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Abstract Because of its high price, extra virgin olive oil is
frequently targeted for adulteration with lower quality oils.
This paper presents an innovative optical technique capable
of quantifying and discriminating the adulteration of extra
virgin olive oil caused by lower-grade olive oils. An
original set-up for diffuse-light absorption spectroscopy in
the wide 400–1,700 nm spectral range was experimented. It
made use of an integrating sphere containing the oil sample
and of optical fibers for illumination and detection; it
provided intrinsically scattering-free absorption spectrosco-
py measurements. This set-up was used to collect spectro-

scopic fingerprints of authentic extra virgin olive oils from
the Italian Tuscany region, adulterated by different
concentrations of olive-pomace oil, refined olive oil,
deodorized olive oil, and refined olive-pomace oil. Then,
a straightforward multivariate processing of spectroscopic
data based on principal component analysis and linear
discriminant analysis was applied which was successfully
capable of predicting the fraction of adulterant in the
mixture, and of discriminating its type. The results
achieved by means of optical spectroscopy were compared
with the analysis of fatty acids, which was carried out by
standard gas chromatography.

Keywords Extra virgin olive oil . Absorption
spectroscopy . Integrating cavity . Optical fibers .

Adulteration . Chemometrics

Protecting the authentic extra virgin olive oil

Extra virgin olive oil (EVOO) is the only vegetable oil that
is consumed as it is—freshly extracted from the fruit.
Thanks to its balanced taste and flavored aroma, EVOO is
capable of enhancing the most popular gastronomic recipes
and is thus considered the chef’s gold. EVOO also offers
highly beneficial health effects, thanks to both its high
content of monounsaturated fatty acids, vitamins, and
polyphenols—the antioxidant substances.

EVOO extraction, being carried out by mechanical
means only, preserves the contents of antioxidant com-
pounds. Some of these molecules are not contained in other
vegetable oils (e.g. polyphenols), or are removed by
refining, while those that are contained in every vegetable
oil (tocopherols) are partially removed by refining. Seed
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oils usually undergo to refining both because of inadequate
characteristics to direct human consumption and with the
aim to fit standards.

Among all vegetable oils, EVOO contains the highest
levels of antioxidants and the highest amount of monoun-
saturated fatty acids. It is a “healing fat”, since it controls
the “bad” LDL cholesterol levels while raising the “good”
HDL ones [1, 2]. Studies have shown that people who
consumed 25 ml—about two tablespoons—of EVOO daily
for 1 week presented less oxidation of LDL cholesterol and
higher levels of antioxidant compounds in the blood [3],
and, more generally, that EVOO is a panacea of the entire
cardiovascular system [4].

Because of the time-consuming agronomical practices
used for EVOO production, and the low production
efficiency—frequently lower than 20% as oil yield—the
price of EVOO is high, especially compared with that of
other vegetable oils. Consequently, EVOO is prone to
adulteration with cheaper oils in order to increase profits. In
addition to an economic burden, EVOO adulteration is
detrimental if consumers react by buying other cooking fats
or dressings, thinking that EVOO cannot be trusted. The
negative implications on consumer confidence are even
worse than the economic ones. Lastly, EVOO protection
measures also imply the product area conservation, as far as
landscape, tourism, and job preservation are concerned.

While the European Commission regulations are indi-
cating the characteristics of olive oil types, and are
suggesting the methods of analysis [5], a lot of research is
currently carried out, in order to experiment innovative
techniques for authenticating extra virgin olive oils and
predicting potential frauds.

Numerous methodologies exist for EVOO authentica-
tion, both for adulteration detection and quantification.
Chromatographic, nuclear magnetic resonance and thermal
techniques are frequently used, as well as dielectric
spectroscopy or electronic noses [6–15]. They are mostly
suitable for laboratory use, since the instrumentation is
cumbersome and some treatments of the analyzed sample
are required. Optical spectroscopy is also frequently used
and sometimes preferred because it allows a rapid and non-
destructive analysis and requires minimum or no sample
preparation. Infrared, mid-infrared, and fluorescence spec-
troscopic techniques have been proposed, as well as
absorption spectroscopy in the ultraviolet, visible, or near-
infrared spectral ranges [16–24]. These optical techniques
are usually combined with chemometric methods for
spectroscopic data processing, thus providing an excellent
EVOO authentication [25–28]. Currently, the intrinsic
optical and mechanical characteristics of optical fibers,
together with the wide availability of bright LEDs and
miniaturized spectrometers, further enhance the potentials
of absorption spectroscopy in the visible and near-infrared

spectral ranges, and make possible the implementation of
compact instrumentation. However, none of the absorption
spectroscopy techniques experimented so far takes into
account the intrinsic turbidity of the olive oil, which can
considerably impair absorption measurements because of
the unavoidable attenuation due to the scattering produced
by suspended particles.

