
ORIGINAL PAPER

Enhanced detection of olefins using ambient ionization mass
spectrometry: Ag+ adducts of biologically relevant alkenes

Ayanna U. Jackson & Thomas Shum & Ewa Sokol &
Allison Dill & R. Graham Cooks

Received: 28 August 2010 /Revised: 17 October 2010 /Accepted: 17 October 2010 /Published online: 11 November 2010
# Springer-Verlag 2010

Abstract Spray solvent doped with silver ions increases
the ease of olefin detection by desorption electrospray
ionization (DESI). Characteristic silver adducts were
generated in up to 50 times greater abundance when
compared to conventional DESI spray solvents for the
biologically significant olefin, arachidonic acid, in the
positive ion mode. In the analysis of 26 lipids, silver
adduct formation was highly favorable for fatty acids, fatty
acid esters and prostaglandins but not applicable to some
other classes (e.g., polar lipids such as ceramide and its
derivative cerebroside sulfate). An investigation exploring
competitive Ag+ cationization with a mixture of compo-
nents demonstrated that polyunsaturated compounds form
Ag+ adducts most readily. Silver cationization allowed the
distinction between three sets of isomers in the course of
multiple-stage collision-induced dissociation, so providing
insight into the location of the olefin bonds. A silver ion-
doped solvent was used in DESI imaging of normal and
tumor canine bladder tissue sections. The Ag+ fatty acid
adducts permitted post facto differentiation between the
normal and tumor regions. In addition, silver adduct
formation in the course of DESI imaging of tissue sections
revealed the presence of triacylglycerides, a class of

compounds not previously identified through DESI imaging.
A simple silver nitrate spray solvent has the potential to
further improve DESI analysis of unsaturated biomolecules
and other molecules containing π-bonds through selective
silver cationization.
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Introduction

Lipidomics is a growing field in which an understanding of
the relative levels of lipids in the normal healthy state
increases the possibility that detection of irregularities
might provide useful information on the emergence of
disease [1–5]. Polyunsaturated lipids such as arachidonic
acid, squalene, and oxidized metabolites like prostaglandins
and cholesterol, are essential to the diverse functionalities
of the cell [1]. Unsaturated lipids are useful as biomarkers
in diagnosis carried out on biological fluids and their
identification and quantification usually requires extensive
sample preparation and separation prior to mass spectro-
metric analysis. Ambient ionization methods [6–8], like
desorption electrospray ionization (DESI) [9, 10], require
minimal sample preparation and are potentially useful
adjuncts to conventional methods of trace chemical analysis.
These methods are normally applied to solid samples and they
work best for polar analytes, so the low polarity of the
unsaturated fatty acid chains means that the direct
analysis of some lipids by ambient ionization mass
spectrometry can be difficult.

Analysis of olefins by mass spectrometry has typically
been confined to traditional ionization methods. These
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volatile compounds often are amenable to gas chromatog-
raphy which commonly utilizes electron impact ionization
(EI) or chemical ionization (CI). Chemical derivatization
of more complex analytes is often needed prior to GC
analysis in order to increase the volatility of the analyte
or to change the functionality into groups that ionize
more readily [11–16]. Electrospray ionization (ESI) and
matrix-assisted laser desorption ionization typically
require the presence of metal salts (often adventitious) to
provide cations for simple charged adduct formation from
olefins [17–22].

Silver ions form cationic adducts with several functional
groups but demonstrate unusual affinity for olefinic com-
pounds. This affinity is a result of the free 4d and 5s
orbitals of the Ag+ ion forming a partial bond with the 2pπ
orbitals of olefin bonds [23]. The formation of a weak
charge-transfer silver adduct with the olefin groups of
unsaturated molecules is particularly favored when two
olefin groups are appropriately configured [24]. Silver ions
also form adducts with aromatic species through pi-stacking
interactions resulting in intermolecular chelation [23–25].
Silver ion interactions with olefins have been extensively
studied using conventional chromatography [23, 26, 27],
ESI-MS [17–19], and SIMS [24, 28, 29] but have not been
explored for the direct analysis of olefins by ambient
ionization methods.

