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Abstract The enormous progress of nanotechnology during
the last decade has made it possible to fabricate a great variety
of nanostructures. On the nanoscale, metals exhibit special
electrical and optical properties, which can be utilized for
novel applications. In particular, plasmonic sensors including
both the established technique of surface plasmon resonance
and more recent nanoplasmonic sensors, have recently
attracted much attention. However, some of the simplest and
most successful sensors, such as the glucose biosensor, are
based on electrical readout. In this review we describe the
implementation of electrochemistry with plasmonic nano-
structures for combined electrical and optical signal transduc-
tion. We highlight results from different types of metallic
nanostructures such as nanoparticles, nanowires, nanoholes or
simply films of nanoscale thickness. We briefly give an
overview of their optical properties and discuss implementa-
tion of electrochemical methods. In particular, we review

studies on how electrochemical potentials influence the
plasmon resonances in different nanostructures, as this type
of fundamental understanding is necessary for successful
combination of the methods. Although several combined
platforms exist, many are not yet in use as sensors partly
because of the complicated effects from electrochemical
potentials on plasmon resonances. Yet, there are clearly
promising aspects of these sensor combinations and we
conclude this review by discussing the advantages of
synchronized electrical and optical readout, illustrating the
versatility of these technologies.
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Introduction

Over a century ago, Paul Drude [1] described metals as
plasmas of free electrons, forming a physical basis for their
optical and electrical properties. Even today, this is usually
how we understand metals, at least qualitatively. For several
metals, the classic Drude model also provides quantitatively
accurate results within optics and electronics as long as
quantum effects can be disregarded, which typically is the
case for length scales above 10 nm. Yet, in nanoscale
(smaller than 1 μm) structures, several interesting optical
and electrical phenomena occur, such as plasmon excitation
by light and environmental influences on conductivity.
Such effects are highly surface sensitive, i.e. they respond
to changes in the environment that occur locally on the
surface. This has led to the development of novel sensors
and biosensors operating label-free [2], i.e. with the analyte
in its native state and usually in real time. These sensors
have no need for reporter elements such as fluorophores,
radioactive labels or quantum dots, although such entities
can be used in a secondary step to enhance the signal after
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binding [3, 4]. The most successful emerging technologies
are arguably those based on optical or electrical signal
transduction. Optical and electrical techniques tend to be
simple, robust and can easily be miniaturized in comparison
with mechanical methods or less common approaches, such
as thermal [5] or magnetic [6] sensors. Systems with
mechanical signal transduction, such as the quartz crystal
microbalance [7], surface acoustic waves [8] and canti-
levers [9], are also aided by electrical and optical principles
since piezoelectric movement is controlled by electronics
and deflection is measured optically.

Most optical methods are refractometric, i.e. they
respond to the refractive index (RI) changes caused by
the analyte. They are in general based on either
interferometry or excitation of an optical resonance
[10], such as in surface plasmon resonance (SPR) [11].
SPR has long been the dominating technique for label-free
biomolecular interaction analysis [12] providing a typical
RI resolution of 10-7 and a limit of detection (LOD) down
to 0.01 ng/cm2 in terms of surface coverage [11]. Notably,
the LOD in terms of analyte concentration will always be
influenced by binding kinetics [13] for SPR and all other
surface-sensitive techniques. In addition, most assays
suffer from non-specific interactions in complex samples
[14, 15], which puts high demands on the chemistry used
for surface functionalization. Yet, in many applications of
SPR the LOD in terms of concentration is comparable to
or better than that in enzyme-linked immunosorbent
assays [11].