Indeed, although the intrinsic turbidity of the oil can be
regarded as a peculiar characteristic, it has an unstable and
non-reproducible influence on absorption measurements
because of its time-dependent nature. In fact, suspended
particles created during production of the olive oil usually
settle down in a non-reversible way, because they tend to
aggregate at the bottom of the container, creating a sort of
sludge. Sample filtering is not only a time-consuming
procedure, but is also an action that alters the composition
of the sample. In fact, turbidity is also due to the presence of
water, and water removal causes a serious loss of water-
soluble compounds—such as polyphenols—that are respon-
sible for the unusual character and authenticity of olive oil.

This paper shows an absorption spectroscopy experi-
ment, carried out in the wide 400–1,700 nm spectral range
by means of optical fiber technology, for predicting the
adulteration of authentic EVOO produced in the Italian
region of Tuscany caused by lower-grade olive oil. EVOO
produced in Tuscany is highly appreciated by consumers
thanks to its mild fruity aroma with a touch of artichoke,
thistle, and grass. It is expensive, being produced at the
early ripening of olives. EVOO is one of the most
important and popular agricultural products of the region.
Actually, one of the main actions of the Regional Board of
Tuscany is the protection of EVOO, which is also carried
through the early detection of commercial frauds.

Olive-pomace oil (OPO), refined olive-pomace oil
(ROPO), refined olive oil (ROO), and deodorized olive
oil (DOO) were considered as adulterants. While the
detection of EVOO adulteration caused by ROPO, and
ROO has been previously achieved by means of absorption
spectroscopy [29], we innovatively tested the adulteration
caused by DOO, an emerging adulterant, the detection of
which is hard to achieve by means of conventional
techniques. For the first time, to the best of our knowledge,
the spectral fingerprints of authentic and adulterated
EVOOs were obtained by means of diffuse-light absorption
spectroscopy, which provided intrinsically scattering-
insensitive measurements. Then, a customized multivariate
processing of spectroscopic data was applied for a
straightforward prediction of adulterant concentration and
identification of adulterant type.

In order to evaluate the effectiveness of optical spec-
troscopy as compared to other standard methods, a gas
chromatographic analysis of fatty acid composition was
also carried out. The results obtained by means of an optical
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analysis were comparable with those provided by the
standard technique, thus demonstrating the validity of an
optical approach.

Diffuse-light absorption spectroscopy: the principle
and set-up

Absorption spectroscopy in the visible and near-infrared
spectral regions is one of the most popular measuring
methods of conventional analytic chemistry [30, 31]. More
recently, absorption spectra measured in wide spectral
ranges, like in the visible and near-infrared, have been
considered as signatures or fingerprints from which to
predict quality indicators of the product by means of
multivariate data processing or other chemometric methods
[32]. An added value to absorption spectroscopy is the use
of optical fiber technology, since it allows real time and in
situ measurements.

When carrying out absorption spectroscopy in liquids,
the measurements are found to be influenced by dispersed
scattering particles that cause turbidity. Scattering depen-
dence is the main drawback of absorption spectroscopy,
especially when particles settle down, or change their
position in time. For this reason, liquids must be filtered
prior to measurements, with a consequent loss of time and
increased costs.

Diffuse-light absorption spectroscopy, that is, spectros-
copy carried out by means of an integrating cavity, has been
proposed in the literature as an effective method for
overcoming scattering-dependence problems in process
control [33] and biological applications [34], as well as
for more general quantitative spectrophotometry [35].