DESI [9, 10] is an established ambient mass spectrom-
etry ionization method for organic and biological com-
pounds. The absolute sensitivity of DESI is typically on the
order of low nanograms but much lower detection limits
have been reported [30]. The reproducibility of the analysis
is acceptable showing quantitation capabilities with relative
standard deviations typically less than 20% and often much
lower [31–35]. The mechanism of DESI ionization has
been confirmed through experimental and computational
studies: the process involves analyte dissolution followed
by release from the surface in secondary microdroplets
generated in the course of primary droplet impact [36–38].
DESI has been developed to include several variants
including (1) non-proximate detection [39], (2) molecular
imaging [40, 41], (3) derivatization accompanying ioniza-
tion, a process referred to as reactive DESI [42, 43], and (4)
analysis within a confined volume which is well-suited to
high throughput experiments known as geometry indepen-
dent DESI [44].

Here, silver ions are used in the direct analysis of
unsaturated lipids in a method that increases the specificity
of analysis of particular analytes by the generation of silver
adducts. This approach was evaluated for 26 biologically
relevant unsaturated lipids by adding trace amounts of
silver nitrate to the DESI spray solvent. The experiment
was further extended to DESI imaging, including attempted
differential analysis of normal and malignant tissue.

Experimental

Standards and solvents

The compounds investigated are summarized in Electronic
Supplementary Material Table S1. The fatty acids and their
derivatives were obtained from Cayman Chemical (Ann
Arbor, Michigan). The lipids and prostaglandin-E1 were
purchased from Avanti Polar Lipids, Inc. (Alabaster,
Alabama). Prostaglandin 8-iso-F2α was obtained from
Alexis Biochemicals (Plymouth Meeting, PA). Research
grade solvents, methanol (MeOH) and acetonitrile (ACN),
from Mallinckrodt (Paris, KY) and water (Millipore Milli
Q unit at 18.2 MΩ cm) were evaluated as DESI spray
solvents with NaCl (Mallinckrodt, Paris, KY) and
AgNO3 (Mallinckrodt, Paris, KY) additives. Chloroform
(research grade from Mallinckrodt, Paris, KY) and
methanol or ethanol (Pharmco-AAPER, Brookfield, CT)
was used to dilute the analytes from stock solutions for
analysis.

Instrumental parameters

A Thermo Fisher Scientific LTQ (San Jose, CA) equipped
with a linear ion trap was used for the experiments which
were performed in the positive ion mode except when
otherwise indicated. The typical instrumental parameters
included: automatic gain control ON, 2 microscans, 200 ms
maximum ion injection time, ±15 V capillary voltage,
150 °C capillary temperature, and ±65 V tube lens
voltage. Identification of the analytes was confirmed
using collision-induced dissociation. The experimental
parameters for multiple-stage (MSn) analysis, where n=2–
5, varied but included an isolation window of 1.5–2.0 Th
(Th, Thomson, mass/charge unit), collision energy 25–
30% (manufacturer’s unit), and 1 microscan with a
maximum ion injection time of 100 ms. Data were
acquired and processed using Xcalibur software (Thermo
Fisher Scientific; San José, CA).

DESI experimental parameters

An OmniSpray™ ion source from Prosolia, Inc.
(Indianapolis, IN) was used in these experiments. A
spray angle of ~55° to the horizontal was used with the
sample placed ~1–2 mm from both the MS inlet and the
DESI spray source and with a take-off angle close to
zero (relative to the horizontal). Typically, 3 μL solution
of analyte was deposited onto a polytetrafluoroethylene
(PTFE) substrate and allowed to dry prior to analysis in
triplicate. The typical analyte spot had an area of ~7 mm2

on the PTFE substrate. The entire spot was analyzed by
rastering during the analysis. AgNO3 (1–7 μg/mL)
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solutions in MeOH:H2O (1:1) were prepared daily from a
concentrated stock or from the solid. Typical DESI
parameters were used with regard to nebulizing gas,
source voltage and solvent flow rate [9, 10].

