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Abstract An LC-MS/MS method, using positive mode
electrospray ionization, for the simultaneous, quantitative
and targeted profiling of the N-acyl-L-homoserine lactone
(AHL) and 2-alkyl 4-(1H)-quinolone (AQ) families of
bacterial quorum-sensing signaling molecules (QSSMs) is
presented. This LC-MS/MS technique was applied to
determine the relative molar ratios of AHLs and AQs
produced by Pseudomonas aeruginosa and the consequen-
ces of mutating individual or multiple QSSM synthase genes
(lasI, rhlI, pqsA) on AHL and AQ profiles and concen-
trations. The AHL profile of P. aeruginosa was dominated
by N-butanoyl-L-homoserine lactone (C4-HSL) with lesser
concentrations of N-hexanoyl-L-homoserine lactone (C6-
HSL) and 3-oxo-substituted longer chain AHLs including
N-(3-oxodecanoyl)-L-homoserine lactone (3-oxo-C10-HSL)
and N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-
HSL). The AQ profile of P. aeruginosa comprised the C7
and C9 long alkyl chain AQs including 2-heptyl-4-
hydroxyquinoline (HHQ), 2-nonyl-4-hydroxyquinoline,
the “pseudomonas quinolone signal” (2-heptyl-3-hydroxy-4-

quinolone) and theN-oxides, 2-heptyl-4-hydroxyquinoline N-
oxide and 2-nonyl-4-hydroxyquinoline N-oxide. Application
of the method showed significant effects of growth medium
type on the ratio and the nature of the QSSMs synthesized
and the dramatic effect of single, double and triple mutations
in the P. aeruginosa QS synthase genes. The LC-MS/MS
methodology is applicable in organisms where either or both
AHL and AQ QSSMs are produced and can provide
comprehensive profiles and concentrations from a single
sample.

Keywords Bioanalytical methods .Mass spectrometry .

HPLC . Pseudomonas aeruginosa .N-acyl-L-homoserine
lactones . 2-alkyl-4-(1H)-quinolones

Introduction

Bacteria produce a range of secondary metabolites which
facilitate competition with other species and colonization of
diverse ecological niches. Quorum-sensing signaling mol-
ecules (QSSMs) are low molecular weight diffusible
molecules which act as a mean of intercellular communi-
cation to coordinate bacterial behaviors such as secondary
metabolite production, biofilm development, swimming
and swarming motility and virulence [1]. Two main classes
of bacterial QSSMs are the N-acyl-L-homoserine lactones
(AHLs) and the 2-alkyl-4-(1H)-quinolones (AQs) and both
consist of large families of lipid-like molecules of closely
related structures with a range of acyl/alkyl chain lengths
[1, 2]). AHL-dependent QS systems encompass a family of
more than 30 different QSSMs which differ in the length
(from C4 to C18), degree of unsaturation (none, one or two
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double bonds) and substitution at C3 (which can be 3-oxo,
3-hydroxy or unsubstituted) of the acyl side chain [3]
(Fig. 1).

In the human opportunistic pathogen, Pseudomonas
aeruginosa, QS depends on two AHL regulatory circuits
(las and rhl) closely linked to an AQ system. In the las
system, the lasI gene product mainly directs the synthesis
of N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-
HSL), which interacts with the transcriptional regulator
LasR to activate target promoters. In the rhl system, RhlI
directs the synthesis of N-butanoyl-L-homoserine lactone
(C4-HSL), which interacts with the cognate regulator RhlR
and activates target gene expression. Apart from C4-HSL
and 3-oxo-C12-HSL, RhlI and LasI are also known to be
responsible for the synthesis of additional AHLs including
C6-HSL [4] and 3-oxo-C8-HSL, 3-oxo-10-HSL and 3-oxo-
C14-HSL [5], respectively.

The las and rhl systems are hierarchically connected and
regulate the timing and production of multiple virulence
factors [6, 7]. In addition to 3-oxo-C12-HSL and C4-HSL,
P. aeruginosa releases two major AQ signal molecules, the
Pseudomonas Quinolone Signal (PQS; 2-heptyl-3-hydroxy-
4(1H)-quinolone) and its immediate biosynthetic precursor,
2-heptyl-4-hydroxyquinoline (HHQ) into the extracellular
milieu, the synthesis and bioactivity of which are inter-
linked with AHL-dependent QS [7].

The biological activities of AQs including PQS include
antimicrobial activity [8–10] e.g., inhibition of the growth
of Staphylococcus aureus and other Gram-positive bacteria
[11, 12]. Some AQs also act as iron chelators [13–15] and
as immune modulators [16, 17]. P. aeruginosa releases a
multitude of AQs belonging to structurally related families
characterized by the presence of a hydrogen or hydroxyl
group at the 3 position, variations in length and the degree
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Fig. 1 Chemical structures of
AHL and AQ families of bacte-
rial quorum sensing molecules
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of saturation of the 2-alkyl side chain as well as N-oxide
derivatives of these variants [18]. In the context of QS, the
most important P. aeruginosa AQs are PQS and HHQ
which regulate the expression of multiple virulence genes
[15, 19–21]. AQs similar to those produced by P.
aeruginosa have also been reported in Burkholderia species
[22, 23]. Since many different bacteria produce multiple
QSSMs, there is a need to profile their nature and
concentrations in the same sample to provide comprehen-
sive information relating to both QS regulatory mechanisms
and the biosynthesis and metabolism of QSSMs.

