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Abstract The authenticity of objects and artifacts is often
the focus of forensic analytic chemistry. In document fraud
cases, the most important objective is to determine the
origin of a particular ink. Here, we introduce a new
approach which utilizes the combination of two analytical
methods, namely Raman spectroscopy and laser-induced
breakdown spectroscopy (LIBS). The methods provide
complementary information on both molecular and elemen-
tal composition of samples. The potential of this hyphen-
ation of spectroscopic methods is demonstrated for ten blue
and black ink samples on white paper. LIBS and Raman
spectra from different inks were fused into a single data
matrix, and the number of different groups of inks was
determined through multivariate analysis, i.e., principal
component analysis, soft independent modelling of class
analogy, partial least-squares discriminant analysis, and
support vector machine. In all cases, the results obtained
with the combined LIBS and Raman spectra were found to
be superior to those obtained with the individual Raman or
LIBS data sets.
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Introduction

Chemical analysis of inks and paints is mostly restricted to
pigment identification [1]. In the field of cultural heritage, it
is important to cope with problems concerning the
authenticity, restoration, conservation, and dating of historical
manuscripts, documents, or ceramics [2]. A similar
analytical approach is used in forensic sciences to reveal
document fraud. Here, the focus is on the detection and
confirmation of alterations to documents with significant
financial value such as wills and contracts. Comparison of
the inks is used either to question the document authenticity
or the time at which the various sections of the document
were written [3, 4]. Consequently, there is a substantial
demand for analytical methods that will allow examination
and a reliable discrimination of inks.

The differentiation and correct classification of inks is
complicated, as their chemical composition is usually
unknown. In general, apart from pigments and dyes, inks
contain vehicle (flowing and drying characteristics), sol-
vents, additives (driers and plasticizers), and contamina-
tions. Altogether, these components form a chemical
fingerprint of the ink providing a basis for discrimination
by chemical analysis [5, 6]. Already 60 years ago, the first
ink analyses were performed with the help of thin-layer
chromatography [7, 8], which is still commonly applied due
to the method’s simplicity and cost-effectiveness. In
general, most techniques used for ink analysis are based
on chromatography (e.g., high-performance liquid chroma-
tography (HPLC) and gas chromatography). Despite the time-
consuming and often cost-intensive sample preparation
including dissolution and enrichment, those methods are

Published in the special issue Analytical Techniques in Art,
Archaeology and Conservation Science with guest editor Oliver Hahn.

Electronic supplementary material The online version of this article
(doi:10.1007/s00216-011-5287-6) contains supplementary material,
which is available to authorized users.

M. Hoehse :A. Paul (*) : I. Gornushkin :U. Panne
BAM Federal Institute for Materials Research and Testing,
Richard-Willstaetter-Str. 11,
12489 Berlin, Germany
e-mail: andrea.paul@bam.de

U. Panne
Institut für Chemie, Humboldt-Universität zu Berlin,
Brook-Taylor-Str. 2,
12489 Berlin, Germany

Anal Bioanal Chem (2012) 402:1443–1450
DOI 10.1007/s00216-011-5287-6

http://dx.doi.org/10.1007/s00216-011-5287-6


popular because they offer high discrimination performance
[9].

Spectroscopic techniques allow for a fast and direct
measurement on the paper with no or minor sample
preparation. Furthermore, no or only minimal sample
destruction occurs, thus permitting multiple measurements,
even on tiny sample pieces. Therefore, in combination with
advanced multivariate statistical tools, minimally invasive
spectroscopic techniques such as Raman spectroscopy or
LIBS provide the optimal investigation of small fragments
[10–15].

The combination of LIBS and Raman spectroscopy
gives comprehensive insight into a sample composition as
the chemical information obtained with both the techniques
is orthogonal: Raman spectroscopy exposes molecular
structures [16] while LIBS reveals the elemental composi-
tion [17–19]. Although both techniques have been used
independently for classification of inks, this is the first time
when benefits originating from both techniques are com-
bined for improved ink discrimination. Zięba-Palus et al.
presented a combined X-ray fluorescence/Raman spectros-
copy instrument for the analysis of paint chips. The benefit
of combined elemental and molecular analysis was dem-
onstrated. However, no combined data evaluation was
executed [20].