Diffuse-light absorption spectroscopy makes use of an
integrating cavity, typically an integrating sphere which
contains the sample under test. The source and the detector
are butt-coupled to the sphere. Almost all the light
impinging on the sphere surface is diffusely reflected, and

the detector can be placed anywhere in the sphere in order
to gather the average flux [36–39]. By inserting an
absorbing medium in the cavity, a reduction of the radiance
in the sphere occurs. The reduction is related only to the
absorption of the sample and to its volume, and is
independent of scattering, which does not change the
average radiance in the cavity. This technique has been
recently proposed for effective gas analyses [40, 41].

Efficient diffuse-light measurements need bright sources.
A conventional deuterium/halogen lamp is enough, provid-
ed that it is butt-coupled to the integrating sphere. However,
when optical fibers are needed for a better geometrical
versatility of the measuring system, conventional lamps
provide poor and insufficient light intensity.

In order to overcome insufficient lighting, we used a
compact, high-brightness supercontinuum fiber optic
source, the revolutionary advent of which has recently
changed the perspectives of optical spectroscopy [42, 43].
This innovative source is made of a holey optical fiber,
typically a photonic crystal fiber, which is pumped by a
high-power nano- or femtosecond laser. The bright light
generated by the holey fiber over a wide spectral range
was guided to the input port of the integrating sphere.
Another port of the sphere accommodated an optical fiber
coupled to a spectrometer, so as to achieve an efficient set-
up for diffuse-light absorption spectroscopy, as shown in
Fig. 1. The detected light-power, P, is described by
Equation 1, as:

P ¼ R P0 Ad

S

1

1� R
S S � As � a Vð Þ ð1Þ

where P0 is the source power; α is the sample absorption
coefficient; V is the sample volume; Ad is the detector fiber
area; As is the source fiber area; R is the cavity power
reflectivity; S is the cavity surface area.

Commercially available components were used for the
practical implementation of the experimental set-up [44].

Fig. 1 Set-up for diffuse-light
absorption spectroscopy by
means of optical fiber
technology
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The Fianium-SC400 fiber optic supercontinuum source was
used for illumination: it emits 4 W throughout the entire
415–1,800 nm spectral range. The Instrument System-
Spectro 320 fiber optic spectrometer was used as detector,
and scanned the wide 400–1,700 nm spectral range with a
resolution of 1.37 nm. The Labsphere LMS100 cavity was
used as a diffusing sphere, the ports of which were
equipped by means of fiber optic connectors for coupling
to both the source and the detector. The olive oil sample
under test was contained in a glass vial having a volume of
32 cm3. This set-up was previously used for lubricant oil
analysis—it allowed for a successful spectral fingerprinting

of the lubricant oil and for predicting functional parameters
and wear indicators [45].

The collection of authentic extra virgin olive oils
and adulterants

Authentic EVOOs were four different types of oils
collected in Tuscany, which were produced according to
local traditions around the area of Grosseto. The lower-
grade olive oils, OPO, ROO, ROPO, and DOO, were
provided by the Università di Udine. Table 1 summa-
rizes the codes used for identifying the various oil
types.

Four series of EVOO-adulterant mixtures were prepared.
Each of them was made of five samples in which the
adulterant fraction was 0.05, 0.25, 0.50, 0.75, and 0.95 of
total weight, respectively. They were used for calibration
procedures. For each series, three replica mixtures of
EVOOs with 0.25, 0.50, 0.75 in weight of adulterants were
also prepared. These provided a validation set for the
regression model. The entire collection of measured oils
consisted of 136 samples, 88 for calibration and 48 for
validation, respectively.

Code Type of oil

O1 EVOO from Tuscany

O2 EVOO from Tuscany

O3 EVOO from Tuscany

O4 EVOO from Tuscany

F1 OPO

F2 ROO

F4 DOO

F5 ROPO

Table 1 Codes of experimented
authentic EVOOs and
adulterants
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Fig. 2 Diffuse-light absorption
spectra: entire collection of au-
thentic EVOOs (a), adulterants
(b), O1F1 mixtures giving sim-
ilar spectra (c), and O1F4 mix-
tures giving very different
spectral signatures (d)
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For every sample, an empty vial was used to measure P0,
which was replaced by the vial containing the sample under
test to measure P. The diffuse-light absorbance, A,
hereinafter referred to absorbance only, was calculated as:

A ¼ P0

P
� 1 ð2Þ

for obtaining a quantity which is linearly related to α, also
having A=0 when there is no attenuation, as in conven-
tional absorption spectroscopy.