Until relatively recently, the analysis of AQs and AHLs
in bacterial culture has been indirect and often problematic:
PQS and specific AHLs were semi-quantified by thin-layer
chromatography and densitometric analysis [24, 25] by an
indirect biological assay with a luminescent bacteria
biosensor systems or a combination of these [26–28]. The
TLC biosensor method is simple and widely used but it
cannot separate some individual QSSMs and can give rise
to false negative/positive results. In addition, although the
biosensor systems can respond to a range of QSSMs, the
response is differential such that the most intense response
does not necessarily correspond with the most abundant
compound present [27, 28]. Consequently, it is difficult to
determine the exact molar ratios of the different QSSMs
produced by the same organism using this approach.
Measurement of unknown QSSMs in bacterial culture
supernatants preferably requires a targeted method using
mass spectrometry detection and the use of synthetic
calibration standards to provide accurate quantification.
Although several LC-MS/MS methods have been devel-
oped to measure either AHLs [29–35] or AQs [23, 36, 37]
few of the methods have been fully validated to accepted
international bioanalytical standards [38] and there are no
existing LC-MS/MS methods which can simultaneously
quantify the full range of both AHL and AQ classes of
QSSMs in bacterial cultures.

In this work, we have developed and validated an LC-
MS/MS method to measure a wide range of QSSMs and
applied it to study the production of AHLs and AQs in P.
aeruginosa wild-type and QS mutant cultures after growth
in either a rich complex medium (LB) or in a chemically
defined medium suitable for metabolomic studies.

Experimental

Chemicals

The following AHL standards and derivatives were used:
N-butanoyl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-
homoserine lactone (C6-HSL) N-octanoyl-L-homoserine
lactone (C8-HSL), N-decanoyl-L-homoserine lactone

(C10-HSL), N-dodecanoyl-L-homoserine lactone (C12-
HSL) and N-tetradecanoyl-L-homoserine lactone C14-
HSLs), N-(3-oxobutanoyl)-L-homoserine lactone (3-oxo-
C4-HSL), N-(3-oxohexanoyl)-L-homoserine lactone (3-
oxo-C6-HSL), N-(3-oxooctanoyl)-L-homoserine lactone (3-
oxo-C8-HSL), N-(3-oxodecanoyl)-L-homoserine lactone (3-
oxo-C10-HSL), N-(3-oxododecanoyl)-L-homoserine lac-
tone (3-oxo-C12-HSL), ring opened form of 3-oxo-C12-
HSL (OR 3-oxo-C12-HSL), N-(3-oxotetradecanoyl)-L-
homoserine lactone (3-oxo-C14-HSL), N-(3-hydroxybuta-
noyl)-L-homoserine lactone (3-hydroxy-C4-HSL), N-(3-
hydroxyhexanoyl)-L-homoserine lactone (3-hydroxy-C6-
HSL), N-(3-hydroxyoctanoyl)-L-homoserine lactone (3-
hydroxy-C8-HSL), N-(3-hydroxydecanoyl)-L-homoserine
lactone (3-hydroxy-C10-HSL), N-(3-hydroxydodecanoyl)-
L-homoserine lactone (3-hydroxy-C12-HSL), N-(3-hydrox-
ytetradecanoyl)-L-homoserine lactone (3-hydroxy-C14-
HSL). Regarding AQs the standards used were: 2-heptyl-
4-hydroxyquinolone (HHQ), 2-nonyl-4-hydroxyquinolone
(NHQ), 2-undecyl-4 hydroxyquinoline (UHQ), 2-heptyl-3-
hydroxy-4(1H)-quinolone (PQS), 2-hydroxy-2-nonyl-4(1H)-
quinolone (C9-PQS), 2-hydroxy-2-undecyl-4(1H)-quinolone
(C11-PQS), 2-heptyl-4-hydroxyquinoline N-oxide (HQNO),
2-nonyl-4-hydroxyquinoline N-oxide (NQNO). All standards
were synthesized in-house [39, 40]. Methanol, acetonitrile,
acetic acid, and ethyl acetate were purchased from Fisher
Scientific (Loughborough, UK). Formic acid (MS grade) and
ethylenediaminetetraacetic acid (EDTA) were obtained from
Sigma-Aldrich (Poole, UK) and ultra-pure water (>18 MΩ/
cm) from an Elga Maxima water purification system (Elga
Ltd., High Wycombe, UK) were used. Individual solutions
of QSSM standards were prepared in acetonitrile and stored
at −80 °C at a concentration of approximately 1 mg/ml and
were appropriately further diluted in acetonitrile to prepare
other stock solutions and create calibration.