The high degree of similarity in the composition of inks
demands the use of data mining tools to reveal even
minimal differences in chemical compositions. Further-
more, the increase in amount of data due to the use of
high-resolution Echelle gratings along with the increase in a
number of pixels in charge coupled devices require a
significant data reduction in order to shorten the data
evaluation time. Thus, chemometric methods, such as
principal component analysis and others are of rising
importance for spectra processing. Unfortunately, they are
still rarely used in the field of ink discrimination [4, 21, 22].

Chemometrics and multivariate data analysis, in partic-
ular, have been successfully used only in a limited number
of cases to aid the forensic examination of inks based on
inductively coupled plasma mass spectrometry, HPLC, UV-,
Vis-, or micro-ATR-spectroscopy of extracted inks [4, 22–24].
In all these cases, classification rules were established based
on PCA. Here, next to PCA, we demonstrate the potential of
alternative chemometric tools such as soft independent
modelling of class analogy (SIMCA), partial least-squares
discriminant analysis (PLS-DA) [25], and support vector
machine (SVM), for the classification of blue and black inks
without using any prior background information on the
samples [26]. The aim of this work is to investigate the
discrimination power of a multi-spectroscopic approach in
combination with advanced chemometric data evaluation
techniques for the classification of ink samples of forensic
interest. We present a separate chemometric evaluation of

either LIBS or Raman data and compare the results with the
combined evaluation of fused LIBS and Raman data.

Materials and methods

Samples The sample set consisted of ten blue and black ink
samples provided by the state criminal investigation
department (LKA, Landeskriminalamt, Berlin, Germany).
During this study, the ink samples were labeled in
alphabetical order from “A” to “K”, excluding “I”, as the
LKA kept the original brand names. The inks were
deposited on commercially available standard white paper.
The influence of the paper on spectra was investigated
using the blank paper and a set of different paper samples
coated with the same ink.

Raman spectroscopy Raman spectra were obtained with a
LabRAM HR800 (Jobin Yvon, Bensheim, Germany)
coupled to a microscope (BX41, Olympus, Hamburg,
Germany) equipped with a ×100 objective. Rayleigh
scattered light was rejected with notch filters. The excita-
tion wavelengths (488, 633, 785 nm) were provided by an
Argon ion, HeNe (Melles Griot, Aalsbergen, The Nether-
lands), and a diode laser (Toptica, Graefelfing, Germany).
All spectra were recorded under similar conditions with
respect to the exposure time (10×10 s) and laser power
which was adjusted to 1 mW on the sample corresponding
to an irradiance of approximately 1×105 W/cm2 (spot size,
1 μm). The average spectral resolution was 3 cm−1

(monitored range, 300–1,800 cm−1; excitation wavelength,
488 nm). Two approaches were compared for the calibra-
tion of the Raman shift axes: (a) using the recorded
spectrum of 4-acetamidophenol as a spectroscopic standard
and (b) monitoring the emission lines of a neon lamp
shining onto the samples during measurements. The better
results were accomplished with the calibration with neon
emission lines as the wavelength shifts could be detected
online during sample measurement. Thus, a wavelength
shift correction by software was avoided because such the
shift was precluded between the calibration and sample
measurements.

LIBS The setup employed in the present study has been
described in detail previously [27]. In brief, a frequency-
doubled pulsed Nd:YAG laser (Surelite II, Continuum,
Germany) is focused on the sample, ablating some
hundreds of nanograms of matter. Plasma emission is
collected with an Echelle spectrometer (Aryelle Butterfly,
LTB Lasertechnik Berlin, Germany) in the range of 290–
930 nm. A mechanical chopper cuts off the initial plasma
continuum. To minimize paper and maximize ink ablation,
the samples were translated during the measurement to
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provide an unspoiled sample spot for every laser pulse. For
each single measurement, the emission of 50 plasmas was
integrated on chip. A low irradiance of 50 GW/cm2 was
used to ensure shallow craters and thus, to reduce the
amount of ablated paper.