Figure 2-top shows the measured diffuse-light absorption
spectra of all authentic EVOOs and adulterants. Their
mixtures show intermediate spectra: as an example, Fig. 2-
bottom shows the O1 EVOO adulterated by means of two
different adulterants, OPO and DOO, respectively, provid-
ing very similar (O1F1 mix) or highly different (O1F4 mix)
spectral signatures. A multivariate processing of the

spectroscopic data allowed for predicting the fraction and
the type of adulterant. All data processing was carried out
in MATLAB® code, by means of customized programs.

Predicting the fraction of adulterant

As a first processing, the spectra were smoothed by means
of Savitsky–Golay algorithm, employing a second degree
polynomial and a smoothing window of 15 points (30 nm).
Then, the prediction of the adulterant fraction in the
mixtures was achieved by using a multivariate analysis
method called partial least squares regression (PLS) [46].
This method is used when the predictor matrix has many
collinear variables and the usual multiple linear regression
cannot be applied. PLS looks for a limited number of PLS
“factors” (PF) which are linear combinations of the original
predictors. These new variables are mutually orthogonal
(thus uncorrelated) and have the maximum possible
covariance with the target variable, among all possible
combinations of the original predictors. The idea is that
each PF should be linked to a different source of data
variance, with the first PF being the most linked to the
target variable.

The estimation of the optimal number of factors needed
to fit the data is a critical issue of PLS. In our experiment,
theoretical considerations suggested that only one factor
should be needed, because the only “physical” cause for the
variability of absorbance was the adulterant fraction.
However, due to the presence of saturated absorption
peaks, the relation between absorbance and adulterant
fraction was not strictly linear (and PLS is a linear method),
and one additional PF was sometimes needed to compen-
sate for non linearity. This was particularly evident for F4,
which showed the strongest absorption among all the
analyzed oils. The optimal number of factors was assessed
by testing each PLS model on the validation set and by
choosing that minimized the root mean square error of
prediction (RMSEP). Two other parameters were evaluated

Table 2 Summary of parameters for predicting the fraction of
adulterant by means of optical spectroscopy

EVOO-adulterant mix # PF RMSEC RMSEP R2

O1F1 1 0.09 0.05 0.947

O1F2 1 0.06 0.07 0.975

O1F4 2 0.07 0.05 0.971

O1F5 1 0.07 0.13 0.964

O2F1 2 0.03 0.06 0.996

O2F2 1 0.01 0.06 0.933

O2F4 2 0.07 0.06 0.969

O2F5 2 0.02 0.08 0.997

O3F1 2 0.02 0.05 0.996

O3F2 2 0.02 0.02 0.997

O3F4 2 0.05 0.04 0.985

O3F5 1 0.10 0.10 0.932

O4F1 1 0.10 0.03 0.926

O4F2 1 0.07 0.07 0.966

O4F4 2 0.07 0.06 0.968

O4F5 2 0.04 0.08 0.990
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in order to assess the goodness of the fit: the root mean
square error of calibration (RMSEC) and the determination
coefficient (R2). RMSEC is, like RMSEP, an estimation of
the “expected” prediction error, but is evaluated on the
calibration set. R2 is, instead, the squared correlation
coefficient between predicted and reference values, for the
calibration set; thus the fit is as better as this value is closer
to 1.

Table 2 summarizes the values of these parameters for
each EVOO-adulterant mixture, together with the chosen
number of PF (# PF). Note that all mixtures involving F4
needed two PFs for achieving the best fit. Indeed, all values
of R2 are very good. The best prediction is obtained for O3
EVOO adulterated by means of ROO (F2), showing R2=
0.997 and RMSEP=0.02. The worst prediction, which is
still very good, is obtained for O3 EVOO adulterated by
means of ROPO (F5), showing R2=0.932 and RMSEP=
0.1. Figure 3 shows the linear regression graphics of these
two cases.

Discriminating the type of adulterant

The previous section showed how it is possible to predict
the fraction of adulterant when the adulterant type is known
a priori. However, in practice, the type of adulterant is
usually unknown. Therefore, we investigated how to
discriminate among the different types of adulterants by
means of multivariate calibration and classification methods
[47].