Synthesis of N-(pentanoyl-d9)-L-homoserine lactone

The internal standard, N-pentanoyl-L-homoserine lactone-d9
(C5-HSL-d9), was synthesized as follows. To a solution of
L-homoserine lactone hydrochloride (2 mmol) in water
(4 mL) was added a solution of pentanoic-d9 acid
(2.2 mmol) in 1,4-dioxane (4 mL) followed by triethyl-
amine (2.4 mmol) and N-(3-dimethylaminopropyl)-N′-
ethylcarbodiimide hydrochloride (3 mmol). The mixture
was stirred at room temperature overnight and concen-
trated to remove dioxane by rotary evaporation. The
remaining aqueous solution was extracted with ethyl
acetate (×3); the extracts were pooled and washed once
with a saturated sodium chloride solution. After drying
over MgSO4, the ethyl acetate was removed by rotary
evaporation to obtain C5-HSL-d9 as a white crystalline
solid in 79% yield. The product was 99.4% pure by RP-

Simultaneous quantitative profiling of QSSMs 841



HPLC (tR 4.49 min, Kromasil KR100-5 C8; 250 mm×
4.6 mm; isocratic 40% acetonitrile) 1H NMR (CDCl3) δ
2.15 (1H, m, ring 4α-H), 2.91 (1H, m, ring 4β-H), 4.31
(1H, m, ring 5α-H), 4.48 (1H, td, 5β-H), 4.56 (1H, m,
ring 3-H), 5.94 (1H, bs, NH).

Media and culture methods

The P. aeruginosa wild-type strain PAO1 and the isogenic
lasI, rhlI, pqsA single and rhlI lasI double mutants were
constructed as described previously [22, 41, 42] and were
grown at 37 °C in a 2-L all-glass fermenter (Sartorius
Stedim Biotech, Aubagne, France) in either LB broth or a
chemically defined medium (CDM). The basal CDM used
in this study contained 20 mM D-glucose, 3 mM KCl,
3 mM NaCl, 12 mM (NH4)2SO4, 3.2 mM MgSO4·7H2O,
0.02 mM FeSO4·7H2O, 1.2 mM K2HPO4, and 50 mM 3-
(N-morpholino)propanesulfonic acid (MOPS; all purchased
from Sigma-Aldrich, Gillingham, UK) buffered to a pH of
7.2 (Ombaka et al., 1983 [43]

Extraction of quorum-sensing signaling molecules
from spent culture medium

Samples of culture medium (1.0 ml) were centrifuged at
(8,500×g) for 10 min. A volume of 5 μl of 10 μM d9 C5-
HSL used as internal standard was added with 1.0 ml of
acidified (0.01% acetic acid) ethyl acetate to the culture
supernatant, the mixture was vortex-mixed for 1 min and
the organic phase was removed. The extraction procedure
was repeated twice and the pool of ethyl acetate extracts
was evaporated to dryness. The dried samples were stored
at −80 °C until use and reconstituted in 50 μl methanol
immediately prior to LC-MS/MS analysis.

LC-MS/MS analysis of QSSMs

Five microliters of the extracts was injected for LC-MS/MS
analysis at a flow rate of 0.45 mlmin−1 (Shimadzu series
10 AD VP, Columbia, MD, USA) equipped with binary
pumps, a vacuum degasser, a SIL-HTc autosampler and
column oven (Shimadzu, Columbia, MD, USA) using a
Phenomenex Gemini Column C18, 150×2 mm (5 μm
particle size) maintained at 50 °C. The HPLC system used
as the mobile phase A constituted by 0.1% formic acid
(Sigma-Aldrich, Gillingham, UK) and 200 μM EDTA
(Sigma-Aldrich, Gillingham, UK) in water and a mobile
phase B constituted by 0.1% formic acid (Fisher Scientific,
Loughborough, UK) in acetonitrile (Fisher Scientific,
Loughborough, UK). The mobile phase A was sonicated
for 30 min and filtered through 0.45 μm nylon Whatman
disk filters (Maidstone, UK) prior to use. The gradient
profile was as follows: isocratic for 1 min, a linear gradient

from 10% to 50% B over 0.5 min, then a further gradient
from 50% to 99% B over 4 min followed by 99% B for
1.5 min, at a flow rate of 0.45 ml/min. The column was re-
equilibrated for a total of 2.9 min.

All mass spectrometry (MS) experiments were con-
ducted on a 4000 QTRAP hybrid triple-quadrupole linear
ion trap mass spectrometer (Applied Biosystem, Foster
City, CA, USA) equipped with a TurboIon source used in
positive ion electrospray mode. AWindows XP (Microsoft,
Redmond, WA, USA) workstation running Analyst (version
1.4.1) was used for data acquisition and processing. MRM
parameters (precursor and product ion pairs, declustering
potential, collision cell exit potential and collision energy)
were optimized by software automation while infusing at
50 μl min−1 with the MS peak widths set to 0.7 Th. Source
parameters were optimized during infusion experiments at
the working flow rate and were as followed: curtain, Gas 1
and 2 were 20, 30, and 10, respectively. The ion source
potential was 5,000 V and the source was held at 450 °C.
Quantification was performed using Analyst 1.4.1, in
Quantitate mode.

Calibration and validation

Eight-point calibration lines were prepared for each analyte
by adding known amounts of each QSSM to 1.0 ml sterile
medium (range 0.2–20 μM final concentration, 10–
1,000 nM in the medium) and extracting as using the same
method as described above. The recovery of analytes from
medium was determined by adding a standard mixture of
all AHLs, and AQs at low (20 nM), medium (0.1 μM), and
high (1 μM) final concentrations. The recovery was
calculated by comparing the response ratios of spiked
extracted medium with a standard mixture prior to
extraction. To determine inter- and intra-day precision and
accuracy, AHLs and AQs were spiked into sterile CDM at a
low, mid-range and high concentrations. Precision was
calculated from the relative standard deviation (RSD) of the
replicates (n=5), and accuracy was calculated by direct
comparison of mean measured levels of spiked analytes
with expected concentrations for unextracted standards
(precision and accuracy defined according to [38]). The
ratios of LC-MS/MS peak areas of the analyte/internal
standard were calculated and used to construct calibration
curves of peak area ratio against analyte concentration
using unweighted linear regression analysis.