During the last decade, nanoplasmonic (or “localized
SPR”) sensors based on various nanostructures (not just
thin metal films) have become a popular research topic [16,
17]. It is suggested that such sensors are preferable over
SPR in terms of miniaturization [18] and simplicity [19]
(e.g. no prism or polarizer). Despite a lower sensitivity to
RI changes, localized SPR sensors can provide comparable
performance in refractometric detection owing to strongly
confined fields [15, 20–22]. Recent studies suggest the
sensitivity can be enhanced further by Fano resonances [23]
or metamaterials [24]. There are also several interesting
assays [25, 26] and distance measurements [27–29] in
biological systems based on plasmonic coupling between
plasmonic nanoparticles that are free in solution. Such
particles have some advantages as labels since they do not
bleach like fluorophores and have low toxicity [30].
Nanoplasmonic systems have also been proposed for
spectral detection and identification through inelastic
spectroscopy techniques such as surface-enhanced Raman
scattering (SERS) [31].

Another way to move the free electrons in metals is by
electrical control. Electrical sensing methods are often
based on conductivity changes caused by field effects
[32], usually in semiconductor nanowires [33]. Multiplexed

detection of proteins in blood with a LOD in terms of
concentration down to a few femtomoles per litre has been
reported [34]. In contrast, voltammetry can be used to
measure currents from oxidation or reduction of analytes
[35]. In this case specificity can be achieved by using
enzymes [36] (as in common glucose-sensing devices),
redox cycling [37] (especially in small volumes) or fast
scanning [38] (also in vivo). Another popular technique is
electrochemical impedance spectroscopy (EIS) [39], which
has a signal transduction that remains somewhat unclear
[40]. Molecules on the surface can, for instance, either
block charge transfer or induce changes in capacitance [41].
The technique has been employed with rather inconsistent
methods, as will be discussed.

It is interesting to consider which metals are most suitable
for electrical and optical sensing. Most bioanalytical systems
utilizing electrical or optical detection contain gold as the
active sensor surface mainly because it is a chemically stable
metal which can be easily etched, e.g. by ion milling [42].
Gold also has a long electron mean free path, which results in
relatively high conductivity and strong plasmon resonances.
The latter effect is well known from the ruby red colour of
colloidal gold, which for centuries has been used for staining
glass [43]. The only metal that is closer to Drude-like ideal
electron behaviour is silver, which has no interband
transitions in the visible region [44] and higher conductivity
[45] but its susceptibility to oxidation is a severe limitation.
However, Anker et al. [19] and Haes and Van Duyne [46]
have demonstrated successful use of silver nanoparticles as
optical biosensors and the first SPR experiments were
actually performed on silver films [47]. For copper, even
worse oxidation issues apply [48] in combination with optical
damping for visible wavelengths [44], although SPR cou-
pling can be efficient [49] and as a bulk metal copper has
good conductivity [45]. Platinum has the best oxidative
stability but suffers from weak plasmon resonances [50].

Although there are reviews available covering the topics of
electrical [35, 51] and in particular plasmonic [11, 12, 16, 17,
19] biosensors, the combination of these methods appears
not to have been discussed so far. The topic of this review is
the implementation of electrical readout in different types of
plasmonic structures. Besides electrochemical SPR (ESPR)
systems [36, 52–55] there are few existing combined systems
actually in use as sensors. Yet, there are many studies on the
implementation of electrochemistry with plasmonic nano-
particles and also some studies where other nanoplasmonic
systems have been used. For one thing, it is clear that the
plasmon resonances are influenced by applied electrochem-
ical potentials. We will look more closely at such effects
(summarized in Table 1) as they are critical for developing
combined sensors. We give examples of how combined
electrical and plasmonic readout has provided useful
information, in particular for SPR. In the final section we
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discuss more speculative advantages of plasmonic sensors
with implemented electrochemistry.

Plasmonic systems with electrical control

Surface plasmon resonance

ESPR is an established method within academic research and
has even been commercialized (e.g. Metrohm product Autolab
ESPRIT). This is not surprising since SPR by itself is an
established technique and the implementation of a basic
electrochemical cell where the gold sensor chip acts as a
working electrode is straightforward. Examples of ESPR
sensors were reviewed by Zhang et al. [52] some time ago.
Several studies have been performed on electropolymeriza-
tion and doping processes in conductive multilayer molecular
films [56–59] or layers containing chromophores [60]. The
primary value of the sensor combination is that electron
transfer reactions are quantified from the current, and the
SPR readout provides the RI and possibly the thickness [36]
of the layer. The relevance to sensing lies in the fact that
polymeric films can cross conductivity thresholds or undergo
strong optical changes upon redox reactions. For instance,
this can be used to monitor activity of redox enzymes such as
horseradish peroxidase [58].

