This is due to the nonuniform distribution of peptide
molecular masses on the mass scale [203] and the fact that
ESI produces multiple charged peptide ions that populate a
relatively small part of the m/z range accessible for a mass
spectrometer. A thorough investigation of this issue has not
yet been performed, but should be done to identify the
accuracy limits of MS1-based quantification techniques.
An additional potential source of accuracy bias in both
MS/MS- and MS-based quantification is signal saturation.
However, this has become much less of a problem when
using state-of-the-art ion detection systems. Finally, there
can be biological reasons for different fold changes of
peptides stemming from the same protein which are com-
pletely independent of the quantification technique
employed. The expected fold changes for two different
peptides identified for the same protein should be the same.
However, it does happen that the fold change strongly
deviates from 1 for no apparent technical reason, thus cre-
ating an outlier. Such cases are hypothesized to originate
from either partial modification of one peptide by a PTM or
from the presence of an isoform of a protein which has a
truncated sequence [204]. Correct protein inference is a very

Fig. 5 Impact of sample complexity and signal intensity on quantifi-
cation accuracy. A Quantification accuracy is limited by signal inter-
ference. Upper panel: A peptide of interest (black lines) is detected in a
peptide mass spectrum in the presence of a lower-intensity species of
similar m/z (red lines). As long as the resolution of the mass spectrom-
eter can resolve both species, quantification (intensity-based, label-
free) from the intact peptide mass spectrum is possible for both species.
If quantification is performed from MS/MS spectra (e.g., isobaric tags
for absolute and relative quantification or tandem mass tags), the
peptide of interested will be co-isolated and co-fragmented with the
interfering species in the mass spectrometer (blue area) and the result-
ing MS/MS spectrum contains reporter ions which have arisen from
both species. In this example, the relatively low abundance of the co-
fragmented species results in only a minor loss of quantification

accuracy. Lower panel: Same as the upper panel but showing a case
of much stronger signal interference. Label-free intensity-based quan-
tification is still possible for both species but the accuracy of quantifi-
cation using reporter ions in MS/MS spectra will be drastically
lowered, leading to strong underestimation of the true ratios (ratio
compression). B Quantification accuracy is limited by signal intensity.
The light SILAC signal in the upper panel has a very high signal-to-
noise ratio (say, 100, defined by the noise threshold Y). The heavy
SILAC signal is, however, below the noise and is thus removed from
the spectrum by the data acquisition software. Lower panel: Same as
the upper panel except that the light SILAC intensity is 2Y and the
heavy SILAC signal is also below the noise. In both cases, the SILAC
signal ratio is infinity, which is clearly not an accurate reflection of the
true values and tends to lead to an overestimation of the ratios
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important and often neglected issue. It is not always trivial
to establish exactly which peptide set should be used to
quantify a protein or group of proteins. By sequentially
pairwise combining proteins where one protein is identified
by peptides which are a subset of the other (both peptide sets
can also be identical), one can establish protein groups. Next
one should preferentially use only peptides which are
unique to a single protein group for quantification of the
protein group [7] (we will continue referring to protein
rather than protein group quantification for the sake of
brevity).

Single peptide fold change measurements

Individual peptide quantification, which is of great rele-
vance in particular for modified peptides [183, 200, 205],
is less precise than protein quantification for the simple
reason that there are more statistics for protein quantification
than for peptide quantification. Therefore, it is currently
difficult to say with great confidence that a specific peptide
has a fold change ratio in a defined narrow range. If we take
SILAC as an example, it has been suggested that a change of
twofold can be considered significant for a phosphopeptide
[183], whereas proteins quantified with at least three SILAC
pairs reach significance already at a 1.5-fold change [7]. We
urge readers not to take these values as recommendations
because they might differ between samples, MS platforms,
and laboratories and, indeed, probably say little if anything
about the significance of a change (see later). Especially for
intensity-based label-free quantification, one can never en-
tirely disregard the possibility that the observed peptide fold
change is due to a mismatch of XIC pairs, although when
using high-end instrumentation and new data alignment
algorithms the chance of this happening is strongly reduced
[112, 199, 200]. Maybe not surprisingly, single peptide
quantification by spectrum counting is generally not mean-
ingful at all. Individual peptide quantifications made by
isobaric labeling techniques are likely the most precise
[43] because the same peptide is measured simultaneously
for all conditions. But, as discussed already, the technique
suffers from “ratio compression,” which has a negative
impact on the determined accuracy [43]. Greater sensitivity
and precision of single peptide quantification can generally
be achieved using targeted SRM approaches. A further note
of caution concerns the quantification of PTMs, which are,
by definition, single peptide quantifications. Here, the de-
termined change for the PTM-bearing peptide must be cor-
rected for by the underlying protein change (see the next
section) in order to avoid misinterpretations arising from
protein expression changes in the experiment. Finally, if
single peptide quantification is important, the significance
of a change should generally be derived not from single
experiments but from replicates (see later for more details).

Protein fold change determination

From the previous discussion, it is clear that one cannot
assume that all peptide fold changes are of equal quality and
that this has consequences for combining them to calculate
the protein fold changes. One way of dealing with potential
outliers is to use the median of the peptide fold changes of a
protein [7, 43, 112]. The median value is much less affected
than the mean by the outlier ratios at the upper and lower
bounds of the peptide ratio distribution. The median will
give the same results regardless of whether the fold changes
were log-transformed or not . Alternatively, a trimmed mean
of peptide log-transformed fold changes can be used. For
example, a 20 % trimmed mean implies that the top 10 %
and the bottom 10 % of log-transformed fold changes are
removed prior to performing the calculation [39, 206]. Since
higher intensity goes hand in hand with higher precision,
one can also assign weights to the different fold changes on
the basis of their constituent peak intensities. Assigning
lower weights to low-intensity ions will reduce their effect
on the overall protein fold change. Using all the data often
leads to better results than categorically rejecting low-
intensity peaks particularly if the peptide fold change statis-
tics are low (i.e., few quantified peptides). In the simplest
form, this amounts to summing the intensities of peptide
signals in one condition and dividing them by the sum of the
respective signals in the other condition [207, 208]. This
procedure, when coupled with a bootstrap selection of the
intensity pairs for the two different conditions, also enables
the calculation of a confidence interval for the protein fold
change [202]. In an even more refined approach, the rela-
tionship between the peak intensity and the variation of the
intensity can be ‘learned’ from a large data set and used to
calculate the weights for the peptide fold changes. The
protein log-transformed fold change is then calculated as
the sum of the weighted peptide log-transformed fold
changes, where the sum of the weights used is 1 [206].
Another approach suggested for quantification based on
MS1 intensity or isobaric tags is a method called variance-
stabilizing transformation, which is a log-like transforma-
tion with the difference that it forcefully transforms the
peptide fold changes derived from low-intensity signals to
values closer to zero [39, 207, 208]. Subsequently, a
trimmed mean of the transformed fold changes can be
calculated to produce a protein log-transformed fold change.
This improves the precision of the calculated protein fold
change, but at the risk of systematically shifting protein
changes toward zero (i.e., no change). The ratio compres-
sion effect for peptide quantification observed in isobaric
tag labeling (see earlier) will also compress the protein fold
changes. Significant progress in quantifying, understanding,
and reducing the ratio compression effect has been made
[40, 41, 202, 209], but the problem is still far from solved. A
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first approximation method for trying to address the issue is
to calculate the so-called boosted median of the peptide fold
changes. Here, only half the data consisting of the most
extreme fold changes are considered in calculating the me-
dian [206]. Although this does have a minor positive effect
on the accuracy of the protein fold changes [206] a more
refined approach taking into account that peptides of differ-
ent proteins are most likely differently affected by the ratio
compression will be required to resolve the issue. We stress
again that the ratio compression effect can be strong. On the
one hand, one might argue that this leads to rather conser-
vative estimates of change (i.e., the actual change is bigger
than that which the data imply). On the other hand, this can
also be highlymisleading if presence/absence calls on proteins
are important (e.g., when analyzing knockout systems).

In summary, protein quantification becomes more precise
as more peptides are quantified, although the exact relation-
ship is not as straightforward as for protein identification.
The improvement in precision of protein quantification as a
function of the number of peptide fold changes is best
showcased by analyzing technical replicates of identical
samples [206, 209]. As a consequence, very precise protein
quantification can be achieved. We also generally recom-
mend spiking samples with proteins of known fold changes
in order to assess properly the accuracy of quantification
within a complex sample [39, 202]. For isobaric tag label-
ing, this is readily achieved by labeling aliquots of a low-
complexity sample containing a mixture of proteins with the
different labels and mixing the aliquots in desired propor-
tions (e.g., universal protein standard 2 from Sigma covers
48 proteins over a large range of concentrations). Subse-
quently the sample should be analyzed as is, in order to
confirm that the measured fold changes agree with mixed
proportions (a sample of such low complexity should not
suffer from ratio compression). The protein mix sample
should be added to the labeled complex sample of interest,
measured, and the fold changes of the added proteins com-
pared with the mixing proportions; the magnitude of the
deviation of the fold changes will then be a good indicator
of the magnitude of the ratio compression in the complex
sample. Last, but not least, great care should be taken when
dealing with outliers. Particularly in the context of quanti-
fying PTMs, the outliers may constitute the most important
biological information and should therefore not be categor-
ically rejected.