The lower limit of detection (LLOD) was determined
using serial dilutions of the AHL and AQ mixture, without
spiking into a bacterial matrix, and was defined as the
concentration at which a signal/noise ratio of 3:1 was
achieved. The lower limit of quantification (LLOQ) was
defined as the concentration at which a signal/noise ratio of
10:1 was achieved. The matrix effect (ionization suppres-
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sion) was expressed as the ratio of the mean peak area of
the analytes spiked after extraction to the mean peak area of
the same standard spikes without matrix, multiplied by 100.
A value of >100% indicates ionization enhancement, and a
value of <100% indicates ionization suppression. Guidance
for bioanalytical method validation was followed wherever
possible [38].

Application of the method

The developed and validated methodology was utilized
to determine extracellular QSSM metabolite pools pro-
duced by P. aeruginosa PAO1 and its corresponding QS
mutants. The P. aeruginosa lasI, rhlI and pqsA single
mutants, the lasI rhlI double mutant, as well as the lasI
rhlI pqsA triple mutant were constructed previously by
homologous recombination and grown by batch culture or
in a fermenter in either LB or CDM. For each strain or
growth condition, a total of six biological replicates were

collected and extracted with acidified ethyl acetate as
described above.

Results and discussion

LC-MS/MS method development

The analysis of two structurally distinct families of QSSMs
requires fast and selective analysis. The choice of +ESI
mode was based upon a greater sensitivity for both AHL
and AQ analytes and was relatively straightforward since
all the analytes demonstrated protonated [M+H]+ species as
the dominant pseudo-molecular ion. The MS parameters
(precursor and product ions used for MRM transitions and
corresponding optimized voltages) are listed in Table 1,
which shows common product ion fragments could be used
for individual families of analytes: m/z 102 for AHL, m/z
159 for AQ and m/z 175 for PQS. All analytes were eluted

Table 1 Selected precursor and product ion m/z values, retention times and mass spectrometer parameters used for QSSM analytes

QSSM analyte Retention time (min) Precursor ion (m/z) Product ion (m/z) Cone Voltage Collision Energy (V)

C4-HSL 2.6 172.1 102.1 26 15

C6-HSL 3.4 200.1 102.1 31 15

C8-HSL 3.9 228.1 102.1 26 15

C10-HSL 4.6 256.1 102.1 31 17

C12-HSL 5.3 284.1 102.1 31 17

C14-HSL 6.0 312.1 102.1 45 19

3-oxo-C4-HSL 1.3 186.1 102.1 26 15

3-oxo-C6-HSL 3.1 214.1 102.1 26 15

3-oxo-C8-HSL 3.5 242.1 102.1 26 17

3-oxo-C10-HSL 4.0 270.1 102.1 26 17

3-oxo-C12-HSL 4.7 298.1 102.1 30 19

3-oxo-C14-HSL 5.4 326.2 102.1 30 21

3-OH-C4-HSL 1.3 188.1 102.1 26 15

3-OH-C6-HSL 3.1 216.1 102.1 26 15

3-OH-C8-HSL 3.4 244.1 102.1 31 17

3-OH-C10-HSL 3.9 272.1 102.1 35 17

3-OH-C12-HSL 4.5 300.1 102.1 35 19

3-OH-C14-HSL 5.2 328.2 102.1 21 19

HHQ 4.0 244.1 159.1 31 20

NHQ 4.6 272.1 159.1 81 27

UHQ 5.4 300.1 159.1 81 27

HQNO 4.0 260.1 159.1 71 32

NQNO 4.7 288.1 159.1 96 20

PQS 4.4 260.1 175.1 71 22

C9-PQS 5.1 288.1 175.1 111 25

C11-PQS 5.8 316.1 175.1 116 35

C5-HSL-d9
a 3.3 195.1 103.1 40 15

a Internal standard
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between 1.3 and 6.0 min, providing a rapid separation with
a total run time of 9 min, including re-equilibration time.
All 27 analyte standards were completely resolved by the
LC-MS/MS method (Fig. 2).

During method development, a problem was encoun-
tered with extremely poor peak shapes for the PQS series of
analytes. This manifested itself as peaks with elongated
tails, and in extreme cases the peaks were smeared over
almost the entire chromatogram, resulting in raised base-
lines and unquantifiable peaks. The peak shape of the PQS
analytes was noticeably improved when they were injected
at higher concentrations (>100 μM). This problem has been
noted previously and the authors overcame it to a certain
extent by using densely linked or modified LC column
packings [37]. We evaluated many alternative stationary
phases for these PQS analytes, but all suffered to a greater
or lesser extent from the same poor chromatographic peak
shapes, especially when the concentration fell below 1 μM.
We theorized that the poor chromatographic behavior might
be linked to the known metal chelating properties of the
PQS molecules [13], which might encourage unwanted
strong interactions with the underlying silica based column
packing material. We decided to investigate the use of a
more acidic mobile pH since low pH has been observed to
decrease the extent of PQS chelation with iron [15] and the
addition of competing soluble metal chelators to the mobile
phase. Acetylacetone, a volatile metal chelating agent
compatible with MS analysis, improved the PQS peak
shape when added to the mobile phase, but the peak shape
was still not suitable for quantitative analysis (Fig. 3).
Although acetylacetone did improve the peak shape of PQS
analytes in the short term, this improvement was not stable
over a period of several weeks and the peak shape gradually
reverted to the original smeared peak. The solution was

