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Abstract In this paper, we use a quantitative structure–
retention relationship (QSRR) method to predict the retention
times of polychlorinated biphenyls (PCBs) in comprehensive
two-dimensional gas chromatography (GC×GC). We analyse
the GC×GC retention data taken from the literature by
comparing predictive capability of different regression meth-
ods. The various models are generated using 70 out of
209 PCB congeners in the calibration stage, while their
predictive performance is evaluated on the remaining 139
compounds. The two-dimensional chromatogram is initially
estimated by separately modelling retention times of PCBs in
the first and in the second column (1tR and 2tR, respectively).
In particular, multilinear regression (MLR) combined with
genetic algorithm (GA) variable selection is performed to
extract two small subsets of predictors for 1tR and 2tR from a
large set of theoretical molecular descriptors provided by the
popular software Dragon, which after removal of highly
correlated or almost constant variables consists of 237
structure-related quantities. Based on GA-MLR analysis, a
four-dimensional and a five-dimensional relationship model-
ling 1tR and 2tR, respectively, are identified. Single-response
partial least square (PLS-1) regression is alternatively applied
to independently model 1tR and 2tR without the need for
preliminary GA variable selection. Further, we explore the
possibility of predicting the two-dimensional chromatogram
of PCBs in a single calibration procedure by using a two-
response PLS (PLS-2) model or a feed-forward artificial
neural network (ANN) with two output neurons. In the first
case, regression is carried out on the full set of 237

descriptors, while the variables previously selected by GA-
MLR are initially considered as ANN inputs and subjected to
a sensitivity analysis to remove the redundant ones. Results
show PLS-1 regression exhibits a noticeably better descrip-
tive and predictive performance than the other investigated
approaches. The observed values of determination coeffi-
cients for 1tR and 2tR in calibration (0.9999 and 0.9993,
respectively) and prediction (0.9987 and 0.9793, respective-
ly) provided by PLS-1 demonstrate that GC×GC behaviour
of PCBs is properly modelled. In particular, the predicted
two-dimensional GC×GC chromatogram of 139 PCBs not
involved in the calibration stage closely resembles the
experimental one. Based on the above lines of evidence, the
proposed approach ensures accurate simulation of the whole
GC×GC chromatogram of PCBs using experimental determi-
nation of only 1/3 retention data of representative congeners.

Keywords Polychlorinated biphenyls . Two-dimensional
gas chromatography . QSRR modelling .Molecular
descriptors

Introduction

Polychlorinated biphenyls (PCBs) are harmful persistent
pollutants ubiquitously present in the environment and are
well known to undergo bio-accumulation throughout the
food chain [1–5].

Routine monitoring of PCBs can be carried out by
capillary gas chromatography (GC) normally coupled to
electron capture or mass spectrometry detection [6, 7]. PCB
separation can be efficiently improved by means of
comprehensive two-dimensional gas chromatography
(GC×GC) [8–10], to offer enhanced peak capacity, sensi-
tivity, and selectivity [11].
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Recently, several approaches have been proposed to predict
retention in GC×GC [12–16] with the aim of simplifying the
separation optimisation which is more difficult than that of
conventional GC. Some of these models [12–14] were
generated by using as input data solute retention indices or
retention factors measured directly on the primary and
secondary columns. These quantities were combined with
fluid mechanical calculations to predict retention times in
both GC×GC dimensions. Seeley and co-workers [15, 16]
proposed a less sophisticated method applicable under the
assumption that retention indices of solutes in the stationary
phases are independent of column dimensions, carrier gas
flow and temperature programme. This approach, which
does not require preliminary knowledge of temperature
dependence of retention factors or retention indices, rather
than the conventional two-dimensional chromatogram gen-
erates a two-dimensional “retention diagram” showing the
retention order and spacing in both dimensions similar to that
found in the experimental GC×GC chromatogram. Retention
data from standard single-column temperature-programmed
separations were initially used as the model inputs [15],
while later the “retention diagram” was entirely built by
using descriptors of both solutes and interfaced stationary
phases taken from the literature [16].