Yet, ESPR experiments go even further back in time.
Reflectionmeasurements onmetals with electrochemistry were
presented byMcIntyre [61] and the effect on surface plasmons
was investigated more directly by Abeles et al. [53].
Tadjeddine et al. [62] experimentally determined a relation
between surface plasmon excitation and applied voltage for
silver [Ag (111) in 0.5 M NaClO4]. In other words, the
question how electrochemical potentials influence plasmon
resonances has been considered for a long time. As shown in
Table 1, it is clear that the spectral changes depend on
multiple effects [63] even in the absence of electron transfer
reactions [53]. Foley et al. [64] have discussed how the
electron density of the metal, which is changed by an applied
potential, changes the Drude plasma frequency, suggesting a
linear relation between potential and SPR resonance angle
shift. However, the ionic counterpart of the double-layer
capacitor [65] was not considered and the electrons/holes
were treated as delocalized through the metal film, although
the charge depletion occurs in the top atomic layer [53].

Wang et al. [66] elegantly demonstrated how electrochem-
ical reactions generate RI contrasts that can be visualized by
SPR imaging (Fig. 1). In this case, the plasmonic readout
essentially replaces the amperemeter in the system, with the
advantage of providing imaging of gradients in the current
density over the electrode surface [54]. The RI contrast is
generated by molecular species which undergo charge
transfer reactions and the signal is determined by the contrastT
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in the RI between the oxidized and reduced states. In contrast
to conventional voltammetry, the current measured through
SPR is intrinsically normalized to the electrode area and the
imaging SPR technique [67] determines the spatial resolution.

An ESPR sensor for glucose sensing based on conduc-
tive polymer films with the enzyme glucose oxidase
incorporated was recently demonstrated by Baba et al.
[36]. Common glucose sensors operate by monitoring the
current from enzymatic oxidation at a maintained potential
and this was possible also in this work. However, it was
also demonstrated that the electrochromic properties of the
surrounding polymer matrix may provide an RI contrast
upon glucose oxidation which is high enough for the SPR
readout to provide better signal to noise than ordinary
chronoamperometry [36]. In other words, the current data
are again replaced by the optical readout, but mainly for
providing higher resolution in the detection.

Nanoparticles

Many types of gold nanoparticles can be synthesized by
reduction of gold ions in solution [68–70]. On surfaces,
colloidal patterns [71–76], electroplating [24] or imprinting
[3] can give various particles over large areas, whereas serial
electron beam lithography produces arbitrary shapes [23] but
over smaller regions. It is important to note that the free-
electron properties of the metal depend on the fabrication
method since this influences crystal grain size [42].
Individual metal nanoparticles exhibit fully confined plas-

mon resonances at frequencies which depend on various
particle properties, such as size [77], shape [78] and the
Drude properties of the metal [42]. The RI of the local
medium also influences the spectrum, which forms the basis
for refractometric plasmonic detection [79]. In terms of pure
electrochemical sensing, thin films of gold nanoparticles can
be used as high-surface-area electrodes [80, 81].

To combine electrical and optical sensing for plasmonic
nanoparticles, the first step is to understand how an electro-
chemical potential influences their optical properties. Pioneer-
ing work on nanoparticle plasmonics with implemented
electrochemistry was reviewed by Mulvaney [82]. This
demonstrated, among other things, how the plasmon reso-
nance wavelength changed upon electron transfer to sus-
pended particles. The primary physical explanation proposed
was that electrons transferred to the particle change the free-
electron density in the Drude model (Table 1), which increases
the plasma frequency [83, 84]. Free particles can thus act as
nanocapacitors with their charge monitored optically by the
plasmon resonance wavelength [85]. (The relative change in
electron density is equal to the relative change in wavelength
squared.) An example of this type of optical monitoring of
electrochemical processes is shown in Fig. 2.