DESI imaging parameters

DESI imaging experiments [33] were performed on canine
bladder tissue sections to evaluate the application of the
silver-doped spray to the analysis of lipid molecules within
a biological matrix in the positive ion mode. Details for the
preparation of the tissue samples can be found elsewhere
[45]. A laboratory prototype DESI spray source was used
for the imaging experiments on a homebuilt 2-D automated
stage. An extended MS atmospheric inlet was used with a
larger internal diameter than the standard commercial inlet,
~300–400 μm. The DESI spray source was optimized at an
angle of 52°, ~2 mm from the sample surface and from the
atmospheric inlet. A nitrogen gas pressure of 150 psi and
solvent flow rate of 1.5 μL/min was used for the imaging
experiments. The samples were scanned in horizontal rows
separated by 200 μm vertical steps until the entire sample
was assayed. Under the given DESI conditions, the spot
size (diameter) was less than 250 μm. An in-house program
enabled the conversion of the mass spectrometer manufac-
turer’s Xcalibur 2.0 raw files into a format compatible with
BioMap (freeware, http://www.maldi-msi.org) software.
The individual pixel-by-pixel spectra or pixels acquired
were assembled into a spatially accurate image using the
BioMap software. The images were obtained using a spray
solvent of pure acetonitrile doped with 5.5 μg/mL AgNO3.

Results and discussion

Optimization of silver adduct formation during DESI

The doping of silver ions into the DESI spray solvent, in
the form of AgNO3, resulted in silver olefin adducts of fatty
acids and their ester derivatives. The observed adducts are
easily recognized by the characteristic 1:1 abundance ratio
for the 107Ag:109Ag isotopes. When the concentration of
AgNO3 in the spray solvent was above 10 μg/mL (10 ppm),
the mass spectrum was dominated by adducts of silver and
nitrate ions with various solvent species. On the other hand,
when the concentration of the silver salt was too low (below
1 μg/mL (<1 ppm)), silver cationization was not favored. An
intermediate concentration of ~1–10 μg/mL of AgNO3 in
MeOH:H2O (1:1) was ideal for formation of adducts with
the analytes investigated. In the lower mass range (<200 Da)
the spectra are still dominated by silver ion adducts of the
solvent molecules. However, this is not a problem for the
biological analytes of interest here.

Arachidonic acid was examined using common DESI
spray solvents to perform an initial evaluation of the
enhancement of signal that can be observed upon silver
adduct formation. When arachidonic acid was analyzed
using MeOH:H2O (1:1), molecular ions were observed in
the positive and negative ion full scan mass spectra at limits
of detection of 150 ng and 30 ng, respectively. In the
positive ion mode, the Na+ adduct was typically observed
while in the negative ion mode the deprotonated analyte,
[M–H]−, was observed. The limit of detection was also
evaluated using MeOH:H2O (1:1) with 100 μM NaCl, and
it improved by an order of magnitude to 15 ng when
monitoring the sodium adduct. The chloride adduct was not
observed in the negative ion mode. A similar detection limit
was achieved for the analysis of arachidonic acid when
using a 2 μg/mL AgNO3 ACN:MeOH (1:1) spray solvent
but this improved to 3 ng when using MeOH:H2O (1:1) and
pure ACN spray solvents doped with 2 μg/mL AgNO3. In
the optimized solvent, the limit of detection was five times
better than the best achieved for optimized sodium ion
attachment and 50 times better than that achieved using the
standard methanol/water solution in the positive ion mode.
These results are summarized in Table 1.

Evaluation of silver cationization for biological compounds

The ability to form silver adducts was evaluated for
additional fatty acids as well as their esters and also
for other lipids (phospholipids, natural lipids, and
prostaglandins). A total of 26 compounds varying in
the structure, functional groups and the number of olefin
groups were evaluated in the positive ion mode from a
teflon substrate. Electronic Supplementary Material
Table S1 summarizes and categorizes the different types
of biomolecules. For an initial evaluation of silver’s
affinity for the different olefins, 3 ng of each analyte was
analyzed. Only the fatty acids, their derivatives and the
prostaglandins could be detected as silver ion adducts.
While the phospholipids were not detected using these
sample amounts, most of the phospholipids, such as 18:1

Table 1 Detection limit of arachidonic acid Ag+ adducts using
different spray solvents

Spray Solvent Ionization Polarity Detection
Limit (ng)