In this paper, we explore the possibility of predicting the
retention times of PCBs in GC×GC using a quantitative
structure–retention relationship (QSRR) method. In the last
decades, QSRRs of a large variety of solutes in many
different one-dimensional chromatographic systems have
been established [17, 18]. The possibility of deducing
retention on the basis of molecular structure of solutes,
which is one of the objectives of QSRR methods, can be
helpful in the optimisation stage of chromatographic
separations as an alternative to less efficient non-systematic
empirical methods. The first step of QSRR analysis is the
identification of a set of molecular descriptors that will
constitute the independent variables of a multivariate
regression model providing as a response the retention time
(or a retention-related parameter). According to the well-
known linear solvation energy relationship (LSER) model
[19], the solvatochromic properties of solutes can be
successfully considered as retention predictors both in GC
and liquid chromatography [17, 18]. In a GC×GC context,
Seeley et al. [16], as anticipated above, generated a
“retention diagram” using as input data a set of descriptors
for the target solutes and stationary phases obtained by the
LSER method. Arey et al. [20] showed that first- and
second-dimension retention indices of diesel fuel hydro-
carbons estimated by GC×GC can be modelled by means of
solvatochromic descriptors. Poole and Poole [21] using the
LSER method investigated the degree of orthogonality
within 32 GC capillary columns aimed at finding the most
suitable combination for GC×GC separation. It must be

noted that although solvatochromic descriptors of nearly
4,000 compounds have been determined [22], these
quantities are not available for most chemicals of analytical
interest. QSRR methodology, on the other hand, can
nowadays rely on various professional software packages
able to provide several classes of theoretical molecular
descriptors, permitting to quickly collect a large quantity of
structure-related properties. In particular, various kinds of
theoretical molecular descriptors have been already used to
quantify the influence of structure on the retention of PCBs
in single-column GC [23–29].

In this paper, we analyse the GC×GC retention data of
PCBs published by Focant et al. [8]. The same data set was
previously investigated by Ren et al. [30] who actually
modelled by QSRR only the retention time of PCBs in the
first column. As preliminary knowledge of the degree of
orthogonality of the two interfaced GC systems is only
partial, we test various regression methods able to both
independently and simultaneously providing the retention
times of PCBs in the first and in the second dimension (1tR
and 2tR, respectively). In the first stage of this investigation,
we combine multilinear regression (MLR) with genetic
algorithm (GA) variable selection to extract two suitable
sets of molecular descriptors from the large number
provided by the popular software Dragon [31] with the
aim of independently modelling 1tR and 2tR. The molecular
descriptors incorporated into the two separate GA-MLR
models giving 1tR and 2tR are simultaneously considered as
the input variables of an artificial neural network (ANN)
with two output neurons with the aim of producing through
a single calibration procedure the peak coordinates in the
GC×GC chromatogram and accounting for possible inter-
action and non-linearity effects within the data set. Partial
least squares (PLS) regression, which does not require
preliminary variable selection and can both independently
and simultaneously provide 1tR and 2tR, is finally applied.

Method

Data set

Experimental conditions used to collect the PCB retention
data analysed here can be found in the original paper [8]. In
the present study, the 209 objects (the PCB congeners) of the
dataset were partitioned into a calibration set (70 data
samples), used to generate the QSRR retention model, and
a test (or prediction) set (139 data samples), that served to
finally evaluate its generalisation ability. The calibration set
was designed by means of the Kennard–Stone [32] algorithm
applied to the two-dimensional space defined by 1tR and 2tR,
which allows generation of a subset of uniformly spaced
PCBs over the GC×GC chromatogram (Fig. 1).
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Molecular descriptors

Molecular geometries of various PCBs are generated
assuming standard bond lengths and angles. The adopted
conformation of each compound, defined by the magnitude
of the torsion angle φ between the planes of two benzene
rings, was that corresponding to the minimum energy
according to B3LYP density functional calculations carried
out by Dorofeeva et al. [33]. In particular, neglecting small
deviations, φ was set to 38° and 60° for PCB congeners
with none or one chlorine atom in the ortho-position,
respectively, and 90° for all the remaining cases.

The software Dragon [31] was used to compute the
molecular descriptors from PCB geometries. For those
conformers exhibiting axial chirality (atropoisomery), the
geometries of both enantiomers were generated and, to
account for the fact that these are present in PCB
commercial standard mixtures used in conventional (non-
chiral) GC as racemates, the values of the molecular
descriptors of enantiomers, when different, were averaged.
The version of Dragon utilised in this work provides 1,664
descriptors classified as zero- (0D), one- (1D), two- (2D)
and three-dimensional (3D) descriptors depending on the
fact they are computed from the chemical formula, the
substructure list representation, the molecular graph or
the geometrical representation of the molecule, respectively
[34]. In this investigation, a preliminary rough variable
selection was carried out by removing among the large set
provided by Dragon those descriptors with little variance,
and, by retaining only one descriptor, randomly selected,
among groups of highly correlated descriptors (r>0.9).