Invisible ions—dealing with infinities

An important, yet often neglected issue in MS-based quan-
tification is the treatment of cases in which ion signals for
one or several treatment conditions are missing. Consider a
simple control versus treatment SILAC experiment, where
for a given peptide we find the light form of an ion of

intensity X but no corresponding heavy ion, i.e., an intensity
of zero (Fig. 5). This implies that the ratio is infinity, which
is an uncomfortable number to deal with outside the realms
of pure mathematics. Further, consider two such SILAC
pairs, of which one light peptide is detected with an intensity
of 100 above a detection threshold Y and the other is
detected with a much weaker intensity of 2Y. In both cases,
the ratios would be infinity but the information content of
the two SILAC pairs is clearly very different. One might be
tempted to disregard such an observation, but that would be
potentially very wasteful since the observation could be
important biologically. Mostly, the reason for the missing
ions is most likely not their complete absence but rather that
the signal is hidden in the noise. In fact, instrument data
acquisition software often use a specific signal cutoff in
MS1 (and MS2) spectra to reduce data complexity. For
orbital trap instruments [210, 211], ions below a threshold
of 2.4 times the standard deviations of all detected signals
within a certain m/z range are discarded (Thermo Fisher
Scientific, personal communication; of course, this thresh-
old varies from spectrum to spectrum and even across dif-
ferent m/z segments within the same spectrum [202].
Consequently, this threshold is, on average, higher for
high-complexity samples than for low-complexity samples.
This means that if the intensity of the light peptide is 2Y,
where Y is the signal cutoff value in this particular MS1 scan,
then all we can say about the ratio between the heavy and
the invisible light peptide is that it is at least 2, and this is
how this ratio should be reported. If the intensity is 100Y,
then we know that we have a ratio of at least 100-fold
(Fig. 5b). Clearly, these two cases are vastly different in
terms of the information we obtain about the effect of the
treatment. The correct reporting of such cases thus requires
the reporting of the noise value Y, which can be readily
extracted from Orbitrap spectra [202], and which is of
particular importance when working with quantification of
individual and/or modified peptides.

Lessons from method comparison studies

Several studies have recently reported detailed comparisons
between different types of MS-based quantification
approaches [43, 208, 212]. We note that findings from such
studies should not be unreasonably generalized because,
ultimately, the overall process from sample extraction to
the measurement using the mass spectrometer has a signif-
icant impact on the overall precision and accuracy of a
quantitative study. In addition, all recent comparative stud-
ies were performed using ion trap/Orbitrap instruments and
may thus not always translate to other MS platforms. The
trend arising from the cited work is that isobaric tag labeling
is the most precise, followed by metabolic labeling,
mTRAQ labeling and other MS1-based stable isotope
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methods, followed by label-free quantification. In terms of
accuracy, metabolic labeling, chemical labeling, and
intensity-based label-free quantification perform equally
well without any significant bias, whereas isobaric tagging
exhibits systematic accuracy bias toward less pronounced
fold change ratios (see earlier). Although the different tech-
niques all have their strengths and weaknesses, all of them
can provide high-quality quantification data. A very inter-
esting and educating conclusion from a recent study by the
Association of Biomolecular Resource Facilities [213] is
that the main deciding factor for the quality of quantification
is not the technique used but the level of experience of the
laboratory in using the technique. Hence, the main lesson
from comparison studies is to invest sufficient time and
effort in mastering one or better two complementary quan-
tification techniques.

Significance within an experiment

Independently of the quantitative method applied, the sta-
tistical significance of differential abundance detected for a
certain subset of proteins or peptides in any study requires
adequate appreciation. In experiments where only a minor
fraction of proteins display a change, this can be simply
assessed by analyzing the width of the protein distribution
and calculating the probability that the protein of interest is
within this distribution. If the data follow a normal distribu-
tion (assessed, e.g., by the Kolmogorov–Smirnoff test),
simple tests of significance can be used. Examples include
the t test (provided that at least three replicates are available),
Fisher’s exact test (one or more replicates), and one-way
analysis of variance (one or more replicates and usually used
for time course data analysis). For comparison of spectrum
count data, which exhibit a fundamentally different type of
raw data distribution than data from methods using MS inten-
sity, the power law global error model [214] has been adapted
from the microarray field. A comprehensive summary of all
available tests can be found in Neilson et al. [118]. The need
for multiple testing correction has been discussed in our
previous review [3], and the reader is referred to an excellent
article on the subject by Diz et al. [215] for further details.

Significance across different experiments

Although commonplace in the microarray field, relatively
little advantage has been taken yet of the vast quantity of
proteomic data published or deposited in public repositories.
A particular fertile field that has sprouted new data analysis
strategies is the analysis of protein–protein interaction net-
works [150, 164, 216–220]. In these studies, affinity purifi-
cation (AP) using antibodies or epitope-tagged “bait”
proteins is coupled with MS for the identification of co-
purified “prey” proteins [221]. A challenge in AP-MS

experiments is to discriminate true interactions from abun-
dant cellular proteins that are often co-purified as contami-
nants and thus to delineate specific complexes. For inferring
individual complexes or interaction networks from AP-MS
data, a large number of such experiments using ideally an
exhaustive number of baits is performed. The quantitative
dimension of AP-MS data (mostly spectrum count or
SILAC) is of great help here because preys that are identi-
fied at similar abundance levels across experiments where
the said preys are used alternately as baits are likely to be
forming a distinct protein complex subunit. Put another way,
if proteins P1,…,PN form a complex, then in an experiment
where Pk is the bait, proteins Pi, i ≠ k, should have roughly
the same abundance. This reasoning was exploited in a
study by Sardiu et al. [222], which used several clustering
approaches which led to the separation of core complexes
and their respective more distant attachments inside the
protein interaction network. Choi et al. [223] further refined
this approach by first noting that straightforward clustering
approaches are not ideal because in most AP-MS data sets,
many prey proteins are identif ied for which no
corresponding bait experiments have been performed. They
proposed a two-step process in which first bait clusters
based on spectrum count data across all prey proteins are
created, followed by determination of nested clusters of
preys with similar abundance. The same group has also
developed a probabilistic framework for inferring genuine
protein interaction from AP-MS data on the basis of spec-
trum count [224] and label-free MS intensity data [119]. An
alternative approach, termed C-score, has been developed to
infer protein complex members from complementary che-
moproteomics and AP-MS data [205]. Briefly, the authors
used an immobilized pan-histone deacetylase (HDAC) in-
hibitor (suberoylanilide hydroxamic acid) to capture HDAC
complexes from cells. A panel of known HDAC inhibitors
was then used in a competition binding mode and showed
that different inhibitors exhibited different selectivity for
different HDACs and, surprisingly, for different HDAC
complexes. Hierarchical clustering of the quantitative pro-
tein data obtained in these experiments delineated several
known and also unknown HDAC complexes, but was not in
itself sufficient to identify the different interactors with 95 %
confidence. This was provided by a limited number of AP-
MS experiments using complex members as baits. The
quantitative information from both types of experiments
was then combined into a C-score. Furthermore, a decoy
approach was also developed that allowed determination of
the false discovery rate as a function of the C-score and thus
reliably identify protein complex interactors. Similarly, three
orthogonal affinity enrichment approaches were recently
applied to determine the interactors of the BET bromodo-
main proteins [225] and further examples along these lines
should appear in the literature in the future.
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Biomarker discovery using MS-based proteomics is an-
other area of intense activity in the community [117, 226].
Because typically dozens of matched samples from healthy
and diseased individuals have to be analyzed, label-free
quantification methods are most frequently used. The task
is then to single out the usually fractional subset of proteins
or peptides which exhibit significant differential behavior.
Since the amount of quantified proteins/peptides in the
samples typically exceeds the number of samples by several
orders of magnitude, a so-called high-dimensionality small
sample size problem arises [227]. Consequently, only meth-
ods that are insensitive to the high-dimensionality small
sample size problem can be used, such as support vector
machines [228], or a dimension reduction step needs to be
performed, commonly called feature selection. For feature
selection, methods such as multiple testing corrected
Student t test, principal component analysis, principal
component linear discriminant analysis, and partial least
squares linear discriminant analysis [229] are currently
used. The output of feature selection is typically a list
of discriminating peptides. These candidate biomarkers
require validation using sample sets of substantial size.
The current gold standard for this purpose is the SRM
technique including the use of stable-isotope-labeled
peptide standards [226].

Concluding remarks

Fifteen years of MS-based proteomics has passed in which
the field has seen extraordinary advancements in technolo-
gy, and there are currently no signs of this slowing. The
impact of proteomics on biomedical research has already
been very significant, but the great potential of the technol-
ogy is still only beginning to be acknowledged broadly in
the life science community. We therefore firmly believe that
the best is yet to come. The past 5 years has seen a major
shift from the development of qualitative to quantitative
methods and applications. The next 5 years may well be
dominated by the development of informatics approaches
that capture more of the value of data currently hidden in
large-scale proteomic datasets. Mastering proteomics still
requires, and maybe will always require, a high level of
technical expertise. Hence, the proteomic community will
also have to step up its intensity in educating the next
generation of scientists for the field to realize its full
potential.

Acknowledgments The authors wish to thank Frank Weissbrodt for
help with creating the graphics. We apologize to all authors whose
interesting work could not be cited owing to space or conceptual
constraints.

References

1. Aebersold R, Mann M (2003) Nature 422(6928):198–207.
doi:10.1038/nature01511nature01511

2. Mallick P, Kuster B (2010) Nat Biotechnol 28(7):695–709.
doi:10.1038/nbt.1658

3. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007)
Anal Bioanal Chem 389(4):1017–1031. doi:10.1007/s00216-
007-1486-6

4. Gao M, Qi D, Zhang P, Deng C, Zhang X (2011) Expert Rev
Proteomics 7(5):665–678. doi:10.1586/epr.10.49

5. BeckM, Schmidt A,Malmstroem J, ClaassenM, Ori A, Szymborska
A, Herzog F, Rinner O, Ellenberg J, Aebersold R (2011) Mol Syst
Biol 7:549. doi:10.1038/msb.2011.82

6. Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J,
Paabo S, Mann M (2011) Mol Syst Biol 7:548. doi:10.1038/
msb.2011.81

7. Cox J, Mann M (2008) Nat Biotechnol 26(12):1367–1372.
doi:10.1038/nbt.1511

8. Deutsch EW, Mendoza L, Shteynberg D, Farrah T, Lam H,
Tasman N, Sun Z, Nilsson E, Pratt B, Prazen B, Eng JK,
Martin DB, Nesvizhskii AI, Aebersold R (2010) Proteomics
10(6):1150–1159. doi:10.1002/pmic.200900375