MeOH:H2O (1:1) + 150

MeOH:H2O (1:1) − 30

100 μM NaCl MeOH:H2O (1:1) + 15

2 μg/mL AgNO3 MeOH:H2O (1:1) + 3

2 μg/mL AgNO3 ACN/MeOH (1:1) + 15

2 μg/mL AgNO3 ACN + 3
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PE (where PE refers to phosphoethanolamine) and C24:1
galactosyl ceramide, could be observed readily at higher
concentrations (~100 μg/mL; 300 ng absolute). Cationization
of ceramide, cerebroside and L-α-phosphatidylethanolamine
of Electronic Supplementary Material Table S1 was not
detected, even at higher concentrations (100–500 μg/mL;
300–1,500 ng absolute).

Figure 1 illustrates Ag+ adduct formation with palmitoleic
acid, linoleic acid, γ-linolenic acid and arachidonic acid
which contain one, two, three, and four olefin bonds,
respectively, each examined at 3 ng except for arachidonic
acid, where 15 ng was analyzed. Based on the structures of
the analytes and the ions observed, the molecules clearly
complex with a single silver ion under these experimental
conditions. In the case of structures with parallel cis olefins,
it is not clear if the silver ion is bound to one or both olefins
given that free rotation of the molecules is possible.

The successful detection of fatty acids by silver ion
complexation raises the question of the selectivity of this
reaction. To evaluate if Ag+ adduct formation correlates to
the number of olefin bonds present, the limit of detection of
each of the fatty acids and their derivatives was determined.
The limit of detection in this study was determined in the

full scan mass spectrum based on the corresponding
isotopic profile of the Ag+ (107:109 1.08:1.00) form of
the molecular ion at a signal to noise ratio of 3. The identity
of the ions measured was confirmed by tandem mass
spectrometry (MS/MS). Overall, the limits of detection
ranged from 1.5–3,000 pg (3 μL, ~3 mm sample spot of
1–1,000 ng/mL standard solutions) with no specific trend
with respect to the number of olefin bonds, as summarized
in Table 2. In general, the esters yielded lower detection
limits than the free fatty acids, likely due to their increased
basicity and hence increased cation affinity.

To further evaluate the signal in the Ag+ ion/DESI
experiment, all of the fatty acids and their derivatives were
compared to the data collected using conventional DESI and
ESI. Since fatty acids can also be detected in the negative ion
mode, a comparison of the silver adduct detection limits to
deprotonated ion detection limits was also made using a
conventional DESI spray solvent, MeOH:H2O (1:1). The
detection limits of the silver adducts were typically at least
an order of magnitude lower than those achieved using
simple deprotonation. An additional comparison was made
with electrosonic spray (ESSI) ionization [46], a technique
similar to conventional electrospray ionization as the analyte
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Fig. 1 DESI mass spectra of silver adducts examined from teflon
using a solvent spray of MeOH:H2O (1:1) doped with 5.5 μg/mL of
AgNO3 for a 3 ng of palmitoleic acid; b 3 ng of linoleic acid; c 3 ng

of γ-linolenic acid; d 15 ng arachidonic acid analyzed using a Thermo
Fisher Scientific LTQ of 3-μL pipetted samples (~7 mm2 spot size)
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is examined in solution. Spray solutions of the pure analytes
in MeOH:H2O (1:1) were analyzed in the negative ion mode
for the free fatty acids. Typically, the ESSI limits of detection
were of the same order of magnitude or an order of
magnitude more sensitive, ~100 pg. This result is consistent
with previous studies [31] which compared the DESI
analysis to conventional ESI methods. Therefore, for
conventional DESI analysis, an improvement of at least an
order of magnitude is observed using silver ion attachment
but there is no overall enhancement when compared to
electrospray methods. However, unlike most ESI methods
for the analysis of biosamples, DESI does not require sample
clean-up or pretreatment.

The present results can also be compared to those of
conventional methods of analysis for the same compounds
investigated by GC, LC-ESI-MS and SIMS methods [47–
50]. These techniques provide limits of detection for fatty
acids and their esters within the ng/mL range. This is
equivalent to the picogram detection limits observed for
some of the analytes by DESI. However, prior to analysis
by these methods, lipid analytes are typically derivatized to
modify the functionality of the analytes to increase the
sensitivity. Chromatographic methods also employ online
concentration of the analytes to lower detection limits.
Therefore, with the use of silver ions, the detection of these
analytes by DESI gives comparable performance to
conventional methods, while offering the additional advan-
tages of rapid in situ analysis.