The principal component analysis (PCA) was firstly
used for data exploration. For each EVOO, the spectra of
pure adulterants and of calibration mixtures were consid-
ered, thus taking into account 24 samples. Figure 4 shows
the results of PCA processing obtained for O1 EVOO;
similar results were obtained for the other EVOOs. Figure 4-
left shows the PCA score plot, and Fig. 4-right the relative
loadings. The score plot highlights that DOO (the F4
adulterant) can be easily distinguished along the PC1 axis.
In fact, as shown by the loadings, PC1 is linked to the
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average absorbance in the 500–900 nm range, where DOO
absorbance is higher and broader than any other adulterant.

However, for a better discrimination of the other three
adulterants, a more dedicated method such as the linear
discriminant analysis (LDA) was needed. Since overfitting
is likely with LDA direct processing of large variable sets,
like spectra, a two-step PCA+LDA model was considered.
For each EVOO, calibration and validation sets were
created. The calibration set was made by the spectra of
pure OPO, ROO, and ROPO adulterants, and of the relative
calibration mixtures (total 18 samples), while the validation
set was made by the validation mixtures of the same
adulterants (total 9 samples). PCA was applied to the
calibration set, showing that two PCs only were sufficient
to obtain explained variances of 96% or higher in any case.
LDA was then performed on the PCA score matrix,
obtaining two discrimination functions. Finally, the deci-
sion boundaries separating the three classes of adulterants
were calculated. Figure 5 shows the results of PCA+LDA
processing for discriminating OPO, ROO, and ROPO (F1,
F2, and F5) in O1 EVOO; similar figures were obtained for
the other EVOOs. Empty and filled dots represent the
calibration and validation samples, respectively. Figure 5-
left shows the discriminating map: labels indicating the
adulterant percentage in the mixture are added, while
adulterants are simply identified by their code. Figure 5-

right shows the discriminating map also including the
discriminating boundaries.

As expected, the best discrimination among the adulter-
ants is achieved with high adulterant concentrations, and
the dots converge towards a point where the pure EVOO
should be. Note that the spectrum of authentic EVOO was
not considered in the LDA processing, for not introducing a
fourth class populated by a single element, which contrasts
with LDA principles.

Table 3 summarizes the errors of classification for each
authentic EVOO, for both the calibration and the validation
set. The errors for the calibration set are higher because this
set includes the samples with 0.05 adulterant fraction,
which are the most difficult to separate.

Fatty acid content O1 (%) O2 (%) O3 (%) O4 (%) F1 (%) F2 (%) F4 (%) F5 (%)

Palmitic 13.70 13.00 12.90 13.80 11.63 13.92 9.90 11.94

Palmitoleic 1.20 1.10 1.00 1.00 0.92 1.64 0.38 0.92

Eptadecanoic 0.04 0.03 0.03 0.03 0.06 0.08 0.03 0.06

Eptadecenoic 0.06 0.05 0.05 0.05 0.11 0.16 0.05 0.09

Stearic 2.30 2.40 2.20 2.40 2.62 2.24 2.50 2.31

Oleic 73.10 74.00 72.60 73.40 72.58 71.05 75.60 72.42

Linoleic 8.40 8.30 7.20 8.00 10.63 9.60 9.86 10.92

Arachidic 0.30 0.30 0.30 0.30 0.43 0.38 0.42 0.39

Linolenic 0.60 0.50 0.60 0.60 0.50 0.54 0.65 0.46

Eicosenoic 0.20 0.20 0.30 0.20 0.28 0.23 0.36 0.28

Behenic 0.07 0.10 0.10 0.10 0.17 0.11 0.18 0.16

Lignoceric 0.03 0.02 0.02 0.02 0.07 0.05 0.07 0.05

Table 4 Summary of fatty acid
composition for authentic
EVOOs and adulterant oils

Table 5 Summary of parameters for predicting the fraction of
adulterant by means of gas chromatography