found in the addition of the metal chelating agent EDTA
(200 μM) and an acidic mobile phase pH which improved
PQS peak shape (Fig. 3) even at the lowest measureable
concentrations (20 nM and lower). However, the addition
of non-volatile EDTA introduced two potential problems,
that of ionization suppression (hence possible reduction of
sensitivity) and that of potential contamination of the MS
source with involatile material leading to high background
or signal loss during extended analytical runs. However,
only relatively minor signal suppression by EDTA (peak
area reduced by 20%) was observed for the AQ analytes
which ionize very readily, although suppression was more
pronounced for the AHLs which showed significant peak
area reduction of up to 80%. The effect on AHLs was most
pronounced for the early eluting analytes (1–3 min) and

Fig. 3 The effect of mobile phase additives acetyl acetone and EDTA
on the chromatographic peak shape of PQS

Fig. 2 Extracted ion LC-MS/
MS chromatograms of a mix-
ture of standard AHL and AQ
molecules showing separation.
In sequence, A1–6: unsubsti-
tuted AHL (alkyl chain length,
C4 to C14), B1–6: 3-oxo-
substituted AHLs (C4 to C14),
C1–C6: 3-hydroxy-substituted
AHLs (C4 to C14), D1–3, AQ
analogs (C7 to C11), E1 and E2
N-oxides HQNO and NQNO
(C7 and C9), F1–3, 2-alkyl-3-
hydroxy-4-quinolones (PQS
analogs, C7 to C11), IS internal
standard

844 C.A. Ortori et al.



T
ab

le
2

V
al
id
at
io
n
re
su
lts
:
ca
lib

ra
tio

n,
in
tr
a-

an
d
in
te
r-
da
y
pr
ec
is
io
n,

ac
cu
ra
cy

an
d
re
co
ve
ry

of
as
sa
y
m
et
ho

d
de
te
rm

in
ed

at
th
re
e
co
nc
en
tr
at
io
ns

(L
=
20

nM
,M

=
0.
1
μ
M

an
d
H
=
1.
0
μ
M
)
in

sp
ik
ed

ba
ct
er
ia
l
ex
tr
ac
t

A
na
ly
te

In
tr
a-
da
y
(n
=
6)

In
te
r-
da
y
(n
=
6)

P
re
ci
si
on

(R
S
D
%
)

A
cc
ur
ac
y
(%

)
P
re
ci
si
on

(R
S
D
%
)

A
cc
ur
ac
y
(%

)
R
ec
ov

er
y
(%

±
S
D
)

Io
ni
za
tio

n
su
pp

re
ss
io
n

(%
)