Lately, it has become more common to have the particles
bound to a conductive surface, which makes it much easier
to exchange components in the liquid environment and
control electrochemical potentials more quickly. Maintain-
ing similar plasmonic properties of the particles requires a
conductive yet transparent support such as indium tin oxide
(ITO) [42, 86–94]. ITO is a doped semiconductor which
has a charge carrier density that can be tuned [95] such that
the material has decent conductivity, whereas the plasma
frequency is low enough to make the material dielectric in
the visible–near IR region and metallic (plasmonic) only
relatively far into the IR region [95]. Further, the band gap
is wider than the energy range of visible light.

For electrochemical–plasmonic sensing applications of
nanoparticles, it is interesting to consider their stability and
optical signals upon redox reactions with the metal. For one
thing, ITO can be reduced at negative potentials [96], at
least at −1.4 V against Ag/AgCl [88]. On the other hand,
the metal will suffer from oxidative reactions and can be
dissolved at positive potentials after forming complexes
with halide ions [97]. The oxidation potential depends on
particle size owing to the increased surface energy for
smaller particles [98]. The optical response upon oxidation
has been studied for colloidal gold on ITO and is in many
cases reversible [87, 92]. Figure 3 shows an example of
electrochemical chloridation of gold colloids (in NaCl) on
ITO with synchronized spectroscopy. Hysteresis is clearly
seen when the peak position or width is plotted against the
applied potential, but the spectral changes remain reversible
up to approximately +800 mV [92], i.e. no metal is

Fig. 1 The principle of plasmonic imaging of electrochemical
currents using electrochemical surface plasmon resonance is shown
in a. A redox reaction generates a local change in refractive index
because of the reactants consumed and products generated (here
ruthenium complexes). By imaging surface plasmon resonance, one
can visualize where on the surface the reaction occurs (b). It is shown
by comparing the signal from a clean gold surface how a self-
assembled alkanethiol monolayer (SAM) can block charge transfer. CE
counter electrode, RE reference electrode, WE working electrode.
(Reprinted with permission from Wang et al. [66]. Copyright 2010
American Chemical Society)
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dissolved. There are also reports about minor changes in the
morphology of nanoparticles on ITO in response to
electrochemical potentials. Preferential oxidation at the
corners of triangular silver particles was observed by Zhang
et al. [94], whereas Novo and Mulvaney [90] noted
restructuring and faceting of gold nanorod edges.

It is clear from data such as those in Fig. 3 that chemical
interactions with ions also strongly influence the optical
response to electrochemical potentials, together with changes
in electron density. Mulvaney [82] considered this effect and
suggested that the resonance wavelength shift is associated
with electron density changes, whereas the plasmon resonance

Fig. 3 Electrochemical formation of gold chloride on colloids
supported by indium tin oxide monitored by cyclic voltammetry scans
with synchronized spectroscopy. A spectrum of the structure in
100 mM NaCl is shown in a and an electron microscopy image is
shown in b. The cyclic voltammetry current is shown in c for three

cycles at 10 mV/s scan rate. In d and e the synchronized plasmonic
response is shown in terms of peak shift and peak width, respectively.
The experimental setup was similar to that shown in Fig. 5e.
(Reprinted with permission from Sannomiya et al. [92]. Copyright
2009 American Chemical Society)

Fig. 2 Pioneering work on combined plasmonics and electrochemis-
try on 11-nm silver colloids suspended in a small liquid cell. The
colloids were charged at a gold mesh electrode and the spectral data
shown are those obtained upon establishment of equilibrium. The

number of electrons transferred was calculated according to a model
that relates resonance wavelength to electron density[84]. (Reprinted
with permission from Ung et al. [84]. Copyright 1997 American
Chemical Society)
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width is associated with chemically adsorbed ions, primarily
halides. Still, it seems plausible that the formation of a layer
with metal-ion complexes may also shift the resonance
because of its high RI, as we suggested on the basis of
modelling the full spectrum and measuring changes in peak
position, width and magnitude [92]. Importantly, an early
study by Gao and Weaver [99] with combined electrochem-
istry and SERS showed that Cl-, Br- and I- remain adsorbed to
gold even at highly negative potentials (e.g. -600 mV against
the saturated calomel electrode for Cl-). We have recently
investigated the influence of chemical interactions with ions in
further detail (A.B. Dahlin, R. Zahn and J. Vörös, unpublished
work).