9. Jung K (2011) Methods Mol Biol 696:259–272. doi:10.1007/
978-1-60761-987-1_16

10. Lemeer S, Heck AJ (2009) Curr Opin Chem Biol 13(4):414–420.
doi:10.1016/j.cbpa.2009.06.022

11. Norris KL, Lee JY, Yao TP (2009) Sci Signal 2(97):pe76.
doi:10.1126/scisignal.297pe76

12. Whiteaker JR, Zhao L, Abbatiello SE, Burgess M, Kuhn E, Lin
C, Pope ME, Razavi M, Anderson NL, Pearson TW, Carr SA,
Paulovich AG (2011) Mol Cell Proteomics 10(4):M110.005645.
doi:10.1074/mcp.M110.005645

13. Schirle M, Bantscheff M, Kuster B (2012) Chem Biol 19(1):72–
84. doi:10.1016/j.chembiol.2012.01.002

14. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H,
Pandey A, Mann M (2002) Mol Cell Proteomics 1(5):376–386

15. Zhang R, Sioma CS, Wang S, Regnier FE (2001) Anal Chem 73
(21):5142–5149

16. Lam YW, Lamond AI, Mann M, Andersen JS (2007) Curr Biol
17(9):749–760. doi:10.1016/j.cub.2007.03.064

17. Milner E, Barnea E, Beer I, Admon A (2006) Mol Cell Proteo-
mics 5(2):357–365. doi:10.1074/mcp.M500241-MCP200

18. Schwanhausser B, Gossen M, Dittmar G, Selbach M (2009)
Proteomics 9(1):205–209. doi:10.1002/pmic.200800275

19. Cambridge SB, Gnad F, Nguyen C, Bermejo JL, Kruger M, Mann
M (2011) J Proteome Res 10(12):5275–5284. doi:10.1021/
pr101183k

20. Looso M, Borchardt T, Kruger M, Braun T (2010) Mol Cell
Proteomics 9(6):1157–1166. doi:10.1074/mcp.M900426-
MCP200

21. Ebner OA, Selbach M (2011) Methods Mol Biol 725:315–331.
doi:10.1007/978-1-61779-046-1_20

22. Wu Z, Moghaddas Gholami A, Kuster B (2012) Mol Cell Pro-
teomics 11:M111.016675. doi:10.1074/mcp.M111.016675

23. Geiger T, Cox J, Ostasiewicz P, Wisniewski JR, Mann M (2010)
Nat Methods 7(5):383–385. doi:10.1038/nmeth.1446

24. Geiger T, Wisniewski JR, Cox J, Zanivan S, Kruger M, Ishihama
Y, Mann M (2011) Nat Protoc 6(2):147–157. doi:10.1038/
nprot.2010.192

25. Kruger M, Moser M, Ussar S, Thievessen I, Luber CA, Forner F,
Schmidt S, Zanivan S, Fassler R, Mann M (2008) Cell 134
(2):353–364. doi:10.1016/j.cell.2008.05.033

26. Gouw JW, Krijgsveld J, Heck AJ (2010) Mol Cell Proteomics 9
(1):11–24. doi:10.1074/mcp.R900001-MCP200

960 M. Bantscheff et al.

http://dx.doi.org/10.1038/nature01511nature01511
http://dx.doi.org/10.1038/nbt.1658
http://dx.doi.org/10.1007/s00216-007-1486-6
http://dx.doi.org/10.1007/s00216-007-1486-6
http://dx.doi.org/10.1586/epr.10.49
http://dx.doi.org/10.1038/msb.2011.82
http://dx.doi.org/10.1038/msb.2011.81
http://dx.doi.org/10.1038/msb.2011.81
http://dx.doi.org/10.1038/nbt.1511
http://dx.doi.org/10.1002/pmic.200900375
http://dx.doi.org/10.1007/978-1-60761-987-1_16
http://dx.doi.org/10.1007/978-1-60761-987-1_16
http://dx.doi.org/10.1016/j.cbpa.2009.06.022
http://dx.doi.org/10.1126/scisignal.297pe76
http://dx.doi.org/10.1074/mcp.M110.005645
http://dx.doi.org/10.1016/j.chembiol.2012.01.002
http://dx.doi.org/10.1016/j.cub.2007.03.064
http://dx.doi.org/10.1074/mcp.M500241-MCP200
http://dx.doi.org/10.1002/pmic.200800275
http://dx.doi.org/10.1021/pr101183k
http://dx.doi.org/10.1021/pr101183k
http://dx.doi.org/10.1074/mcp.M900426-MCP200
http://dx.doi.org/10.1074/mcp.M900426-MCP200
http://dx.doi.org/10.1007/978-1-61779-046-1_20
http://dx.doi.org/10.1074/mcp.M111.016675
http://dx.doi.org/10.1038/nmeth.1446
http://dx.doi.org/10.1038/nprot.2010.192
http://dx.doi.org/10.1038/nprot.2010.192
http://dx.doi.org/10.1016/j.cell.2008.05.033
http://dx.doi.org/10.1074/mcp.R900001-MCP200


27. Hanke S, Besir H, Oesterhelt D, Mann M (2008) J Proteome Res
7(3):1118–1130. doi:10.1021/pr7007175

28. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt
G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003)
Anal Chem 75(8):1895–1904

29. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K,
Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha
S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin
DJ (2004) Mol Cell Proteomics 3(12):1154–1169. doi:10.1074/
mcp.M400129-MCP200

30. Wiese S, Reidegeld KA, Meyer HE, Warscheid B (2007) Proteo-
mics 7(3):340–350. doi:10.1002/pmic.200600422

31. Bantscheff M, Boesche M, Eberhard D, Matthieson T, Sweetman
G, Kuster B (2008) Mol Cell Proteomics 7(9):1702–1713.
doi:10.1074/mcp.M800029-MCP200

32. Griffin TJ, Xie H, Bandhakavi S, Popko J, Mohan A, Carlis JV,
Higgins L (2007) J Proteome Res 6(11):4200–4209. doi:10.1021/
pr070291b

33. Meany DL, Xie H, Thompson LV, Arriaga EA, Griffin TJ (2007)
Proteomics 7(7):1150–1163. doi:10.1002/pmic.200600450

34. Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann
M (2007) Nat Methods 4(9):709–712. doi:10.1038/
nmeth1060

35. McAlister GC, Phanstiel DH, Brumbaugh J, Westphall MS, Coon
JJ (2011) Mol Cell Proteomics 10(5):O111 009456. doi:10.1074/
mcp.O111.009456

36. Han H, Pappin DJ, Ross PL, McLuckey SA (2008) J Proteome
Res 7(9):3643–3648. doi:10.1021/pr8001113

37. Phanstiel D, Unwin R, McAlister GC, Coon JJ (2009) Anal Chem
81(4):1693–1698. doi:10.1021/ac8019202

38. Phanstiel D, Zhang Y, Marto JA, Coon JJ (2008) J Am Soc Mass
Spectrom 19(9):1255–1262. doi:10.1016/j.jasms.2008.05.023

39. Karp NA, Huber W, Sadowski PG, Charles PD, Hester SV, Lilley
KS (2010) Mol Cell Proteomics 9(9):1885–1897. doi:10.1074/
mcp.M900628-MCP200

40. Ting L, Rad R, Gygi SP, Haas W (2011) Nat Methods 8(11):937–
940. doi:10.1038/nmeth.1714

41. Wenger CD, Lee MV, Hebert AS, McAlister GC, Phanstiel DH,
Westphall MS, Coon JJ (2011) Nat Methods 8(11):933–935.
doi:10.1038/nmeth.1716

42. DeSouza LV, Taylor AM, Li W, Minkoff MS, Romaschin AD,
Colgan TJ, Siu KW (2008) J Proteome Res 7(8):3525–3534.
doi:10.1021/pr800312m

43. Mertins P, Udeshi ND, Clauser KR, Mani DR, Patel J, Ong SE,
Jaffe JD, Carr SA (2012) Mol Cell. Proteomics. doi:10.1074/
mcp.M111.014423

44. Hsu JL, Huang SY, Chow NH, Chen SH (2003) Anal Chem 75
(24):6843–6852. doi:10.1021/ac0348625

45. Huang SY, Tsai ML, Wu CJ, Hsu JL, Ho SH, Chen SH (2006)
Proteomics 6(6):1722–1734. doi:10.1002/pmic.200500507

46. Boersema PJ, Aye TT, van Veen TA, Heck AJ, Mohammed S
(2008) Pro teomics 8(22) :4624–4632 . do i :10 .1002/
pmic.200800297

47. Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJ
(2009) Nat Protoc 4(4):484–494. doi:10.1038/nprot.2009.21

48. Prudova A, auf dem Keller U, Butler GS, Overall CM (2010) Mol
Cell Proteomics 9(5):894–911. doi:10.1074/mcp.M000050-
MCP201

49. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE,
Elledge SJ, Gygi SP (2008) Proc Natl Acad Sci USA 105
(31):10762–10767. doi:10.1073/pnas.0805139105

50. Taouatas N, Altelaar AF, Drugan MM, Helbig AO, Mohammed
S, Heck AJ (2009) Mol Cell Proteomics 8(1):190–200.
doi:10.1074/mcp.M800285-MCP200

51. Wisniewski JR, Nagaraj N, Zougman A, Gnad F, Mann M (2010)
J Proteome Res 9(6):3280–3289. doi:10.1021/pr1002214

52. Delmotte N, Lasaosa M, Tholey A, Heinzle E, Huber CG (2007)
J Proteome Res 6(11):4363–4373. doi:10.1021/pr070424t

53. Pinkse MW, Mohammed S, Gouw JW, van Breukelen B, Vos HR,
Heck AJ (2008) J Proteome Res 7(2):687–697. doi:10.1021/
pr700605z

54. Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J,
Li J, Cohn MA, Cantley LC, Gygi SP (2004) Proc Natl Acad Sci
USA 101(33):12130–12135. doi:10.1073/pnas.0404720101

55. Di Palma S, Boersema PJ, Heck AJ, Mohammed S (2011) Anal
Chem 83(9):3440–3447. doi:10.1021/ac103312e

56. McNulty DE, Annan RS (2008) Mol Cell Proteomics 7(5):971–
980. doi:10.1074/mcp.M700543-MCP200

57. Ow SY, Salim M, Noirel J, Evans C, Wright PC (2011) Proteo-
mics 11(11):2341–2346. doi:10.1002/pmic.201000752

58. Eeltink S, Dolman S, Swart R, Ursem M, Schoenmakers PJ
(2009) J Chromatogr A 1216(44):7368–7374. doi:10.1016/
j.chroma.2009.02.075