Investigation of competitive Ag+ binding

To investigate the competitive binding of silver ion to
particular fatty acids and prostaglandins, experiments were
performed on a mixture of analytes (fatty acids, fatty acid
derivatives and 8-iso-F2α). Analysis of a complex mixture
(~3 ng of each analyte) yields prominent silver adducts due
to pinolenic acid, arachidonic acid methyl and ethyl esters,
and oleic acid as illustrated in Fig. 2. Pinolenic ethyl ester
gave the most intense signal followed by arachidonic acid
ethyl ester. These results, like those on the individual
compounds, suggest that silver adduct formation favors the
ester derivatives of the fatty acids. This affinity may be a result
of the basic nature of the ester molecules when compared to
the free acids. The data also suggest—although less
strongly—that three olefin bonds may be the optimal number
of unsaturated bonds for silver adduct formation although
strong signals are also seen for olefins with more double
bonds. Competitive binding does not directly correlate to the
limit of detection as the detection limits for the arachidonic
acid species were typically higher than those of the other fatty
acid molecules but the results do suggest that improved
binding occurs for molecules with multiple olefin bonds.

The results obtained during this DESI-MS study show
interesting correlations with HPLC studies of fatty acids
using silver salts [23, 26, 27]. Fatty acids elute during Ag-
HPLC in the order of increasing number of cis double
bonds and of decreasing chain lengths [23]. In the DESI

Table 2 DESI Ag+ adducts of biologically relevant analytes

Analyte (No. of Olefin Bonds) Molecular Formula m/za LOD (pg)

Fatty Acids and Esters

Oleic acid (1) C18H34O2 389/391 30

Oleic acid ethyl ester (1) C20H38O2 417/419 3,000

Palmitoleic acid (1) C16H30O2 361/363 300

Palmitoleic acid ethyl ester (1) C18H34O2 389/391 3,000

Linoleic acid (2) C18H32O2 387/389 1,500

Linoleic acid ethyl ester (2) C20H36O2 415/417 3

γ-Linolenic Acid (3) C18H30O2 385/387 300

α-Linolenic acid (3) C18H30O2 385/387 3,000

Linolenic acid ethyl ester (3) C20H34O2 413/415 1.5

Pinolineic acid (3) C18H30O2 385/387 300

Pinolenic acid ethyl ester (3) C20H34O2 413/415 30

Arachidonic acid (4) C20H32O2 411/413 3,000

Arachidonic acid-d8 (4) C20H24D8O2 419/421 3,000

Arachidonic acid ethyl ester (4) C22H36O2 439/441 500

Arachidonic acid methyl ester (4) C21H34O2 425/427 3,000

Prostaglandins

Prostaglandin E1 (1) C20H34O5 461/463 3,000

Prostaglandin 8-iso-F2α (1) C20H34O5 461/463 30

a (M+107 Ag)+ /(M+109 Ag)+
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experiment, pinolenic acid and its ester ethyl derivative
(C18H30O2 and C20H34O2) demonstrate a greater affinity
for silver cationization than arachidonic acid and its
derivatives (C20H32O2, C20H24O2, C22H36O2, C21H34O2).
While arachidonic acid has one more cis olefinic bond, the
chain is longer, decreasing its affinity when compared to
pinolenic acid. In addition, further investigation into the

minimized energy of the fatty acid structures suggests that
pinoleneic acid as opposed to others like arachidonic acid
may exhibit a “bay region” [24, 25] which is known to be
highly favorable for silver adduct formation in the gas phase.
Pinolenic acid, unlike the other fatty acids, does not only
consist of olefins separated by –CH2– but also –CH2CH2–
which may lead to the formation of a bay region.
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Fig. 3 Canine bladder tissue analysis by DESI-MS imaging of tissue
samples from three different dog breeds using a silver ion as spray
solvent highlighting the differences between normal and tumor
sections for silver adducts of fatty acids (oleic acid m/z 389/391
18:1107Ag/18:1109Ag, arachidonic m/z 411/413 20:4107Ag/20:4109Ag),
and a triacylglyceride (m/z 963/965). The images were acquired in the

positive ion mode using ACN doped with 5.5 μg/mL AgNO3 using a
Thermo Fisher Scientific LTQ. Images of (M+107Ag)+/(M+109Ag)+

adducts are presented on the left and right, respectively, for each
analyte corresponding to the two images for each analyte. OA oleic
acid, AA arachidonic acid, TAG triacylglyceride
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Ag+ ion complexes and canine bladder tissue images