Since many questions still remain about the optical–
electrical behaviour of nanoparticles, it is not so surprising
that there are relatively few sensing applications of combined
systems. Novo et al. [89] showed how optical detection can
be used to measure catalytic reactions on single particles. In
contrast to ESPR current imaging (Fig. 1), the signals were
thought to originate from electron density changes. This is
plausible because of fundamental differences between
surface plasmons and nanoparticle plasmons, but it seems
reasonable that both effects would contribute in both systems
at least to some extent. Another application that has been
suggested is intensity modulation through electrical control
[86]. However, it seems difficult to get high enough intensity
changes in response to a potential change, at least if the
device is to be remain stable and not suffer any irreversible
effects (Table 1). Wang and Lin [100] implemented electro-
optical modulation in terms of frequency for plasmonic
biosensing with gold nanoparticles and suggested this may
improve the stability of the measurements.

An EIS–plasmonic biosensor for detection of peptides that
form pores in membranes was demonstrated by Hiep et al.
[101]. In this work, an artificial lipid membrane was formed
by functionalizing silica particles coated with a continuous
gold film (Fig. 4). EIS was used to detect membrane
resistance changes while the plasmonic signal responded to
protein accumulation in the membrane. In general, EIS is
preferable for probing the intactness of artificial cell
membranes [102] as it is highly sensitive also to single pore
formation, especially at low frequencies (essentially DC).
However, the plasmonic response becomes preferable at high
pore densities since it scales linearly with the amount of
bound protein (Fig. 4, graph A). The two techniques thus
complement each other in dynamic range.

We recently demonstrated how to monitor electrochemical
recrystallization of common vacuum-deposited metals through
plasmon resonances [42]. It is very important to be aware of
this effect when using any electrochemical–plasmonic device
and thermal annealing is likely suitable as a final step in
fabrication [93]. Plasmon resonances in gold nanodisks (and
nanoholes) were used to monitor crystal grain growth in real
time, as shown in Fig. 5. The initial and final full spectra are
shown together with the optical monitoring of the crystalli-
zation process. The plasmon wavelength changes directly in
response to switching the potential between −200 mV and
+500 mV against Ag/AgCl, accompanied by a slow
irreversible signal from grain growth. Importantly, when
electrochemical crystallization was performed, the shape of
the nanostructure was preserved so that the influence of
crystallinity on plasmon resonances could be investigated
independently. The spectral changes caused by changes in the
free-electron properties were in excellent agreement with

Fig. 4 Detection of mellitin by
a lipid membrane on plasmonic
nanoparticles (top) probed by
electrochemical impedance
spectroscopy (a) and plasmonics
(b). As melittin-induced pores
start to form in the membrane,
the resistance to charge transfer
reactions decreases dramatically.
The plasmonic signal has
problems detecting low numbers
of pores but can distinguish
between high concentrations of
melittin, in contrast to
electrochemical impedance
spectroscopy. HBM hybrid
bilayer membrane. (Reprinted
with permission from Hiep et al.
[101]. Copyright 2008
American Chemical Society)
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analytical theory based on the Drude model. Similar results
for metamaterials were obtained independently by Ruther et
al. [103, 104].