59. Hyung SW, Kim MS, Mun DG, Lee H, Lee SW (2011) Analyst
136(10):2100–2105. doi:10.1039/c0an00724b

60. Motoyama A, Venable JD, Ruse CI, Yates JR 3rd (2006) Anal
Chem 78(14):5109–5118. doi:10.1021/ac060354u

61. Nagaraj N, Alexander Kulak N, Cox J, Neuhauser N, Mayr K,
Hoerning O, Vorm O, Mann M (2012) Mol Cell Proteomics 11
(3):M111 013722. doi:10.1074/mcp.M111.013722

62. Kocher T, Swart R, Mechtler K (2011) Anal Chem 83(7):2699–
2704. doi:10.1021/ac103243t

63. Lee J, Soper SA, Murray KK (2009) J Mass Spectrom 44(5):579–
593. doi:10.1002/jms.1585

64. Mohammed S, Kraiczek K, Pinkse MW, Lemeer S, Benschop JJ,
Heck AJ (2008) J Proteome Res 7(4):1565–1571. doi:10.1021/
pr700635a

65. Vollmer M, Horth P, Rozing G, Coute Y, Grimm R, Hochstrasser
D, Sanchez JC (2006) J Sep Sci 29(4):499–509

66. Kim MS, Pandey A (2012) Proteomics 12(4–5):530–542.
doi:10.1002/pmic.201100517

67. Domon B, Aebersold R (2010) Nat Biotechnol 28(7):710–721.
doi:10.1038/nbt.1661

68. Michalski A, Cox J, Mann M (2011) J Proteome Res 10(4):1785–
1793. doi:10.1021/pr101060v

69. Gillet LC, Navarro P, Tate S, Roest H, Selevsek N, Reiter L,
Bonner R, Aebersold R (2012) Mol Cell Proteomics 11:
O111.016717. doi:10.1074/mcp.O111.016717

70. Pelander A, Decker P, Baessmann C, Ojanpera I (2011) J Am Soc
Mass Spectrom 22(2):379–385. doi:10.1007/s13361-010-0046-z

71. Swaney DL, McAlister GC, Coon JJ (2008) Nat Methods 5
(11):959–964. doi:10.1038/nmeth.1260

72. Kuster B, Schirle M, Mallick P, Aebersold R (2005) Nat Rev Mol
Cell Biol 6(7):577–583. doi:10.1038/nrm1683

73. Panchaud A, Affolter M, Moreillon P, Kussmann M (2008) J
Proteomics 71(1):19–33. doi:10.1016/j.jprot.2007.12.001

74. Panchaud A, Scherl A, Shaffer SA, von Haller PD, Kulasekara
HD, Miller SI, Goodlett DR (2009) Anal Chem 81(15):6481–
6488. doi:10.1021/ac900888s

75. Geiger T, Cox J, Mann M (2010) Mol Cell Proteomics 9
(10):2252–2261. doi:10.1074/mcp.M110.001537

76. Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID,
Castro-Perez JM, Nicholson JK (2006) Rapid Commun Mass
Spectrom 20(13):1989–1994. doi:10.1002/rcm.2550

77. BernM, FinneyG, HoopmannMR,MerrihewG, TothMJ,MacCoss
MJ (2010) Anal Chem 82(3):833–841. doi:10.1021/ac901801b

78. Carvalho PC, Han X, Xu T, Cociorva D, da Gloria Carvalho M,
Barbosa VC, Yates JR 3rd (2010) Bioinformatics 26(6):847–848.
doi:10.1093/bioinformatics/btq031

79. Geromanos SJ, Vissers JP, Silva JC, Dorschel CA, Li GZ, Gor-
enstein MV, Bateman RH, Langridge JI (2009) Proteomics 9
(6):1683–1695. doi:10.1002/pmic.200800562

Quantitative mass spectrometry in proteomics 961

http://dx.doi.org/10.1021/pr7007175
http://dx.doi.org/10.1074/mcp.M400129-MCP200
http://dx.doi.org/10.1074/mcp.M400129-MCP200
http://dx.doi.org/10.1002/pmic.200600422
http://dx.doi.org/10.1074/mcp.M800029-MCP200
http://dx.doi.org/10.1021/pr070291b
http://dx.doi.org/10.1021/pr070291b
http://dx.doi.org/10.1002/pmic.200600450
http://dx.doi.org/10.1038/nmeth1060
http://dx.doi.org/10.1038/nmeth1060
http://dx.doi.org/10.1074/mcp.O111.009456
http://dx.doi.org/10.1074/mcp.O111.009456
http://dx.doi.org/10.1021/pr8001113
http://dx.doi.org/10.1021/ac8019202
http://dx.doi.org/10.1016/j.jasms.2008.05.023
http://dx.doi.org/10.1074/mcp.M900628-MCP200
http://dx.doi.org/10.1074/mcp.M900628-MCP200
http://dx.doi.org/10.1038/nmeth.1714
http://dx.doi.org/10.1038/nmeth.1716
http://dx.doi.org/10.1021/pr800312m
http://dx.doi.org/10.1074/mcp.M111.014423
http://dx.doi.org/10.1074/mcp.M111.014423
http://dx.doi.org/10.1021/ac0348625
http://dx.doi.org/10.1002/pmic.200500507
http://dx.doi.org/10.1002/pmic.200800297
http://dx.doi.org/10.1002/pmic.200800297
http://dx.doi.org/10.1038/nprot.2009.21
http://dx.doi.org/10.1074/mcp.M000050-MCP201
http://dx.doi.org/10.1074/mcp.M000050-MCP201
http://dx.doi.org/10.1073/pnas.0805139105
http://dx.doi.org/10.1074/mcp.M800285-MCP200
http://dx.doi.org/10.1021/pr1002214
http://dx.doi.org/10.1021/pr070424t
http://dx.doi.org/10.1021/pr700605z
http://dx.doi.org/10.1021/pr700605z
http://dx.doi.org/10.1073/pnas.0404720101
http://dx.doi.org/10.1021/ac103312e
http://dx.doi.org/10.1074/mcp.M700543-MCP200
http://dx.doi.org/10.1002/pmic.201000752
http://dx.doi.org/10.1016/j.chroma.2009.02.075
http://dx.doi.org/10.1016/j.chroma.2009.02.075
http://dx.doi.org/10.1039/c0an00724b
http://dx.doi.org/10.1021/ac060354u
http://dx.doi.org/10.1074/mcp.M111.013722
http://dx.doi.org/10.1021/ac103243t
http://dx.doi.org/10.1002/jms.1585
http://dx.doi.org/10.1021/pr700635a
http://dx.doi.org/10.1021/pr700635a
http://dx.doi.org/10.1002/pmic.201100517
http://dx.doi.org/10.1038/nbt.1661
http://dx.doi.org/10.1021/pr101060v
http://dx.doi.org/10.1074/mcp.O111.016717
http://dx.doi.org/10.1007/s13361-010-0046-z
http://dx.doi.org/10.1038/nmeth.1260
http://dx.doi.org/10.1038/nrm1683
http://dx.doi.org/10.1016/j.jprot.2007.12.001
http://dx.doi.org/10.1021/ac900888s
http://dx.doi.org/10.1074/mcp.M110.001537
http://dx.doi.org/10.1002/rcm.2550
http://dx.doi.org/10.1021/ac901801b
http://dx.doi.org/10.1093/bioinformatics/btq031
http://dx.doi.org/10.1002/pmic.200800562


80. Washburn MP, Wolters D, Yates JR 3rd (2001) Nat Biotechnol 19
(3):242–247. doi:10.1038/85686

81. Liu H, Sadygov RG, Yates JR 3rd (2004) Anal Chem 76
(14):4193–4201. doi:10.1021/ac0498563

82. Zhang B, VerBerkmoes NC, Langston MA, Uberbacher E, Het-
tich RL, Samatova NF (2006) J Proteome Res 5(11):2909–2918.
doi:10.1021/pr0600273

83. Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Men-
doza A, Sevinsky JR, Resing KA, Ahn NG (2005) Mol Cell
Proteomics 4(10):1487–1502. doi:10.1074/mcp.M500084-
MCP200

84. Cooper B, Feng J, Garrett WM (2010) J Am Soc Mass Spectrom
21(9):1534–1546. doi:10.1016/j.jasms.2010.05.001

85. Zhou JY, Schepmoes AA, Zhang X, Moore RJ, Monroe ME, Lee
JH, Camp DG, Smith RD, Qian WJ (2010) J Proteome Res 9
(11):5698–5704. doi:10.1021/pr100508p

86. Choi H, Fermin D, Nesvizhskii AI (2008) Mol Cell Proteomics 7
(12):2373–2385. doi:10.1074/mcp.M800203-MCP200

87. Nesvizhskii AI, Aebersold R (2005) Mol Cell Proteomics 4
(10):1419–1440. doi:10.1074/mcp.R500012-MCP200

88. Zhang Y, Wen Z, Washburn MP, Florens L (2010) Anal Chem 82
(6):2272–2281. doi:10.1021/ac9023999

89. Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L,
Washburn MP (2006) J Proteome Res 5(9):2339–2347.
doi:10.1021/pr060161n

90. Asara JM, Christofk HR, Freimark LM, Cantley LC (2008)
Proteomics 8(5):994–999. doi:10.1002/pmic.200700426

91. Griffin NM, Yu J, Long F, Oh P, Shore S, Li Y, Koziol JA,
Schnitzer JE (2010) Nat Biotechnol 28(1):83–89. doi:10.1038/
nbt.1592

92. Colaert N, Gevaert K, Martens L (2011) J Proteome Res 10
(7):3183–3189. doi:10.1021/pr200219x

93. Bondarenko PV, Chelius D, Shaler TA (2002) Anal Chem 74
(18):4741–4749

94. Chelius D, Bondarenko PV (2002) J Proteome Res 1(4):317–323
95. Sandra K, Moshir M, D'Hondt F, Tuytten R, Verleysen K, Kas K,