Cancerous and normal canine bladder tissue samples were
imaged in three different canine models to assess the
possible usefulness of silver ion cationization for detection
of compounds present in a complex matrix. Using a silver-
doped solvent spray, images of silver adducts were found to
distinguish the tumor regions from normal tissue sections as
illustrated in Fig. 3. Hematoxylin and eosin (H&E) stains
are provided for comparison. The dark blue/purple regions
denote the cancerous regions of the tissue samples. The
fatty acid Ag+ ion DESI images displayed allow ready
distinction of the cancerous regions from normal regions
for the three canine samples. Common ions were observed
among the tissue samples but at different relative signal
intensities. Therefore, each image has been normalized for
the selected ion image of interest.

The compounds detected were confirmed through
tandem analysis and are primarily fatty acids, details follow
below. These tissues were studied previously in both the
positive and negative ion modes using a conventional DESI
solvent spray (ACN:H2O, 1:1) [45]. The same fatty acids
that were observed in the negative ion mode in the
conventional solvent system are observed in the positive
ion mode using the silver-doped spray. In the previous
study, the positive ion mode images were limited to the
monitoring of phospholipids.

Oleic acid (m/z 389/391), confirmed via tandem MS
analysis, was a dominant indicator of the tumor versus
normal tissue sections for all of the canine samples. It was
also the dominant fatty acid observed in the negative ion
mode of the previous study [45]. Since only three different
canine samples are investigated, no biological conclusions
can be drawn but the results are consistent with conven-
tional DESI imaging data.

Although confirmed via tandem analysis, the 107Ag and
109Ag ion images for oleic acid are not identical as they
should be, suggesting that there is overlap of the signal due
to an additional fatty acid, linoleic acid. Confirmation of
this overlap was achieved by performing tandem MS
analysis on each ion (linoleic acid m/z 387/389 and oleic
acid m/z 389/391) and derivation of the theoretical profile
as summarized in Fig. 4. MS/MS of m/z 389 provided
evidence of both 107Ag from oleic acid and 109Ag from
linoleic acid. The overlap profile was consistent among the
three different canine tissue samples and explains why the
ion images do not simply correlate with silver isotopes. In
cases where there is no overlap of the Ag+ signals, the
107Ag and 109Ag images are essentially identical (1:1) as
demonstrated for arachidonic acid (AA 411/413 in Fig. 2).

Other ions observed that were not reported in the
previous study include triacylglycerides (TAGs) in the
upper mass range (m/z>900). These biomolecules have
not previously been detected in DESI images in either the
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positive or negative ion modes as they do not have an
ionizable head group as do phospholipids. However, the
affinity for silver to these molecules is increased due to the
olefin bonds. Tandem MS analysis of a TAG detected at m/z
963/965 resulted in fragmentation by losses of 284 Da and
256 Da corresponding to oleic acid and palmitic acid
derivatives, respectively. Based on the Nature Lipid Maps
database (freeware, http://www.lipidmaps.org) and tandem
MS analysis of the TAG, it is likely TG(16:1(9Z)/18:1(9Z)/
18:1(9Z))[iso3]. Unlike the fatty acids, the TAG is
distributed throughout the entire tissue sample and does
not readily allow distinction of the tumor from the normal
regions.