Nanowire arrays

Fabrication of metallic nanowires has recently been of great
interest owing to their unique optical and electrical
properties [105–110]. Interestingly, nanowires support two
very different types of plasmon resonances. Surface
plasmons can propagate along the wire in a manner similar
to “1D SPR”, although this type of dispersed mode is of
interest primarily for plasmonic waveguides rather than
sensing [111]. The other type of mode is semilocalized or
2D transverse plasmons, which behave essentially identi-
cally to nanoparticle plasmons. The transverse dipoles are
oriented perpendicular to the wire axis with coupling effects
occurring in arrays of wires [106, 110, 112, 113]. In
addition, the angle of incidence [114] and the cross-section
shape [106, 115] influence the resonance. The refractomet-
ric sensing properties of the transverse plasmons in nano-
wires are similar to those of metal nanoparticles when
compared in terms of resonance wavelength sensitivity, e.g.
17 nm [115] or 104 nm [106] per RI increment. The field
around the wires can be strongly confined with simulated
decay lengths of approximately 5 nm [116].

For electrical measurements, the nanowire geometry has
the additional advantage of a conducting path along the

wire [33, 34]. It is known that the electrical resistance in
metal nanowires is much higher than what is expected from
the bulk resistivity of the metal because of scattering of
electrons at the surface. This phenomenon becomes
relevant if at least one dimension is comparable to or
smaller than the Drude electron mean free path (38 nm in
gold) [45] and has an optical analogy in the additional
plasmon damping in nanoparticles of very small size (less
than 10 nm) [77]. In addition, electron scattering at crystal
grain boundaries can contribute greatly to the resistance
[117]. This is in analogy to the optical effects of
crystallization in gold (Fig. 5). Interestingly, the influence
of grain boundary scattering depends strongly on how the
wires are fabricated [109]. For sensor applications, the
resistance in the wire should preferably be dominated by
surface scattering, in which case porous wires can be of
interest [118].

In terms of chemical sensing, there are various reports on
conductivity changes due to alkanethiol monolayer forma-
tion on gold wires [107, 109, 118], which typically results
in relative resistance changes between 1% and 10%. The
signal depends strongly on the strength and chemical nature
of the molecular interaction with the metal [55]. This type
of conductivity measurement will likely provide important
information on interface phenomena although it remains
unclear if it has value in, for instance, biosensing with a
proper recognition interface [20]. So far, there have been no
measurements of biomolecular interactions by conductivity
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Fig. 5 Electrochemical crystallization of gold nanodisks. The
spectrum in air before and after crystallization is shown in a. The
peak shift (b) is monitored upon the application of capacitive
electrochemical pulses (c), resulting in slow irreversible spectral

changes in addition to the faster response from switching the potential.
An electron microscopy image of nanodisks is shown in d and the
experimental setup is shown in e. (Reprinted with permission from
Dahlin et al. [42]. Copyright 2011 American Chemical Society)
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measurements in metallic nanowires. We have recently
studied gold nanowire arrays fabricated by extreme UV
interference lithography [105, 116, 119] for sensing
applications with combined optical and electrical detection.
Figure 6 shows a basic characterization of the plasmonic
response (resonance wavelength) to electrochemical poten-
tials over the whole array. We are currently extending this
system to conductivity measurements along the wires (R.
MacKenzie, C. Fraschina, B. Dielacher, T. Sannomiya, A.
B. Dahlin, J. Vörös, unpublished work), which may help
elucidate which effects from Table 1 dominate the spectral
changes, such as those in Fig. 6.

Notably, the nanowire arrays such as those in Fig. 6 are
very similar to interdigitated electrodes, which are com-
monly used for EIS [39]. It should therefore be straightfor-
ward to implement optical detection based on transverse
wire plasmons together with EIS. Indeed, much of the
literature on EIS claims that the geometry of the system is
highly important for good performance, which has led to
the development of electrodes with a “nanogap” [120] or
3D configuration [121]. Notably, there is a great variation
in the LOD in EIS reports [40] with values down to 1 fM
[41], but detection from real biological samples is rarely
performed [122], especially when the LOD is defined [39].
Also, there is no consensus on whether the presence of
charge transfer species is needed in the solution to enhance
the faradaic response [120, 123]. In addition, some articles
have reported the use of a standard three-electrode setup for
EIS sensing, showing impressive LODs in complex
biological samples [122] without any special properties of
the gold working electrode. This suggests that interdigitated
wirelike electrodes are not a necessity and that it is possible

to combine plasmonic and EIS sensing for all the
geometries discussed here.