Francois I, Sandra P (2009) J Chromatogr B Anal Technol
Biomed Life Sci 877(11–12):1019–1039. doi:10.1016/
j.jchromb.2009.02.050

96. Sandra K, Moshir M, D'Hondt F, Verleysen K, Kas K, Sandra P
(2008) J Chromatogr B Anal Technol Biomed Life Sci 866(1–
2):48–63. doi:10.1016/j.jchromb.2007.10.034

97. Sun W, Wu S, Wang X, Zheng D, Gao Y (2005) Eur J Mass
Spectrom (Chichester, Eng) 11(6):575–580. doi:10.1255/
ejms.776

98. Radulovic D, Jelveh S, Ryu S, Hamilton TG, Foss E, Mao Y,
Emili A (2004) Mol Cell Proteomics 3(10):984–997.
doi:10.1074/mcp.M400061-MCP200

99. Conrads TP, Anderson GA, Veenstra TD, Pasa-Tolic L, Smith RD
(2000) Anal Chem 72(14):3349–3354

100. Stanley JR, Adkins JN, Slysz GW, Monroe ME, Purvine SO,
Karpievitch YV, Anderson GA, Smith RD, Dabney AR (2011)
Anal Chem 83(16):6135–6140. doi:10.1021/ac2009806

101. Monroe ME, Tolic N, Jaitly N, Shaw JL, Adkins JN, Smith RD
(2007) Bioinformatics 23(15):2021–2023. doi:10.1093/bioinfor-
matics/btm281

102. Fang R, Elias DA, Monroe ME, Shen Y, McIntosh M, Wang P,
Goddard CD, Callister SJ, Moore RJ, Gorby YA, Adkins JN,
Fredrickson JK, Lipton MS, Smith RD (2006) Mol Cell Proteo-
mics 5(4):714–725. doi:10.1074/mcp.M500301-MCP200

103. Varnum SM, Webb-Robertson BJ, Hessol NA, Smith RD, Zangar
RC (2011) PLoS One 6(12 ) : e29263 . do i :10 .1371 /
journal.pone.0029263

104. Silva JC, Denny R, Dorschel C, Gorenstein MV, Li GZ, Richard-
son K, Wall D, Geromanos SJ (2006) Mol Cell Proteomics 5
(4):589–607. doi:10.1074/mcp.M500321-MCP200

105. Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ
(2006) Mol Cell Proteomics 5(1):144–156. doi:10.1074/
mcp.M500230-MCP200

106. Li GZ, Vissers JP, Silva JC, Golick D, Gorenstein MV, Geromanos
SJ (2009) Proteomics 9(6):1696–1719. doi :10.1002/
pmic.200800564

107. Blackburn K, Cheng FY, Williamson JD, Goshe MB (2010)
Rapid Commun Mass Spectrom 24(7):1009–1016. doi:10.1002/
rcm.4476

108. Blackburn K, Mbeunkui F, Mitra SK, Mentzel T, Goshe MB
(2010) J Proteome Res 9(7):3621–3637. doi:10.1021/pr100144z

109. Kohlbacher O, Reinert K, Gropl C, Lange E, Pfeifer N,
Schulz-Trieglaff O, Sturm M (2007) Bioinformatics 23(2):
e191–197. doi:10.1093/bioinformatics/btl299

110. Reinert K, Kohlbacher O (2010) Methods Mol Biol 604:201–211.
doi:10.1007/978-1-60761-444-9_14

111. Sturm M, Bertsch A, Gropl C, Hildebrandt A, Hussong R,
Lange E, Pfeifer N, Schulz-Trieglaff O, Zerck A, Reinert K,
Kohlbacher O (2008) BMC Bioinforma 9:163. doi:10.1186/
1471-2105-9-163

112. Luber CA, Cox J, Lauterbach H, Fancke B, Selbach M, Tschopp
J, Akira S, Wiegand M, Hochrein H, O'Keeffe M, Mann M
( 2 0 1 0 ) Immu n i t y 3 2 ( 2 ) : 2 7 9 – 2 8 9 . d o i : 1 0 . 1 0 1 6 /
j.immuni.2010.01.013

113. Leptos KC, Sarracino DA, Jaffe JD, Krastins B, Church GM
(2006 ) P ro t eomic s 6 (6 ) : 1770–1782 . do i : 10 . 1002 /
pmic.200500201

114. Park SK, Venable JD, Xu T, Yates JR 3rd (2008) Nat Methods 5
(4):319–322. doi:10.1038/nmeth.1195

115. Mueller LN, Rinner O, Schmidt A, Letarte S, Bodenmiller B,
Brusniak MY, Vitek O, Aebersold R, Muller M (2007) Proteo-
mics 7(19):3470–3480. doi:10.1002/pmic.200700057

116. America AH, Cordewener JH (2008) Proteomics 8(4):731–749.
doi:10.1002/pmic.200700694

117. Christin C, Bischoff R, Horvatovich P (2011) Talanta 83
(4):1209–1224. doi:10.1016/j.talanta.2010.10.029

118. Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M,
Assadourian G, Lee A, van Sluyter SC, Haynes PA (2011) Pro-
teomics 11(4):535–553. doi:10.1002/pmic.201000553

119. Choi H, Glatter T, Gstaiger M, Nesvizhskii AI (2012) J Proteome
Res 11(4):2619–2624. doi:10.1021/pr201185r

120. Grossmann J, Roschitzki B, Panse C, Fortes C, Barkow-Oesterreicher
S, Rutishauser D, Schlapbach R (2010) J Proteomics 73(9):1740–
1746. doi:10.1016/j.jprot.2010.05.011

121. Costenoble R, Picotti P, Reiter L, Stallmach R, Heinemann M,
Sauer U, Aebersold R (2011) Mol Syst Biol 7:464. doi:10.1038/
msb.2010.122

122. Kitteringham NR, Jenkins RE, Lane CS, Elliott VL, Park BK
(2009) J Chromatogr B Anal Technol Biomed Life Sci 877
(13):1229–1239. doi:10.1016/j.jchromb.2008.11.013

123. Malmstrom J, Beck M, Schmidt A, Lange V, Deutsch EW,
Aebersold R (2009) Nature 460(7256):762–765. doi:10.1038/
nature08184

124. Gallien S, Duriez E, Domon B (2011) J Mass Spectrom 46
(3):298–312. doi:10.1002/jms.1895

125. Lange V, Picotti P, Domon B, Aebersold R (2008) Mol Syst Biol
4:222. doi:10.1038/msb.2008.61

126. Duncan MW, Yergey AL, Patterson SD (2009) Proteomics 9
(5):1124–1127. doi:10.1002/pmic.200800739

127. Deutsch EW (2010) Methods Mol Biol 604:285–296.
doi:10.1007/978-1-60761-444-9_19

128. Deutsch EW, Lam H, Aebersold R (2008) EMBO Rep 9(5):429–
434. doi:10.1038/embor.2008.56

129. Jones P, Cote RG, Cho SY, Klie S, Martens L, Quinn AF,
Thorneycroft D, Hermjakob H (2008) Nucleic Acids Res 36
(Suppl 1):D878–D883. doi:10.1093/nar/gkm1021

962 M. Bantscheff et al.

http://dx.doi.org/10.1038/85686
http://dx.doi.org/10.1021/ac0498563
http://dx.doi.org/10.1021/pr0600273
http://dx.doi.org/10.1074/mcp.M500084-MCP200
http://dx.doi.org/10.1074/mcp.M500084-MCP200
http://dx.doi.org/10.1016/j.jasms.2010.05.001
http://dx.doi.org/10.1021/pr100508p
http://dx.doi.org/10.1074/mcp.M800203-MCP200
http://dx.doi.org/10.1074/mcp.R500012-MCP200
http://dx.doi.org/10.1021/ac9023999
http://dx.doi.org/10.1021/pr060161n
http://dx.doi.org/10.1002/pmic.200700426
http://dx.doi.org/10.1038/nbt.1592
http://dx.doi.org/10.1038/nbt.1592
http://dx.doi.org/10.1021/pr200219x
http://dx.doi.org/10.1016/j.jchromb.2009.02.050
http://dx.doi.org/10.1016/j.jchromb.2009.02.050
http://dx.doi.org/10.1016/j.jchromb.2007.10.034
http://dx.doi.org/10.1255/ejms.776
http://dx.doi.org/10.1255/ejms.776
http://dx.doi.org/10.1074/mcp.M400061-MCP200
http://dx.doi.org/10.1021/ac2009806
http://dx.doi.org/10.1093/bioinformatics/btm281
http://dx.doi.org/10.1093/bioinformatics/btm281
http://dx.doi.org/10.1074/mcp.M500301-MCP200
http://dx.doi.org/10.1371/journal.pone.0029263
http://dx.doi.org/10.1371/journal.pone.0029263
http://dx.doi.org/10.1074/mcp.M500321-MCP200
http://dx.doi.org/10.1074/mcp.M500230-MCP200
http://dx.doi.org/10.1074/mcp.M500230-MCP200
http://dx.doi.org/10.1002/pmic.200800564
http://dx.doi.org/10.1002/pmic.200800564
http://dx.doi.org/10.1002/rcm.4476
http://dx.doi.org/10.1002/rcm.4476
http://dx.doi.org/10.1021/pr100144z
http://dx.doi.org/10.1093/bioinformatics/btl299
http://dx.doi.org/10.1007/978-1-60761-444-9_14
http://dx.doi.org/10.1186/1471-2105-9-163
http://dx.doi.org/10.1186/1471-2105-9-163
http://dx.doi.org/10.1016/j.immuni.2010.01.013
http://dx.doi.org/10.1016/j.immuni.2010.01.013
http://dx.doi.org/10.1002/pmic.200500201
http://dx.doi.org/10.1002/pmic.200500201
http://dx.doi.org/10.1038/nmeth.1195
http://dx.doi.org/10.1002/pmic.200700057
http://dx.doi.org/10.1002/pmic.200700694
http://dx.doi.org/10.1016/j.talanta.2010.10.029
http://dx.doi.org/10.1002/pmic.201000553
http://dx.doi.org/10.1021/pr201185r
http://dx.doi.org/10.1016/j.jprot.2010.05.011
http://dx.doi.org/10.1038/msb.2010.122
http://dx.doi.org/10.1038/msb.2010.122
http://dx.doi.org/10.1016/j.jchromb.2008.11.013
http://dx.doi.org/10.1038/nature08184
http://dx.doi.org/10.1038/nature08184
http://dx.doi.org/10.1002/jms.1895
http://dx.doi.org/10.1038/msb.2008.61
http://dx.doi.org/10.1002/pmic.200800739
http://dx.doi.org/10.1007/978-1-60761-444-9_19
http://dx.doi.org/10.1038/embor.2008.56
http://dx.doi.org/10.1093/nar/gkm1021