Data treatment The spectra obtained from Raman spectros-
copy or LIBS were treated by background correction before
being imported into The Unscrambler (vers. 9.8 and 10.1) for
statistical analysis. All data were first treated by the unit-
vector normalization. Spectral data from LIBS and Raman
were evaluated separately. In addition, LIBS and Raman
spectra were randomly fused (one randomly picked Raman
spectrum was attached to one randomly picked LIBS
spectrum) in order to keep the variance of both data sets. For
a combined uniform X-axis, LIBS spectra starting with
1,797 cm−1 and ending at 2,432 cm−1 were attached
following the Raman spectra which comprised the spectral
region of 300–1,796 cm−1. For the evaluation of those three
data matrices (Raman, LIBS, LIBS-Raman), the following
statistical tests were performed: PCA, SIMCA, PLS-DA, and
SVM. For SVM, the classification SVM type 2 was used as
this type minimizes the error function. The Nu value (lower
bound on correct classified support vectors and an upper
bound on misclassified samples) was set to 0.5, and the
radial basis function kernel was applied.

The reliability of the classification rules was validated
through a random cross-validation procedure. For PCA,
cross-validation was performed on all 100 objects by
systematically keeping out all ten objects with the same
ink. For PLS-DA, full cross-validation on all objects was
performed; for SIMCA, the models are based on only the
ten objects of the same ink, and full cross-validation was
performed, and for SVM, systematic cross-validation was
performed.

Results and discussion

Spectroscopy Raman spectra arise from the inelastic light
scattering depending on the vibrational modes of molecular
bonds. Raman spectroscopy, however, is often hampered by
occurring fluorescence which may exceed a Raman scattering
signal by several orders of magnitude [16]. Although Fourier-
transform Raman with an excitation wavelength in the near-
infrared is considered to be ideal for most samples [28], the
test samples of black and blue ink were found to absorb the
1,064 nm radiation. This behavior leads even at low laser
powers, to a sample heating before Raman scattering could
be detected. Therefore, several excitation wavelengths in the
visible region were tested (488, 633, 785 nm). The 488 nm-
excitation proved to be the optimal choice as the accompa-
nying fluorescence was minimal. In Fig. 1a, three Raman
spectra of different inks are presented illustrating the
similarity of Raman features and, thus, indicating the need
for chemometric data evaluation.

LIBS, on the other hand, is an elemental spectroscopy
allowing for the detection of emission from excited atoms
and ions. In Fig. S1 (cf. Electronic Supplementary
Material), the averaged spectra of ten ink samples are
illustrated, showing the similarity of elemental composi-
tions of the inks. Except for Cu and Ti, the elements K, Ca,
Na, Li, and Al were present in all the inks differing only in
the amounts. Figure 1b displays the copper line from the
LIBS spectra of ten ink samples which are representative
for different concentrations of Cu, originating from the
copper-containing phthalocyanine.

Statistical analysis At first, the data matrix obtained from
Raman and/or LIBS line intensities of the ink samples were
subjected to PCA to have an overview of the data. PCA is
the basic tool for data analysis that simultaneously provides

Fig. 1 A Raman spectra of three different ink samples, B Details of LIBS spectra of the ten different ink samples (Cu I 327.396 nm)
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a visual representation of relationships between samples
and variables as well as insights into sample homogeneities
and heterogeneities. In our case, all individual measure-
ments on inks are referred to as “samples”, while the
spectral intensities taken at each particular wavelength (or
frequency) are referred to as “variables”.

Raman spectroscopy (PCA, SIMCA, PLS-DA) The Raman
spectra in the 300–1,800 cm−1 range were subjected to PCA
using nine principal components. The information retained
in the first five principal components (PCs) amounted to
46%, 27%, 12%, 8%, and 2%, i.e., 96% of the total
variance of the data was explained (Fig. 2a). The influence
plot in Fig. 2b reveals that no data points are found with
high leverage and/or high residual X-variance indicating the
absence of multivariate outliers. The loadings in Fig. 2c
identify the spectral range from 1,100 to 1,650 cm−1 to
contain most of the distinguishing features. Here, typical
pigments, such as Victoria blue, rhodamine, methyl violet,
and copper phthalocyanine, contribute to Raman vibrations
[5, 6, 29]. The scores plotted in Fig. 2d–f illustrate the

variance between the individual measurements of each
particular ink and provide a measure for the clustering of
inks. It can be seen that inks E, D, G, and J are well
separated by the plots of PC2, PC3 and PC4 vs. PC1. Some
inks, however, form clusters which are not satisfactorily
separated such as inks A–F, B–C, and H–K, respectively.