Nanoholes in metal films

Nanoholes, typically around 100 nm in diameter, in metal
films can be prepared by colloidal lithography [124, 125],
focused ion beam [126] or interference lithography [127].
The peculiar optical properties of nanohole arrays [128],
which were first observed by Ebbesen et al. [129], are
complex owing to the presence of both localized and
propagating plasmons as well as their interaction effects
[130]. Analytical theory is limited to hypothetical “perfect
conductors” and not Drude-like metals [131]. Still, the
spectral features can be qualitatively understood fairly well
and even predicted with decent accuracy for both long-
range and short- range order [126] (Fig. 7a). The extinction
spectrum of nanoholes in thin (up to 50 nm) films contains
one peak (transmission minimum) corresponding to
grating-coupling SPR [11] for the bonding mode [132]
accompanied by a minimum (enhanced transmission) at a
nearby longer wavelength. This represents a localized void
resonance. Despite the complexity of the optical properties
of nanohole arrays their refractometric sensing properties
are very similar to those of nanoparticles [125]. The LOD
in terms of RI for nanohole arrays in gold is typically
between 10-5 and 10-6 in optimized setups [133] and the
sensitivity is quite localized to the surface (less than
100 nm) [22].

Nanohole arrays are readily compatible with electrical
detection principles because the continuous metal film acts
as a conductive electrode [22]. Although refractometric

Fig. 6 Optical response upon
applying an electrochemical
potential to a gold nanowire
array. The plasmon resonance
wavelength is monitored upon
application of potential pulses.
Results are shown for two
different nanowire array
dimensions. (Reproduced from
MacKenzie et al. [116])
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sensing with nanoholes has become very popular [16, 125],
there are so far hardly any reports on the implementation of
electrical measurements. The spectral response of the
extinction peak due to applied potentials is more compli-
cated to model [42] regardless of which one of the effects in
Table 1 is considered. In response to positive potentials the
peak red-shifts and broadens, indicating lower surface
plasmon energy and lifetime [42]. This effect can be
quantitatively modelled by considering the resonance as a
geometrical effect, i.e. the resonance wavevector of the
surface plasmon is determined by the periodicity. For single
hole resonances [134], the diameter determines the wave-
vector in a similar manner [132]. One would therefore
expect the same wavevector also when the metal is under
the influence of an electrochemical potential, but a different
resonance frequency [42]. Indeed, the dispersion relation of
the surface plasmons will change and the resonance shift
can be calculated by modifying the dispersion relation
accordingly [42], assuming that the presence of holes
simply introduces a constant offset error [126]. It would
then be possible to introduce a surface layer describing the
electric double-layer capacitor and then solve the dispersion
relation for a multilayer system [135].

As discussed for nanowires, it is sufficient that a metal
structure has at least one dimension comparable to the mean
free path of conduction electrons for surface scattering of
electrons to influence conductivity. However, other factors
contribute as well [136, 137] and a deeper understanding of
exactly how the electron movement contributes to the
resistance is needed [45]. In any case, nanohole arrays offer
a nice way to implement thin-film conductivity measure-
ments [136, 137] synchronized with plasmonic sensing.
Preliminary work on how the presence of holes influences
film resistivity has been performed by Reilly et al. [138], as
shown in Fig. 7. The films were well described by
percolation theory and the influence of holes depends on
the structure dimensions in relation to the mean free path of
electrons.

It is not straightforward to see why nanoholes would
present any advantages over the other systems described
above for combined plasmonic–electrochemical sensing. In
general, the advantages of using nanoholes lie in the
geometry of the structure. For one thing, nanoholes open
up for liquid flow through the surface [139], which
improves the binding rate by preventing depletion from
slow diffusion. In addition, size-exclusion effects can be
utilized to control if and how many entities enter a hole
[14], making the surface act as a filter. It is also interesting
to think of the possibilities of performing electrochemistry
and plasmonic sensing [134] on molecules captured within
individual holes.