130. Jones P, Cote RG, Martens L, Quinn AF, Taylor CF, Derache W,
Hermjakob H, Apweiler R (2006) Nucleic Acids Res 34(Suppl
1):D659–D663. doi:10.1093/nar/gkj138

131. Wang R, Fabregat A, Rios D, Ovelleiro D, Foster JM, Cote RG,
Griss J, Csordas A, Perez-Riverol Y, Reisinger F, Hermjakob H,
Martens L, Vizcaino JA (2012) Nat Biotechnol 30(2):135–137.
doi:10.1038/nbt.2112

132. Fusaro VA, Mani DR, Mesirov JP, Carr SA (2009) Nat Biotech-
nol 27(2):190–198. doi:10.1038/nbt.1524

133. Mallick P, Schirle M, Chen SS, Flory MR, Lee H, Martin D,
Ranish J, Raught B, Schmitt R, Werner T, Kuster B, Aebersold R
(2007) Nat Biotechnol 25(1):125–131. doi:10.1038/nbt1275

134. Picotti P, Lam H, Campbell D, Deutsch EW, Mirzaei H, Ranish J,
Domon B, Aebersold R (2008) Nat Methods 5(11):913–914.
doi:10.1038/nmeth1108-913

135. Reiter L, Rinner O, Picotti P, Huttenhain R, Beck M, Brusniak
MY, Hengartner MO, Aebersold R (2011) Nat Methods 8(5):430–
435. doi:10.1038/nmeth.1584

136. Cham Mead JA, Bianco L, Bessant C (2010) Proteomics 10
(6):1106–1126. doi:10.1002/pmic.200900396

137. MacCoss MJ, Wu CC, Liu H, Sadygov R, Yates JR 3rd (2003)
Anal Chem 75(24):6912–6921. doi:10.1021/ac034790h

138. Unwin RD, Griffiths JR, Leverentz MK, Grallert A, Hagan IM,
Whetton AD (2005) Mol Cell Proteomics 4(8):1134–1144.
doi:10.1074/mcp.M500113-MCP200

139. Kiyonami R, Schoen A, Prakash A, Peterman S, Zabrouskov V,
Picotti P, Aebersold R, Huhmer A, Domon B (2010) Mol Cell
Proteomics 10(2):M110.002931. doi:10.1074/mcp.M110.002931

140. Stahl-Zeng J, Lange V, Ossola R, Eckhardt K, Krek W, Aebersold
R, Domon B (2007) Mol Cell Proteomics 6(10):1809–1817.
doi:10.1074/mcp.M700132-MCP200

141. Klaassen T, Szwandt S, Kapron JT, Roemer A (2009) Rapid
Commun Mass Spectrom 23(15):2301–2306. doi:10.1002/
rcm.4147

142. Fortin T, Salvador A, Charrier JP, Lenz C, Bettsworth F, Lacoux
X, Choquet-Kastylevsky G, Lemoine J (2009) Anal Chem 81
(22):9343–9352. doi:10.1021/ac901447h

143. Bennett EJ, Rush J, Gygi SP, Harper JW (2010) Cell 143(6):951–
965. doi:10.1016/j.cell.2010.11.017

144. Kuepfer L, Peter M, Sauer U, Stelling J (2007) Nat Biotechnol 25
(9):1001–1006. doi:10.1038/nbt1330

145. Lu P, Vogel C, Wang R, Yao X, Marcotte EM (2007) Nat Bio-
technol 25(1):117–124. doi:10.1038/nbt1270

146. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J,
Wolf J, Chen W, Selbach M (2011) Nature 473(7347):337–342.
doi:10.1038/nature10098

147. Holzmann J, Pichler P, Madalinski M, Kurzbauer R, Mechtler K
(2009) Anal Chem 81(24):10254–10261. doi:10.1021/
ac902286m

148. Nanavati D, Gucek M, Milne JL, Subramaniam S, Markey SP
(2008) Mol Cell Proteomics 7(2):442–447. doi:10.1074/
mcp.M700345-MCP200

149. Schmidt C, Lenz C, Grote M, Luhrmann R, Urlaub H (2010)
Anal Chem 82(7):2784–2796. doi:10.1021/ac902710k

150. Wepf A, Glatter T, Schmidt A, Aebersold R, Gstaiger M (2009)
Nat Methods 6(3):203–205. doi:10.1038/nmeth.1302

151. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003)
Proc Natl Acad Sci USA 100(12):6940–6945. doi:10.1073/
pnas.0832254100

152. Kirkpatrick DS, Gerber SA, Gygi SP (2005) Methods 35(3):265–
273. doi:10.1016/j.ymeth.2004.08.018

153. Beynon RJ, Doherty MK, Pratt JM, Gaskell SJ (2005) Nat Meth-
ods 2(8):587–589. doi:10.1038/nmeth774

154. Brun V, Dupuis A, Adrait A, Marcellin M, Thomas D, Court M,
Vandenesch F, Garin J (2007) Mol Cell Proteomics 6(12):2139–
2149. doi:10.1074/mcp.M700163-MCP200

155. Singh S, Springer M, Steen J, Kirschner MW, Steen H (2009) J
Proteome Res 8(5):2201–2210. doi:10.1021/pr800654s

156. Carroll KM, Simpson DM, Eyers CE, Knight CG, Brownridge P,
Dunn WB, Winder CL, Lanthaler K, Pir P, Malys N, Kell DB,
Oliver SG, Gaskell SJ, Beynon RJ (2011) Mol Cell Proteomics
10(12):M111.007633. doi:10.1074/mcp.M111.007633

157. Adrait A, Lebert D, Trauchessec M, Dupuis A, Louwagie M,
Masselon C, Jaquinod M, Chevalier B, Vandenesch F, Garin J,
Bruley C, Brun V (2012) J Proteomics 75(10):3041–3049.
doi:10.1016/j.jprot.2011.11.031

158. Zeiler M, Straube WL, Lundberg E, UhlenM, MannM (2012) Mol
Cell Proteomics 11:O111.009613. doi:10.1074/mcp.O111.009613

159. Persson A, Hober S, Uhlen M (2006) Curr Opin Mol Ther 8
(3):185–190

160. Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B,
Andersen E, Andersson AC, Angelidou P, Asplund A,
Asplund C, Berglund L, Bergstrom K, Brumer H, Cerjan
D, Ekstrom M, Elobeid A, Eriksson C, Fagerberg L, Falk
R, Fall J, Forsberg M, Bjorklund MG, Gumbel K, Halimi A,
Hallin I, Hamsten C, Hansson M, Hedhammar M, Hercules
G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund
J, Lundeberg J, Magnusson K, Malm E, Nilsson P, Odling J,
Oksvold P, Olsson I, Oster E, Ottosson J, Paavilainen L,
Persson A, Rimini R, Rockberg J, Runeson M, Sivertsson A,
Skollermo A, Steen J, Stenvall M, Sterky F, Stromberg S,
Sundberg M, Tegel H, Tourle S, Wahlund E, Walden A, Wan
J, Wernerus H, Westberg J, Wester K, Wrethagen U, Xu LL,
Hober S, Ponten F (2005) Mol Cell Proteomics 4(12):1920–
1932. doi:10.1074/mcp.M500279-MCP200

161. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K,
Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S, Wernerus
H, Bjorling L, Ponten F (2010) Nat Biotechnol 28(12):1248–
1250. doi:10.1038/nbt1210-1248

162. Blondeau F, Ritter B, Allaire PD, Wasiak S, Girard M, Hussain NK,
Angers A, Legendre-Guillemin V, Roy L, Boismenu D, Kearney
RE, Bell AW, Bergeron JJ, McPherson PS (2004) Proc Natl Acad
Sci USA 101(11):3833–3838. doi:10.1073/pnas.0308186101

163. Powell DW, Weaver CM, Jennings JL, McAfee KJ, He Y, Weil
PA, Link AJ (2004) Mol Cell Biol 24(16):7249–7259.
doi:10.1128/MCB.24.16.7249-7259.2004

164. Rappsilber J, Ryder U, Lamond AI, Mann M (2002) Genome Res
12(8):1231–1245. doi:10.1101/gr.473902

165. Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J,
Mann M (2005) Mol Cell Proteomics 4(9):1265–1272.
doi:10.1074/mcp.M500061-MCP200

166. Braisted JC, Kuntumalla S, Vogel C, Marcotte EM, Rodrigues
AR, Wang R, Huang ST, Ferlanti ES, Saeed AI, Fleischmann RD,
Peterson SN, Pieper R (2008) Bioinformatics 9:529. doi:10.1186/
1471-2105-9-529

167. Kuntumalla S, Braisted JC, Huang ST, Parmar PP, Clark DJ,
Alami H, Zhang Q, Donohue-Rolfe A, Tzipori S, Fleischmann
RD, Peterson SN, Pieper R (2009) Proteome Sci 7:22.
doi:10.1186/1477-5956-7-22

168. Trudgian DC, Ridlova G, Fischer R, Mackeen MM, Ternette N,
Acuto O, Kessler BM, Thomas B (2011) Proteomics 11
(14):2790–2797. doi:10.1002/pmic.201000800

169. Schmidt A, Beck M, Malmstrom J, Lam H, Claassen M,
Campbell D, Aebersold R (2011) Mol Syst Biol 7:510.
doi:10.1038/msb.2011.37