L
M

H
L

M
H

L
M

H
L

M
H

L
M

H
L

M
H

C
4-
H
S
L

12
.1

7.
5

8.
8

98
.8

10
2.
2

10
6.
7

6.
5

14
.3

4.
6

97
.0

90
.6

10
0.
8

81
.5
±
5.
7

71
.2
±
3.
5

76
.8
±
5.
8

82
.3

84
.7

10
0.
1

C
6-
H
S
L

14
.2

13
.8

8.
7

92
.7

11
3

96
.1

6.
3

13
.6

6.
6

97
.3

10
9.
6

10
0.
4

72
.7
±
1.
1

90
.8
±
5.
8

97
.5
±
7.
9

83
.0

88
.8

94
.4

C
8-
H
S
L

11
.0

10
.0

11
.9

96
.8

96
.8

10
1.
1

16
.4

11
.3

4.
9

99
.0

94
.7

10
5.
4

69
.3
±
5.
5

78
.3
±
3.
8

94
.2
±
3.
6

76
.7

93
.8

98
.9

C
10

-H
S
L

3.
9

12
.1

5.
8

97
.9

97
.9

10
1.
6

14
.5

11
.1

10
.8

92
.7

96
.7

10
4.
8

71
.8
±
6.
9

86
.7
±
8.
7

96
.1
±
6.
1

89
.7

89
.1

94
.9

C
12

-H
S
L

9.
4

10
.8

11
.0

10
4.
1

10
4.
1

95
.4

10
.1

9.
1

8.
1

95
.9

94
.9

95
.6

67
.6
±
4.
3

88
.3
±
6.
8

89
.0
±
7.
8

87
.3

90
.3

10
0.
3

C
14

-H
S
L

12
.3

9.
4

9.
0

11
1.
4

10
6

99
.2

10
.2
3

5.
9

9.
2

91
.3

95
.4

92
.5

58
.0
±
5.
6

93
.9
±
8.
3

74
.9
±
4.
9

79
.1

88
.8

97
.0

3-
ox

o-
C
4-
H
S
L

9.
9

9.
4

4.
7

97
.6

10
9.
4

96
.8

5.
9

6.
9

8.
8

12
7.
3

10
1.
2

10
1.
6

24
.3
±
8.
0

43
.3
±
1.
7

38
.1
±
1.
8

10
2.
5

87
.6

88
.9

3-
ox

o-
C
6-
H
S
L

11
.8

11
.7

10
.1

97
.3

97
.3

97
.3

5.
0

12
.8

2.
1

10
6.
2

96
.3

10
0.
2

74
.9
±
11
.9

61
.2
±
1.
3

87
.5
±
7.
5

90
.9

88
.2

10
0.
1

3-
ox

o-
C
8-
H
S
L

6.
1

12
.2

5.
8

10
7.
2

10
7.
2

97
.3

6.
1

8.
8

5.
2

91
.3

97
.6

99
.3

75
.4
±
8.
1

80
.2
±
3.
8

97
.7
±
11
.6

88
.2

88
.4

93
.8

3-
ox

o-
C
10

-H
S
L

7.
1

6.
3

9.
0

95
.8

95
.8

96
.6

7.
0

15
.1

5.
0

88
.8

84
.8

99
.4

77
.9
±
11
.7

78
.6
±
3.
5

91
.0
±
6.
2

85
.2

91
.8

96
.4

3-
ox

o-
C
12

-H
S
L

8.
5

11
.5

5.
9

94
.1

94
.1

10
4.
8

19
.0

6.
3

4.
1

10
8.
0

92
.7

10
1.
4

73
.2
±
9.
3

76
.3
±
3.
4

93
.1
±
7.
3

85
.9

94
.5

95
.2

3-
ox

o-
C
14

-H
S
L

10
.3

11
.1

7.
4

99
.2

99
.2

10
0.
4

11
.5

5.
7

4.
5

10
7.
6

93
.3

98
.6

58
.6
±
5.
7

70
.6

±
3.
5

81
.2
±
3.
0

83
.2

90
.9

91
.2

3-
O
H
-C
4-
H
S
L

24
.0

14
.4

11
.6

10
7.
8

10
7.
8

10
0.
0

16
.8

12
.3

2.
8

91
.6

58
.2

92
.7

53
.2
±
5.
3

13
.4
±
8.
0

33
.2
±
6.
3

84
.0

82
.0

98
.4

3-
O
H
-C
6-
H
S
L

5.
8

12
.0

8.
2

10
5.
3

11
3.
5

10
3.
3

5.
4

6.
7

4.
7

96
.8

92
.3

99
.4

55
.6
±
7.
9

58
.4
±
3.
2

71
.8
±
6.
7

91
.0

85
.6

98
.4

3-
O
H
-C
8-
H
S
L

13
.2

5.
8

10
.9

10
9.
1

11
3.
0

10
1.
4

5.
0

10
.8

3.
5

10
1.
3

96
.6

10
3.
9

90
.4
±
8.
9

82
.8
±
2.
9

97
.2
±
6.
9

73
.5

86
.6

98
.0

3-
O
H
-C
10

-H
S
L

4.
1

14
.0

8.
9

10
0.
6

10
2.
3

99
.1

3
7.
3

2.
3

10
6.
8

10
4.
6

10
0.
1

74
.2
±
5.
4

93
.9
±
2.
9

98
.3
±
6.
0

82
.7

92
.0

93
.2

3-
O
H
-C
12

-H
S
L

9.
1

7.
9

6.
3

10
0.
1

10
4.
7

97
.3

9.
4

9.
4

2.
6

11
1.
4

10
5.
6

10
1.
1

70
.4
±
10

.1
94

.0
±
3.
4

97
.9
±
8.
4

68
.0

10
7.
3

93
.6

3-
O
H
-C
14

-H
S
L

10
.0

5.
2

6.
0

10
1.
4

10
1.
4

10
0.
0

9.
6

7.
5

6.
4

10
6.
2

10
5.
3

99
.4

73
.7
±
3.
2

90
.8
±
7.
1

84
.2
±
10

.1
73

.3
10

4.
0

91
.2

H
H
Q

12
.7

4.
2

4.
6

10
0.
8

11
2.
3

10
5.
7

8.
1

12
.1

13
.3

10
4.
2

10
8.
8

98
.3

93
.2
±
2.
9

90
.4
±
12

.9
97

.1
±
3.
7

80
.8

82
.4

95
.4

N
H
Q

5.
5

5.
3

5.
3

96
.4

11
2.
3

10
6.
5

6.
6

5.
5

3.
4

95
.1

99
.6

99
.1

81
.3
±
2.
5

89
.8
±
2.
9

95
.3
±
2.
5

75
.9

81
.0

92
.4

U
H
Q

6.
5

3.
9

7.
1

99
.4

99
.4

99
.5

7.
3

3.
3

4.
9

10
7.
5

99
.0

99
.7

67
.9
±
4.
6

80
.1
±
16

.3
89

.1
±
3.
6

78
.4

81
.3

93
.1

H
Q
N
O

10
.4

10
.4

8.
2

10
2.
2

10
2.
2

98
.2

6.
6

11
.8

11
.2

88
.1

90
.4

95
.6

43
.9
±
3.
7

66
.0
±
8.
9

92
.5
±
6.
3

68
.7

84
.7

92
.4

N
Q
N
O

14
.0

7.
1

4.
9

96
.1

91
.1

10
5.
3

12
.3

12
.1

11
.8

10
0.
5

10
0

10
4.
2

41
.4
±
4.
0

66
.1
±
14

.6
91

.9
±
4.
6

81
.0

82
.6

89
.8

P
Q
S

8.
0

15
.4

4.
5

10
6.
8

10
0.
6

10
8.
8

14
.0

11
.8

4.
3

90
.6

95
.3

99
.3

26
.0

±
7.
0

61
.9
±
1.
4

93
.3
±
4.
4

75
.9

86
.2

88
.4

C
9-
P
Q
S

10
.0

7.
8

6.
4

11
5.
5

95
.5

99
.7

9.
1

12
.8

4.
2

98
.1

93
.1

10
0.
5

23
.8
±
4.
0

69
.3
±
2.
1

82
.4
±
5.
4

80
.7

79
.6

90
.3

C
11
-P
Q
S

12
.2

8.
9

9.
9

90
.6

10
2.
7

10
1.
5

11
.9

8.
2

10
.0

96
.6

95
.

99
.2

15
.3

±
4.
8

56
.1
±
5.
4

72
.
±
5.
6

60
.2

83
.6

94
.7

Simultaneous quantitative profiling of QSSMs 845



these showed a greater degree of ionization suppression.
Contamination of the MS source by EDTAwas shown to be
a relatively insignificant effect; after a typical long