In the second step, pattern recognition analysis was
carried out by SIMCA in order to establish classification
rules for ink separation. SIMCA was applied to the same
data matrix that was previously used for PCA. The ten
individual PCA models obtained were based on a normal
range, which is characterized by the 5% significance level
for the critical distance. Based on the obtained classification
table (cf. Electronic Supplementary Material Table S1),
SIMCA has correctly classified inks B, D, E, and J. Wrong
classification was obtained pair-wisely for the ink samples
B–C, H–K, and A–F. Further classification of the ques-
tioned ink sample pairs was performed by a binary PLS-
DA. PLS-DA models both the X and Y matrices simulta-
neously to find the latent variables in X with best prediction
of the latent variables in Y. Here, the X matrix for the

Fig. 2 PCA of Raman spectra. Data pretreatment: background
correction and unit-vector normalization. A Explanation of X-
variance, B influence plot showing residual X-variance vs. leverage,

C loadings of PC1–PC5, numbers refer to PCs, D–F scores plots PC1
vs. PC2, PC1 vs. PC3 and PC1 vs. PC4. Ink samples are denoted from
A to K
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sample pairs is identical to the data matrix used for PCA.
However, the Y matrix was generated for the above-
mentioned pairs by choosing the values 0 and 1 for the
particular inks.

The coefficients of determination (R2) and root mean
square errors of the calibration and prediction (RMSEC,
RMSEP) were used to judge the success and accuracy of the
models (Electronic Supplementary Material Table S2).
RMSEC and RMSEP present the square root of the residual
variances divided by the number of samples. The predicted
values of the three questioned ink pairs are illustrated in
Fig. 3. All ink pairs could be separated by the PLS-DA-model,
however, only for the inks H and K, the predicted values within
the corresponding standard deviations are compliant with the
theoretically expected values of “0” and “1”.

LIBS (PCA, SIMCA) LIBS spectra were analyzed in a
similar fashion as the Raman spectra. The first five PCs
modeled 97% of the spectral data. The loadings in Fig. S2
(cf. Electronic Supplementary Material) show that all
spectral lines contained in the full spectral range of 300–
900 nm contribute to the separation power. However, the
loadings of the PCs vary strongly depending on the lines. For

example, titanium lines around 500 nm occur in PC3 but are
almost absent in PC4. In general, PCA of LIBS spectra
yielded less discrimination power in comparison to Raman
spectroscopy. However, in contrast to the evaluation of the
Raman spectra, particular ink samples (e.g., B and C) could be
successfully distinguished, as displayed in the scores plot in
Fig. S2b, c (cf. Electronic Supplementary Material).

SIMCA classification at the 5% significance level (cf.
Electronic Supplementary Material Table S3) achieved the
identification of inks B, C, and D, but no clear classification
of inks G-H-A-F, and inks J–E and K-H-G. The omnipres-
ence of the same elemental lines in most of the inks
explains why, in contrast to the molecular composition of
inks, no proper classification or separation of inks can be
obtained on the basis of LIBS-spectra only [5, 6, 29].

Because LIBS spectra alone were found to be insuffi-
cient for a proper classification of inks, the evaluation of
the combined Raman and LIBS spectra was carried out to
improve the discrimination power for the sample set
investigated here.

To compare separate and combined data evaluations, the
fused Raman-LIBS data were subjected to multivariate data
analysis. The loadings of the PCs with higher LIBS fraction
resulted in separation which was more similar to the
separate evaluation of LIBS data. Different PCs describe
variances in LIBS and Raman spectra, thus corresponding
to the separation power of either LIBS or Raman
spectroscopy. Taken together, they combine the benefits of
both the techniques. In general, the fusion of separately
normalized LIBS–Raman spectra automatically exhibits the
higher influence of Raman spectra (cf. loading plot in
Fig. 4a), which have the higher discrimination powers
shown before. The score plots for PC1 vs. PC2 show that
D, E, and G form uniform clusters, whereas H–K, B–C, and
A-F-J form heterogeneous clusters (Fig. 4b). Comparison of
PC1 with PC3 provides a separation of inks J and G
(Fig. 4c), and finally, PC4 contributes to the separation of
inks B and C (Fig. 4d).