170. Ludwig C, Claassen M, Schmidt A, Aebersold R (2011) Mol Cell
Proteomics 11(3):M111.013987. doi:10.1074/mcp.M111.013987

171. Sanz-Medel A (2008) Anal Bioanal Chem 391(3):885–894.
doi:10.1007/s00216-008-2083-z

172. Sanz-Medel A, Montes-Bayon M, de la Campa del Rosario
Fernandez M, Encinar JR, Bettmer J (2008) Anal Bioanal Chem
390(1):3–16. doi:10.1007/s00216-007-1615-2

Quantitative mass spectrometry in proteomics 963

http://dx.doi.org/10.1093/nar/gkj138
http://dx.doi.org/10.1038/nbt.2112
http://dx.doi.org/10.1038/nbt.1524
http://dx.doi.org/10.1038/nbt1275
http://dx.doi.org/10.1038/nmeth1108-913
http://dx.doi.org/10.1038/nmeth.1584
http://dx.doi.org/10.1002/pmic.200900396
http://dx.doi.org/10.1021/ac034790h
http://dx.doi.org/10.1074/mcp.M500113-MCP200
http://dx.doi.org/10.1074/mcp.M110.002931
http://dx.doi.org/10.1074/mcp.M700132-MCP200
http://dx.doi.org/10.1002/rcm.4147
http://dx.doi.org/10.1002/rcm.4147
http://dx.doi.org/10.1021/ac901447h
http://dx.doi.org/10.1016/j.cell.2010.11.017
http://dx.doi.org/10.1038/nbt1330
http://dx.doi.org/10.1038/nbt1270
http://dx.doi.org/10.1038/nature10098
http://dx.doi.org/10.1021/ac902286m
http://dx.doi.org/10.1021/ac902286m
http://dx.doi.org/10.1074/mcp.M700345-MCP200
http://dx.doi.org/10.1074/mcp.M700345-MCP200
http://dx.doi.org/10.1021/ac902710k
http://dx.doi.org/10.1038/nmeth.1302
http://dx.doi.org/10.1073/pnas.0832254100
http://dx.doi.org/10.1073/pnas.0832254100
http://dx.doi.org/10.1016/j.ymeth.2004.08.018
http://dx.doi.org/10.1038/nmeth774
http://dx.doi.org/10.1074/mcp.M700163-MCP200
http://dx.doi.org/10.1021/pr800654s
http://dx.doi.org/10.1074/mcp.M111.007633
http://dx.doi.org/10.1016/j.jprot.2011.11.031
http://dx.doi.org/10.1074/mcp.O111.009613
http://dx.doi.org/10.1074/mcp.M500279-MCP200
http://dx.doi.org/10.1038/nbt1210-1248
http://dx.doi.org/10.1073/pnas.0308186101
http://dx.doi.org/10.1128/MCB.24.16.7249-7259.2004
http://dx.doi.org/10.1101/gr.473902
http://dx.doi.org/10.1074/mcp.M500061-MCP200
http://dx.doi.org/10.1186/1471-2105-9-529
http://dx.doi.org/10.1186/1471-2105-9-529
http://dx.doi.org/10.1186/1477-5956-7-22
http://dx.doi.org/10.1002/pmic.201000800
http://dx.doi.org/10.1038/msb.2011.37
http://dx.doi.org/10.1074/mcp.M111.013987
http://dx.doi.org/10.1007/s00216-008-2083-z
http://dx.doi.org/10.1007/s00216-007-1615-2


173. Ahrends R, Pieper S, Neumann B, Scheler C, Linscheid MW
(2009) Anal Chem 81(6):2176–2184. doi:10.1021/ac802310c

174. El-Khatib AH, Esteban-Fernandez D, Linscheid MW (2012)
Anal Bioanal Chem 403(8):2255–2267. doi:10.1007/s00216-
012-5910-1

175. Zinn N, Hahn B, Pipkorn R, Schwarzer D, Lehmann WD (2009)
J Proteome Res 8(10):4870–4875. doi:10.1021/pr900494m

176. Zinn N, Winter D, Lehmann WD (2010) Anal Chem 82(6):2334–
2340. doi:10.1021/ac9025412

177. Esteban-Fernandez D, Scheler C, Linscheid MW (2011) Anal
Bioanal Chem 401(2):657–666. doi:10.1007/s00216-011-5104-2

178. Wind M, Edler M, Jakubowski N, Linscheid M, Wesch H, Leh-
mann WD (2001) Anal Chem 73(1):29–35

179. Rubbi L, Titz B, Brown L, Galvan E, Komisopoulou E, Chen SS,
Low T, Tahmasian M, Skaggs B, Muschen M, Pellegrini M,
Graeber TG (2011) Sci Signal 4(166):ra18. doi:10.1126/
scisignal.2001314

180. Hilger M, Bonaldi T, Gnad F, Mann M (2009) Mol Cell Proteo-
mics 8(8):1908–1920. doi:10.1074/mcp.M800559-MCP200

181. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P,
Mann M (2006) Cell 127(3):635–648. doi :10.1016/
j.cell.2006.09.026

182. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML,
Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann
M (2010) Sci Signal 3(104):ra3. doi:10.1126/scisignal.2000475

183. Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen
PT, Kratchmarova I, Kassem M, Mann M, Olsen JV, Blagoev B
(2011) Sci Signal 4(164):rs3. doi:10.1126/scisignal.2001570

184. Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D,
Pletnev AA, Gerber SA (2011) Sci Signal 4(179):rs5.
doi:10.1126/scisignal.2001497

185. Eyrich B, Sickmann A, Zahedi RP (2011) Proteomics 11(4):554–
570. doi:10.1002/pmic.201000489

186. Wu CJ, Chen YW, Tai JH, Chen SH (2011) J Proteome Res 10
(3):1088–1097. doi:10.1021/pr100864b

187. Oberprieler NG, Lemeer S, Kalland ME, Torgersen KM, Heck
AJ, Tasken K (2010) Blood 116(13):2253–2265. doi:10.1182/
blood-2010-01-266650

188. Boersema PJ, Foong LY, Ding VM, Lemeer S, van Breukelen B,
Philp R, Boekhorst J, Snel B, den Hertog J, Choo AB, Heck AJ
(2010) Mol Cell Proteomics 9(1):84–99. doi:10.1074/
mcp.M900291-MCP200

189. Ding VM, Boersema PJ, Foong LY, Preisinger C, Koh G,
Natarajan S, Lee DY, Boekhorst J, Snel B, Lemeer S, Heck
AJ, Choo A (2011) PLoS One 6(3):e17538. doi:10.1371/
journal.pone.0017538

190. Boja ES, Phillips D, French SA, Harris RA, Balaban RS (2009) J
Proteome Res 8(10):4665–4675. doi:10.1021/pr900387b

191. Iwai LK, Benoist C, Mathis D, White FM (2010) J Proteome Res
9(6):3135–3145. doi:10.1021/pr100035b

192. Jones AM, Nuhse TS (2011) Methods Mol Biol 779:287–302.
doi:10.1007/978-1-61779-264-9_17

193. Wu J, Warren P, Shakey Q, Sousa E, Hill A, Ryan TE, He T
(2010) Proteomics 10(11) :2224–2234. doi :10.1002/
pmic.200900788

194. Montoya A, Beltran L, Casado P, Rodriguez-Prados JC, Cutillas PR
(2011) Methods 54(4):370–378. doi:10.1016/j.ymeth.2011.02.004

195. Mortensen P, Gouw JW, Olsen JV, Ong SE, Rigbolt KT,
Bunkenborg J, Cox J, Foster LJ, Heck AJ, Blagoev B,
Andersen JS, Mann M (2010) J Proteome Res 9(1):393–
403. doi:10.1021/pr900721e

196. Mueller LN, Brusniak MY, Mani DR, Aebersold R (2008) J
Proteome Res 7(1):51–61. doi:10.1021/pr700758r

197. Olsen JV, Ong SE, Mann M (2004) Mol Cell Proteomics 3
(6):608–614. doi:10.1074/mcp.T400003-MCP200

198. Haas W, Faherty BK, Gerber SA, Elias JE, Beausoleil SA,
Bakalarski CE, Li X, Villen J, Gygi SP (2006) Mol Cell
Proteomics 5(7):1326–1337. doi:10.1074/mcp.M500339-MCP200

199. Cutillas PR, Vanhaesebroeck B (2007) Mol Cell Proteomics 6
(9):1560–1573. doi:10.1074/mcp.M700037-MCP200

200. Casado P, Cutillas PR (2011) Mol Cell Proteomics 10(1):
M110.003079. doi:10.1074/mcp.M110.003079

201. Ow SY, Salim M, Noirel J, Evans C, Rehman I, Wright PC (2009)
J Proteome Res 8(11):5347–5355. doi:10.1021/pr900634c

202. Savitski MM, Sweetman G, Askenazi M, Marto JA, Lang M,
Zinn N, Bantscheff M (2011) Anal Chem 83(23):8959–8967.
doi:10.1021/ac201760x

203. Nielsen ML, Savitski MM, Zubarev RA (2005) Mol Cell Proteo-
mics 4(6):835–845. doi:10.1074/mcp.T400022-MCP200

204. van Noort V, Seebacher J, Bader S, Mohammed S, Vonkova I,
Betts MJ, Kuhner S, Kumar R, Maier T, O'Flaherty M, Rybin V,
Schmeisky A, Yus E, Stulke J, Serrano L, Russell RB, Heck AJ,
Bork P, Gavin AC (2012) Mol Syst Biol 8:571. doi:10.1038/
msb.2012.4

205. Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P,
Michon AM, Schlegl J, Abraham Y, Becher I, Bergamini G,
Boesche M, Delling M, Dumpelfeld B, Eberhard D, Huthmacher
C, Mathieson T, Poeckel D, Reader V, Strunk K, Sweetman G,
Kruse U, Neubauer G, Ramsden NG, Drewes G (2011) Nat
Biotechnol 29(3):255–265. doi:10.1038/nbt.1759