analytical run of 150 injections, signals remained on
average at 84% of the first injection. To ensure that this
small drop-off in MS response did not affect the quantitative
performance of the method analytical runs were limited to 120
injections before rinsing the outer MS stainless steel gas cone
to remove deposits. In addition, potential contamination of the
source was further reduced by the use of a flow diverter during
times not critical to data acquisition.

Quantitative aspects: validation of method

Table 2 summarizes the method validation data and the
results confirm that the method is sensitive, precise and

accurate and provides satisfactory recovery, for all analytes
making the method suitable for quantitative profiling of
AHLs and AQs. The linearity of the method was confirmed
by analysis of six-point calibration lines for each. Non-
linearity of calibration was observed for some analytes at
higher concentrations but this was not a problem in practice
since measured concentrations in real samples were always
within the range of the linear calibration. The intra-day
precision was between 3.9% and 14%, and the inter-run
precision between 2.3% and 19%. Intra-run accuracy estab-
lished at the L, M and H concentrations was between 90.6%
and 113.5% with inter-run accuracy between 85% and 127%.

The measured recoveries of the AHLs and AQs in
general gave values of greater than 70% and showed the
suitability of the method in extracting these varied analytes
from the complex culture medium. However, at the lowest

Fig. 4 Relative molar propor-
tions (pie charts) and quantita-
tive profiling (bar graphs) of
AHLs and AQs produced by P.
aeruginosa wild-type strain
grown in LB and CDM growth
medium
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validation concentration (20 nM) the recoveries of 3-oxo-
C4-HSL, 3-OH-C4-HSL and the PQS series (PQS, C9-PQS
and C11-PQS) were noticeably lower than that of the other
analytes, perhaps due to their more polar nature resulting in
reduced partitioning into the extraction solvent. However,
the precision, accuracy and other validation parameters
were all within the required specification for these analytes,
confirming that the method provides quantitative measure-
ments despite the low recovery. It is possible that the losses
at very low concentrations of the PQS family were a result
of metal chelating activity causing adsorption to glass or
plastic surfaces during the extraction process (although this
was not investigated further).

The measured values of matrix effect were in generally
in the range 90–100% (where 100%=no ionization sup-
pression) indicating very little matrix effect at the L and M
validation concentrations. The L concentration, as would be
expected, showed a greater effect but 23 of 26 analytes
showed ion suppression values of better than 70% at this
level. LLOQ of the AHLs and AQ families were 1.6 and
0.6 nM, respectively.

Biological applications: AHL and AQ profiling
of P. aeruginosa wild-type and QS mutants

P. aeruginosa produced a wide range of QSSMs, the nature
of which varies in acyl/alkyl chain length as well as the
level of substitution. When grown in LB, the P. aeruginosa
PAO1 parent strain produced primarily C4-HSL (31 μM)
and 3-oxo-C12-HSL (0.5 μM) but also C6-HSL (0.9 μM)
and 3-OH-C4-HSL (0.5 μM; Fig. 4, Table 3). These
profiles and concentrations of AHLs are in line with those
found in a previously published study [35]. A similar
profile was observed following growth in CDM although
the overall AHL concentrations were lower than in LB: C4-
HSL (6 μM) and 3-oxo-C12-HSL (1.4 μM) C6-HSL
(0.7 μM) and 3-OH-C4-HSL (0.1 μM; Fig. 4, Table 3).
Similarly, total AQ concentrations in CDM (5.6 μM) were
lower than those observed in LB (9.4 μM) with a notable
10-fold higher concentration of PQS in LB compared with
CDM. The concentration of PQS generally documented
after growth in LB corresponds to concentrations 10 to 100-
times higher (5–10 μM) [19] than in CDM. In LB batch
culture, PQS has been detected in the logarithmic phase and
a P. aeruginosa culture contains 5–10 μM PQS which
increased up to 25 μM in stationary phase [19]. A recent
study showed that the AQ biosynthetic pathway and the
anthranilate degradation pathway, which both feed into the
TCA cycle for energy metabolism, draw from the same
pool of intracellular metabolite [44, 45]. Therefore, in
CDM, the metabolite pools directing PQS synthesis may be
drawn into the TCA cycle to sustain cell growth at the cost
of AQ synthesis.