Conclusions and outlook

After reviewing the recent advances in metallic nano-
structures for combined electrical and optical signal
transduction we wish to emphasize Table 1, which
summarizes all possible effects on the plasmon resonances
in response to electrochemical potentials. It is meant to act
as a checklist for any researcher working with electrochem-
istry and plasmonics. Table 1 illustrates that it is not
straightforward to understand how the implementation of
electrical control influences the plasmonic sensor. Indeed,
when browsing the literature one can observe several
inconsistencies in how experimental results are interpreted
in combined electrochemical–plasmonic systems. Most
reports consider only one, possibly two, but sometimes
even none of the points in Table 1 to explain the
experimental results.

For the rest of this review, we wish to point out some
more promising aspects of combined electrical and optical
detection. We focus now on advantages that have not been
realized yet and that are more speculative in nature. We first
note that synchronized combinations of different signal
transduction mechanisms generally tend to provide new

Fig. 7 Atomic force
microscopy image of short-
range ordered nanoholes in a
silver film prepared by colloidal
lithography (a). The
conductivity of such silver films
was studied for different
numbers of holes in the film
(“hole coverage” equals
fractional area coverage) as
shown in b. The fitted curve
originates from percolation
theory. (Reprinted with
permission from Reilly et al.
[138]. Copyright 2010
American Chemical Society)
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insights about the methods themselves [22, 92]. In
particular, plasmonic readout should help elucidate the
mysteries associated with EIS sensing mentioned above.
Combinations may also help to improve the quantitative
interpretation of a sensor response [22].

In addition, the plasmonic signal from refractometric
detection (not SERS) is expected to be associated with a
larger (although still very small) probing volume than
conductivity measurements relying on electron surface
scattering, which primarily senses molecules directly on
the metal. Using these two detection concepts in combina-
tion should provide information about to what extent
binding molecules are in direct contact with the metal.
One could therefore use the combined method to distin-
guish interactions with a receptor on the surface from those
directly with the metal. This naturally relates to the topic of
non-specific binding in surface-based sensors.

Another advantage is that optical and electrical methods
complement each other well when it comes to the size of
the analyte. Refractometric detection of small molecules is
challenging [24] and often requires competitive assays
[141], but it is possible with SERS. In contrast, electrical
detection through voltammetry can detect anything that
participates in redox reactions. This also means that optical
readout, given that the resolution is sufficient, should be
able to be utilized for distinguishing if a redox-active
species remains bound to the surface.

Electrochemistry may also contribute to another aspect
of sensor design, namely chemical functionalization. As
mentioned in “Introduction”, specificity is critical for
actually realizing the LOD associated with a physical
transduction principle, and this aspect is sometimes over-
looked when new sensors are presented. We note that
electrochemistry offers new tools for controlling molecular
binding [142], even in array formats [122, 143]. Therefore,
incorporating electrochemistry may lead to improvement of
surface functionalization strategies for optical sensors. In
particular, electrochemistry easily offers specific function-
alization of nanoscale regions [144], which should be
highly useable for miniaturized sensors [145]. For instance,
single nanoparticle plasmonic sensors have an extremely
small sensing volume [18], but in the device binding may
occur on a much larger area than that of the particle. This
means that even if the measured signal originates from very
few molecules, it would not be possible to detect so few
molecules in a sample as they would end up binding at
other locations.

A final and highly speculative advantage of electro-
chemistry for plasmonic sensors is to attract molecules to
the sensor surface in order to overcome the performance
limits set by mass transport limitations [13]. As long as the
analyte carries a charge it will have an electrophoretic
mobility which can be utilized to accumulate molecules at

the surface [146]. Interestingly, the molecules could then be
attracted to pointy structures in gold, where the field and
the plasmonic sensitivity are both expected to be highest.
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