206. Breitwieser FP, Muller A, Dayon L, Kocher T, Hainard A, Pichler
P, Schmidt-Erfurth U, Superti-Furga G, Sanchez JC, Mechtler K,
Bennett KL, Colinge J (2011) J Proteome Res 10(6):2758–2766.
doi:10.1021/pr1012784

207. Wu Z, Doondeea JB, Moghaddas Gholami A, Janning MC,
Lemeer S, Kramer K, Eccles SA, Gollin SM, Grenman R, Walch
A, Feller SM, Kuster B (2011) Mol Cell Proteomics 10(12):
M111.011635. doi:10.1074/mcp.M111.011635

208. Wang H, Alvarez S, Hicks LM (2012) J Proteome Res 11(1):487–
501. doi:10.1021/pr2008225

209. Savitski MM, Fischer F, Mathieson T, Sweetman G, Lang M,
Bantscheff M (2010) J Am Soc Mass Spectrom 21(10):1668–
1679. doi:10.1016/j.jasms.2010.01.012

210. Olsen JV, Schwartz JC, Griep-Raming J, Nielsen ML, Damoc E,
Denisov E, Lange O, Remes P, Taylor D, Splendore M, Wouters
ER, Senko M, Makarov A, Mann M, Horning S (2009) Mol Cell
Proteomics 8(12):2759–2769. doi:10.1074/mcp.M900375-
MCP200

211. Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, Pesch R,
Makarov A, Lange O, Horning S, Mann M (2005) Mol Cell
Proteomics 4(12):2010–2021. doi:10.1074/mcp.T500030-
MCP200

212. Li Z, Adams RM, Chourey K, Hurst GB, Hettich RL, Pan C
(2012) J Proteome Res 11(3):1582–1590. doi:10.1021/pr200748h

213. Falick AM, Lane WS, Lilley KS, MacCoss MJ, Phinney BS,
Sherman NE, Weintraub ST, Witkowska HE, Yates NA (2011) J
Biomol Tech 22(1):21–26

214. Pavelka N, Fournier ML, Swanson SK, Pelizzola M,
Ricciardi-Castagnoli P, Florens L, Washburn MP (2008) Mol Cell
Proteomics 7(4):631–644. doi:10.1074/mcp.M700240-MCP200

215. Diz AP, Carvajal-Rodriguez A, Skibinski DO (2011) Mol Cell
Proteomics 10(3):M110.004374. doi:10.1074/mcp.M110.004374

216. Bauer A, Kuster B (2003) Eur J Biochem 270(4):570–578
217. Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G,

Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S,
Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl
J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin
AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B,
Superti-Furga G (2004) Nat Cell Biol 6(2):97–105. doi:10.1038/
ncb1086

964 M. Bantscheff et al.

http://dx.doi.org/10.1021/ac802310c
http://dx.doi.org/10.1007/s00216-012-5910-1
http://dx.doi.org/10.1007/s00216-012-5910-1
http://dx.doi.org/10.1021/pr900494m
http://dx.doi.org/10.1021/ac9025412
http://dx.doi.org/10.1007/s00216-011-5104-2
http://dx.doi.org/10.1126/scisignal.2001314
http://dx.doi.org/10.1126/scisignal.2001314
http://dx.doi.org/10.1074/mcp.M800559-MCP200
http://dx.doi.org/10.1016/j.cell.2006.09.026
http://dx.doi.org/10.1016/j.cell.2006.09.026
http://dx.doi.org/10.1126/scisignal.2000475
http://dx.doi.org/10.1126/scisignal.2001570
http://dx.doi.org/10.1126/scisignal.2001497
http://dx.doi.org/10.1002/pmic.201000489
http://dx.doi.org/10.1021/pr100864b
http://dx.doi.org/10.1182/blood-2010-01-266650
http://dx.doi.org/10.1182/blood-2010-01-266650
http://dx.doi.org/10.1074/mcp.M900291-MCP200
http://dx.doi.org/10.1074/mcp.M900291-MCP200
http://dx.doi.org/10.1371/journal.pone.0017538
http://dx.doi.org/10.1371/journal.pone.0017538
http://dx.doi.org/10.1021/pr900387b
http://dx.doi.org/10.1021/pr100035b
http://dx.doi.org/10.1007/978-1-61779-264-9_17
http://dx.doi.org/10.1002/pmic.200900788
http://dx.doi.org/10.1002/pmic.200900788
http://dx.doi.org/10.1016/j.ymeth.2011.02.004
http://dx.doi.org/10.1021/pr900721e
http://dx.doi.org/10.1021/pr700758r
http://dx.doi.org/10.1074/mcp.T400003-MCP200
http://dx.doi.org/10.1074/mcp.M500339-MCP200
http://dx.doi.org/10.1074/mcp.M700037-MCP200
http://dx.doi.org/10.1074/mcp.M110.003079
http://dx.doi.org/10.1021/pr900634c
http://dx.doi.org/10.1021/ac201760x
http://dx.doi.org/10.1074/mcp.T400022-MCP200
http://dx.doi.org/10.1038/msb.2012.4
http://dx.doi.org/10.1038/msb.2012.4
http://dx.doi.org/10.1038/nbt.1759
http://dx.doi.org/10.1021/pr1012784
http://dx.doi.org/10.1074/mcp.M111.011635
http://dx.doi.org/10.1021/pr2008225
http://dx.doi.org/10.1016/j.jasms.2010.01.012
http://dx.doi.org/10.1074/mcp.M900375-MCP200
http://dx.doi.org/10.1074/mcp.M900375-MCP200
http://dx.doi.org/10.1074/mcp.T500030-MCP200
http://dx.doi.org/10.1074/mcp.T500030-MCP200
http://dx.doi.org/10.1021/pr200748h
http://dx.doi.org/10.1074/mcp.M700240-MCP200
http://dx.doi.org/10.1074/mcp.M110.004374
http://dx.doi.org/10.1038/ncb1086
http://dx.doi.org/10.1038/ncb1086


218. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M,
Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, Edelmann A,
Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon
AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer
A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM,
Kuster B, Bork P, Russell RB, Superti-Furga G (2006) Nature
440(7084):631–636. doi:10.1038/nature04532

219. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer
A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M,
Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein
K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S,
Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A,
Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork
P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002)
Nature 415(6868):141–147. doi:10.1038/415141a

220. Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D,
Conaway RC, Conaway JW, Florens L, Washburn MP (2006)
Proc Natl Acad Sci USA 103(50):18928–18933. doi:10.1073/
pnas.0606379103

221. Pardo M, Choudhary JS (2012) J Proteome Res 11(3):1462–
1474. doi:10.1021/pr2011632

222. Sardiu ME, Florens L, Washburn MP (2009) J Proteome Res 8
(6):2944–2952. doi:10.1021/pr900073d

223. Choi H, Kim S, Gingras AC, Nesvizhskii AI (2010) Mol Syst
Biol 6:385. doi:10.1038/msb.2010.41

224. Choi H, Larsen B, Lin ZY, Breitkreutz A, Mellacheruvu D,
Fermin D, Qin ZS, Tyers M, Gingras AC, Nesvizhskii AI
(2010) Nat Methods 8(1):70–73. doi:10.1038/nmeth.1541

225. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G,
Bantscheff M, Chan WI, Robson SC, Chung CW, Hopf C,
Savitski MM, Huthmacher C, Gudgin E, Lugo D, Beinke S,
Chapman TD, Roberts EJ, Soden PE, Auger KR, Mirguet O,
Doehner K, Delwel R, Burnett AK, Jeffrey P, Drewes G,
Lee K, Huntly BJ, Kouzarides T (2011) Nature 478
(7370):529–533. doi:10.1038/nature10509

226. Schiess R, Wollscheid B, Aebersold R (2009) Mol Oncol 3
(1):33–44. doi:10.1016/j.molonc.2008.12.001

227. Hilario M, Kalousis A, Pellegrini C, Muller M (2006) Mass
Spectrom Rev 25(3):409–449. doi:10.1002/mas.20072

228. Byvatov E, Schneider G (2003) Appl Bioinformatics 2(2):67–77
229. Boulesteix AL, Strimmer K (2007) Brief Bioinform 8(1):32–44.

doi:10.1093/bib/bbl016
230. Ong SE, Mann M (2005) Nat Chem Biol 1(5):252–262.

doi:10.1038/nchembio736
231. Sun A, Zhang J, Wang C, Yang D, Wei H, Zhu Y, Jiang Y, He F

(2009) J Proteome Res 8(11):4934–4942. doi:10.1021/pr900252n

Quantitative mass spectrometry in proteomics 965

http://dx.doi.org/10.1038/nature04532
http://dx.doi.org/10.1038/415141a
http://dx.doi.org/10.1073/pnas.0606379103
http://dx.doi.org/10.1073/pnas.0606379103
http://dx.doi.org/10.1021/pr2011632
http://dx.doi.org/10.1021/pr900073d
http://dx.doi.org/10.1038/msb.2010.41
http://dx.doi.org/10.1038/nmeth.1541
http://dx.doi.org/10.1038/nature10509
http://dx.doi.org/10.1016/j.molonc.2008.12.001
http://dx.doi.org/10.1002/mas.20072
http://dx.doi.org/10.1093/bib/bbl016
http://dx.doi.org/10.1038/nchembio736
http://dx.doi.org/10.1021/pr900252n

	Quantitative mass spectrometry in proteomics: critical review �update from 2007 to the present
	Abstract
	Introduction
	Metabolic labeling
	Chemical protein and peptide labeling
	LC-MS/MS analysis of peptides
	Label-free quantification—spectrum count approaches
	Label-free quantification—MS1-intensity-based approaches
	Experimental considerations
	Software considerations

	Selected reaction monitoring
	Absolute quantification
	Absolute quantification using stable-isotope-labeled standards
	Absolute quantification using label-free methods

	Quantification of PTMs
	Analysis of quantitative MS data
	Calculating peptide and protein ratios
	Peptide fold change precision and accuracy
	Single peptide fold change measurements
	Protein fold change determination
	Invisible ions—dealing with infinities
	Lessons from method comparison studies
	Significance within an experiment
	Significance across different experiments

	Concluding remarks
	References