Analysis of the QSSM profiles of mutants of P.
aeruginosa grown in CDM showed that disruption of one
QS system (AHL or AQ biosynthetic genes) impacts on the
synthesis of the QSSMs from other QS systems. Examples
of extracted ion LC-MS/MS chromatograms are given in
Electronic Supplementary Material Fig. S1. The full data
from this series of experiments is shown in Electronic
Supplementary Material Table S1 and Fig. 5. The disrup-
tion of the pqsA gene resulted in a twofold increase in C4-
HSL and C6-HSL and a significant reduction in 3-oxo-
C12-HSL when compared with the wild type. Furthermore,
a mutation in rhlI resulted in a large increase in HQNO,
NQNO, and PQS levels while a mutation in lasI resulted in
a significantly increased level of HHQ, NHQ, the disap-
pearance of PQS congeners and a large reduction in C4-

Table 3 Changes in measured concentrations of AHLs and AQs in P.
aeruginosa culture in LB medium or CDM

QSSM analyte QSSM concentration (μM)

LB Medium CDM

Mean SD Mean SD

C4-HSL 31.31 2.17 5.63 0.41

C6-HSL 0.89 0.04 0.10 0.03

C8-HSL 0.02 0.00 nq –

C10-HSL nq – nq –

C12-HSL nq – nq –

C14-HSL nq – nq –

3-oxo-C4-HSL nq – nq –

3-oxo-C6-HSL nq – nq –

3-oxo-C8-HSL 0.04 0.00 nq –

3-oxo-C10-HSL 0.12 0.01 0.05 0.02

3-oxo-C12-HSL 0.50 0.06 1.41 0.12

3-oxo-C14-HSL nq 0.00 nq –

3-OH-C4-HSL 0.47 0.03 0.09 0.09

3-OH-C6-HSL 0.01 0.00 nq –

3-OH-C8-HSL nq – nq –

3-OH-C10-HSL nq – nq –

3-OH-C12-HSL nq – nq –

3-OH-C14-HSL nq – nq –

HHQ 0.93 0.04 0.68 0.08

NHQ 0.29 0.03 0.23 0.07

UHQ 0.01 0.00 0.02 0.02

HQNO 3.28 0.37 2.71 0.90

NQNO 1.80 0.11 1.50 0.22

PQS 2.81 0.32 0.33 0.07

C9-PQS 0.25 0.03 0.08 0.07

C11-PQS 0.01 0.00 nq –

nq not quantifiable (AHLs<1.6 nM; AQs<0.6 nM)

SD standard deviation
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HSL levels (Fig. 5, Electronic Supplementary Material
Table S1). It has been previously established that both the
las and rhl systems exert an influence on the pqs system
and that the pqs system affects the synthesis of C4-HSL and
3-oxo-C12-HSL (reviewed by Heeb et al. [46]. McKnight
et al. [20] showed that PQS positively regulates rhlI
expression, thus influencing C4-HSL accumulation. It has
also been observed that pqsABCDE expression depends on
the ratio between the two AHL molecules, 3-oxo-C12-
HSL having a positive effect, and C4-HSL having a
negative effect [47] this has also been corroborated by
[48] who showed that whereas LasR has a positive impact
on pqsR expression and hence AQ production, RhlI has
the opposite effect.

The increase in HHQ and NHQ in the lasI mutant can
be explained by the positive control of pqsH (which
encodes the mono-oxygenase required for the conversion
of HHQ and NHQ to PQS and C9-PQS) by LasR/3-oxo-
C12-HSL. Similar results have been obtained previously
[49–51]).

Conclusions

A selective and rapid method for the simultaneous analysis
of the two main classes of QSSMs has been developed,
validated and shown to be applicable to obtain good quality
experimental data from P. aeruginosa. In addition to this
application, the method has been successfully applied to
measure AHL and AQ profiles in both complex and defined
culture media under a range of experimental situations.
Although this methodology was conceived for profiling
studies in relation to the biosynthesis of QSSMs, the
methodology could be easily modified to facilitate studies
on biological samples other than bacterial cultures. We have
started to exploit this technology for the analysis QSSM
levels in the body fluids of patients with cystic fibrosis who
are colonized with P. aeruginosa or Burkholderia spp., both
of which produce complex mixtures of AHLs and AQs [23,
52]. Therefore, the technology presented in this manuscript
will be a valuable investigative tool for metabolic profiling
in many environments including the clinic.

wild type lasI

pqsA lasI rhlI (double mutant)

rhlIFig. 5 Pie charts illustrating the
relative molar proportions of the
major AHLs and AQs identified
in P. aeruginosa cultures: P.
aeruginosa (wild type), las I
mutant, rhlI mutant, pqsA mu-
tant, las I rhlI double mutant.
Bar graphs show quantitative
representation of data showing
complete removal of all QSSMs
with the las I rhlI pqsA triple
mutant P. aeruginosa. QSSM
concentrations ≤20 nM have
been excluded for clarity
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