Isomer distinction

The group of fatty acids evaluated included three sets of
isomers: oleic acid (9Z-C18H34O2)/palmitoleic acid ethyl
ester (9Z-C18H34O2), linolenic acid ethyl ester (9Z,12Z,15Z-
C20H34O2)/pinolenic acid ethyl ester (5Z, 9Z, 12Z-
C20H34O2), and γ-linolenic acid (6Z, 9Z, 12Z-C18H30O2)/
α-linolenic acid (9Z,12Z, 15Z-C18H30O2)/pinolenic acid
(5Z, 9Z, 12Z-C18H30O2). These isomers could be distin-
guished by tandem MS using collision-induced dissociation
after silver ion attachment. MSn experiments were per-
formed on 30 ng of each analyte and the results are
summarized in Fig. 5. Most of the isomers could be
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Fig. 5 Tandem DESI-MS using collision-induced dissociation to
distinguish isobaric ions: a–b α-linolenic acid (6Z, 9Z, 12Z-
C18H30O2)/pinolenic acid (9Z,12Z, 15Z-C18H30O2), c–d linolenic acid
ethyl ester (9Z,12Z,15Z-C20H34O2)/pinolenic acid ethyl ester (5Z, 9Z,
12Z-C20H34O2), and (e–f)oleic acid (9Z-C18H34O2)/palmitoleic acid

ethyl ether (9Z-C18H34O2); 30 ng of each analyte was analyzed from
teflon with a solvent spray of MeOH:H2O (1:1) doped with 5.5 μg/mL
of AgNO3 using a Thermo Fisher Scientific LTQ of 3 μL pipetted
samples (~7 mm2 spot size)

374 A.U. Jackson et al.

http://www.lipidmaps.org


distinguished using MS2 analysis but MS4 or MS5 data
were typically acquired for further confirmation as obser-
vation of the silver ion fragment allowed elucidation of the
olefin bond location. Typical fragment ions observed
resulted from ethylene (28 Da) and water (18 Da) losses.
The ethyl ester derivatives could be readily distinguished
from the free fatty acids as the ethyl esters yielded a
dominant ethylene loss fragment ion while the free fatty
acids yielded a dominant water loss fragment ion associated
with the carboxylic functionality. This assisted in distin-
guishing the structural isomers palmitoleic acid ethyl ester
from oleic acid.

Beyond distinguishing esters from free fatty acids, ions
with varying olefin locations were distinguished. For
instance, α-linolenic acid was clearly distinguished from
pinolenic acid in both the free fatty acid and ethyl ester
forms. In the case of the free fatty acids, MS5 analysis was
needed to conclusively distinguish the isomers. The MS5

spectra yielded different profiles of the unsaturated back-
bone of the molecules due to the difference in olefin
location. The ethyl ester derivatives could be distinguished
using simple MS/MS analysis as pinolenic acid ethyl ester
yielded a unique fragment ion at m/z 261 corresponding to
the loss of C11H20. This fragment structurally corresponds
to the C8–C18 unsaturated carbon chain of pinolenic acid
ethyl ester which includes the last two olefin bonds. A similar
loss was also observed for the free fatty acids as well.

Isomer differentiation based on the location of the olefin
bond and tandem MS analysis to confirm the identity of the
analytes has implications for reaction monitoring (MS/MS)
based DESI imaging. While single ion monitoring images
can be obtained successfully by DESI, there is no conclusive
structural evidence regarding the nature of the analytes. The
ability to record images by detecting key fragments of specific
analytes should provide simultaneous DESI images with
structural confirmation. This will aid in the imaging of
analytes within adduct matrices like tissues where there could
be several isobaric ions. Further, this may help detect ions
which are typically suppressed by co-located but more
concentrated analytes.

Conclusions

Silver ion containing DESI spray solvents facilitate the
analysis of unsaturated molecules, including biologically
relevant fatty acids, fatty acid esters, and prostaglandins, by
improving their detection limits by an order of magnitude
when compared to conventional DESI. This simple exper-
iment therefore gives, for appropriate compounds, similar
sensitivity to that achieved by electrospray ionization.
Correlations with the number of olefinic groups were
sought through competitive binding studies but only the

general favorability of silver ion binding to polyolefins was
demonstrated. Proof of principle of the usefulness of silver
cationization in DESI tissue imaging is provided and the
first acylglyceride images are reported.

Given the affinity of silver ions to various olefin
systems, there are other fields where silver spray solutions
might also be useful. They include petroleum exploration
and analysis given the importance of unsaturated and
aromatic species in these samples and polynuclear aromatic
hydrocarbons in the environment.
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