EVOO-adulterant mix # PF RMSEC RMSEP R2

O1F1 1 0.02 0.03 0.997

O1F2 1 0.04 0.05 0.989

O1F4 1 0.03 0.04 0.994

O1F5 1 0.03 0.04 0.993

O2F1 1 0.02 0.03 0.996

O2F2 1 0.03 0.03 0.993

O2F4 1 0.03 0.03 0.996

O2F5 1 0.03 0.03 0.995

O3F1 1 0.02 0.03 0.996

O3F2 1 0.03 0.04 0.993

O3F4 1 0.03 0.04 0.995

O3F5 1 0.03 0.04 0.995

O4F1 1 0.02 0.03 0.996

O4F2 1 0.03 0.04 0.994

O4F4 1 0.02 0.04 0.995

O4F5 1 0.03 0.03 0.994

Table 3 Errors of OPO, ROO, and ROPO classification for each
authentic EVOO, for both the calibration and the validation set

EVOO Calibration set errors Validation set errors

O1 2 0

O2 2 1

O3 10 6

O4 3 2

Absorption spectroscopy for quantifying the adulteration of EVOO 1321



The discrimination of OPO, ROO, and ROPO adulter-
ants in O1, O2, and O4 EVOOs is very good, while it
worsen for O3. Since O3, unlike the other EVOOs, has an
absorbance sensibly higher than all adulterants (except
DOO, which is not considered here), the main effect of O3
spiking, whichever adulterant is used, is a general lowering
of absorbance, which masks more subtle changes in the
spectrum shape.

Comparison of optical spectroscopy analysis
with capillary gas chromatography

In order to evaluate the effectiveness of optical spectrosco-
py with respect to other standard methods, a capillary gas
chromatographic analysis of fatty acid composition was
carried out. In fact, the determination of fatty acids proved
to be a valid technique for the classification of vegetable
oils and for the detection of adulteration [48, 49].

The fatty acid composition of the entire collection of
olive oils was determined by using the HRGC MEGA 2
series Fisons Instruments. The fatty acid composition was
determined as the corresponding methyl esters, which were
prepared by means of an alkaline treatment carried out by
mixing 0.05 g of oil dissolved in 2 ml of n-hexane with
1 ml of 2 N potassium hydroxide in methanol [50, 51]. A
fused silica capillary column (50 m in length, 0.25 mm i.
d.), coated by CPSil-88 (0.25 μm film thickness, Varian
Palo Alto, CA) was utilized. Table 4 summarizes the fatty
acid composition of authentic EVOOs and adulterants. An
ANOVA test [52] was carried out to detect significant
differences in fatty acid content between authentic EVOOs
and adulterants. The following four fatty acids: linoleic,
arachidic, behenic, and lignoceric showed substantial
differences at a significance level of 5%.

In order to predict the fraction of adulterant, a PLS
regression algorithm was used, which employed the fatty
acid composition as the predictor pattern. For every EVOO-
adulterant mixture, the best fit was achieved by using a
single PF. The values of fit statistics (RMSEC, RMSEP, R2)
are summarized in Table 5. As expected, the gas chromato-
graphic analysis showed an accurate prediction of the
adulterant fraction. However, the results obtained by means
of optical spectroscopy, without any sample treatment, are
comparable with those obtained using the standard method.

Perspectives

Diffuse-light absorption spectroscopy performed in the
400–1,700 nm spectral range, combined with a multivariate
processing of spectroscopic data, have demonstrated the
capability of predicting the adulteration and concentration

of diverse lower-grade olive oils which are frequently used
as adulterants of authentic EVOOs produced in Tuscany, a
centrally located Italian region. Being scattering-
independent, this technique can be used for EVOO analysis
during the entire shelflife of the product.

The obtained results are encouraging, especially because
of the chemical similarities of authentic EVOOs and the
lower-grade olive oils considered as adulterants. To the best
of our knowledge, we have demonstrated for the first time
that optical spectroscopy can be successfully used to
quantify the fraction of DOO in authentic EVOO. It is an
innovative result, especially in view of the growing use of
DOO as adulterant. We are currently considering other
types of adulterants, as well as authentic EVOOs from other
regions for achieving a wider data base.

Verifying the authenticity of EVOOs is just one of the
many other potential applications that diffuse-light absorp-
tion spectroscopy has, especially in combination with a
suitable processing of the spectroscopic data. Other types of
expensive foodstuffs can be authenticated, such as bio-
juices, honeys, alcoholic beverages, as well as many other
liquids, the most promising of which can be dietary
supplements based on herbs and natural cosmetics.
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