Applying SIMCA, the contribution from LIBS spectra
resulted in improved classification, where, at the 5%
significance level, only ink pairs A–F and H–K needed
further evaluation (cf. Electronic Supplementary Material
Table S4).

In analogy to Raman spectra, PLS-DA of fused LIBS–
Raman spectra was performed for those pairs under
question. RMSE and coefficients of determination are
summarized in Table S5 (cf. Electronic Supplementary
Material), and the predicted values for ink pairs A–F and
H–K based on the calculated PLS-DA models are illustrat-
ed in Fig. S3 (cf. Electronic Supplementary Material). As
one sees, the data fusion improves the classification
because now, in contrast to Raman spectra alone, all
samples H–K were correctly classified, and only two

Fig. 3 Raman spectra: separation of samples pairs (indicated by
capital letters) based on PLS models
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deviations of predicted values from theoretical values were
observed for ink pair A–F.

SVM The pattern recognition method SVM is used frequently
for spectral regression purposes, especially when nonlinear
relationships have to be modeled [30]. Support vector
machines offer the advantage of unique classification results,
that means, in contrast to SIMCA, multiple classifications
are excluded. Due to massive data reduction, SVM needed
only short calculation time of usually a few seconds in
contrast to several minutes for PCA and even longer for
SIMCA (depending on the size of the data set), which is in
agreement with previously published results [31]. The results
of SVM are summarized in matching matrices which are
presented in Table S6 (cf. Electronic Supplementary Material).
For separate evaluation of LIBS and Raman data, SVM
yielded a correct classification with the 87% and 92% rates,
respectively. Further improvement to 97% was achieved by
merging the LIBS and Raman datasets. However, whereas, by
PLS-DA of fused LIBS–Raman, data yielded not only

improved separation power but also increased validation
accuracy, the latter is not the case for SVM, where cross-
validation accuracy for Raman, LIBS, and combined Raman–
LIBS data amounted to 90%, 81%, and 88%, respectively.

Summary

LIBS and Raman spectroscopic techniques offer a clear
advantage over chromatographic techniques: the possibility
of direct measurements on documents without sample
preparation steps. However, in certain cases, no distinct
classification or identification could be achieved if Raman
or LIBS spectra were used separately.

Therefore, we combined data from Raman spectroscopy,
which yielded information on the molecular sample
composition, with data from LIBS, which comprised
information on the elemental composition, to improve the
classification. Our results demonstrate that the combination
of the two complementary spectroscopic techniques indeed

Fig. 4 PCA of fused LIBS-Raman spectra. Data pretreatment: unit-vector normalization. A Loadings PC1–PC6 which explain of 38%, 33%,
10%, 9%, 6%, and 2% of X-variance. Numbers refer to PCs. B–D Score plots for PC1 vs. PC2, PC1 vs. PC3, and PC1 vs. PC4
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enhances the amount of correct classifications among the
investigated ink samples. The advantage of using merged
instead of separate LIBS–Raman data was demonstrated
with several independent chemometric methods. The
methods of PCA, SIMCA, and PLS-DA or SVM yielded
comparable results for all the data sets analyzed. PCA alone
provided the information on data clustering, significant
spectral regions, and outliers. A hierarchical approach using
SIMCA and PLS-DA allowed for the step-wise classification
of data and separation of inks that were not identified by PCA.
This approach may also be extended when it comes to
classification and individualization of a questioned ink from a
database.

The basic advantage of SVM is the reduced calculation
time of usually a few seconds in contrast to several minutes for
PCA and even longer for SIMCA (depending on the size of
the data set).We therefore suggest this approach as a screening
tool which provides a quick overview of data sets.

To summarize it briefly, our results demonstrate the benefit
of the combined data treatment in hyphenated spectroscopy.
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