After this procedure, we identify 237 molecular descriptors
belonging to various classes (collected in Table 1) that will
be considered in further analysis.

Multilinear regression combined with genetic algorithm
variable selection

Owing to simple statistical bases and easy interpretation of
the resulting models, MLR is the most widely applied
regression method in QSRR analyses [17, 18]. According
to MLR modelling, the response variable y is expressed as a
linear combination of descriptors Xi:

y ¼ a0 þ
X

i

aiXi ð1Þ

where ai is the regression coefficient and a0 is the intercept.
In this paper, the 237 molecular descriptors that

remained after removal of highly correlated and almost
constant quantities were subjected to GA variable selection
aimed at finding a small descriptor subset with appropriate
explanatory ability. GA [35, 36] is a stochastic optimisation
method inspired by genetics and Darwinian theory based on
the evolution of a starting random population of models
that through mutation, cross-over, and selection after a
number of generations finally provides an optimal or near
optimal solution. Each population individual (chromosome)
is a binary vector in which each position (gene) encodes the
presence or absence of a descriptor in the model by 1 or 0,
respectively. According to biological evolution rules, the
chance for a given chromosome of being preserved in the
next generation is evaluated by a fitness function that
measures how well a solution fits the considered problem.
In this investigation, we select those molecular descriptors
independently influencing 1tR and 2tR. To this end, the
fitness function associated to each chromosome was the %
of leave-one-out cross-validated variance explained by the
MLR model corresponding to that chromosome, which
response was 1tR or 2tR. This (or the related determination
coefficient Qloo-cv

2) is the quantity maximised in the
evolution process. GA-MLR analysis is performed here
using the programme package V-PARVUS 2008 [37]. In
each calculation, a starting random population of 100
chromosomes is subjected to 50 evolution cycles or
evolution process is stopped before if no improvement of
the fitness function is observed after five cycles. Probability
of mutation is set to 1% and elitism, which gives the
number of the best chromosomes of each generation that
are passed unchanged to the next one, is set to 2%.

Artificial neural network regression

An ANN consists of interconnected single processing
units called neurons [35, 38]. Among the different kinds
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Fig. 1 Position in the GC×GC chromatogram of the PCBs used in
model calibration and prediction
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of ANNs, feed-forward multi-layer networks are the most
widely used in chemistry and to establish quantitative
structure–property relationships, in particular. Neurons are
generally organised in three layers: one input layer which
collects the external input (the descriptors in regression
applications), one output layer providing the network
response (here two neurons giving 1tR and 2tR) and one
hidden layer with an adjustable number of neurons fully
connected to both input and output neurons. Information
that flows only from input to output neurons is modulated
by weights associated to each connection. The input
neurons do no calculation but simply distribute the
external variables to the hidden neurons where the
weighted signals are summed, added to a bias value and
the result is transformed by an activation function
providing an output signal for each hidden neuron. These
are in turn sent to the output neuron(s) that after analogue
computation gives the network “answer”. In the network
learning step, a number of input/output pairs (training set)
are processed and weights and biases are iteratively
optimised to produce the best agreement between target
and computed responses. Training process is commonly
carried out using the error back-propagation learning
algorithm which can sometimes suffer from slow conver-
gence. This limitation can be overcome by learning
algorithms, as the quasi-Newton method [39], that
incorporate second order information about the shape of
error surface. To avoid over-fitting, the network was
optimised by evaluating its capability of modelling a
suitable number of data samples (validation set) not used
in the training stage.

To this end, the Kennard–Stone algorithm [32] was
applied to the 70 samples of the calibration set projected
in the space of 1tR and 2tR and 50 PCBs to be used in ANN
training were extracted, while the 20 unselected com-
pounds were put in the validation set. The final model was
tested on the 139 PCB congeners of the prediction set not
involved in previous variable selection and ANN optimi-
sation stages. In this work, ANN analysis was carried out
using the JavaNNS neural network simulator [40].

Partial least squares regression

PLS regression [41, 42] is particularly useful to handle a
large number of descriptors even in the presence of co-
linearity and noise. It is based on the identification of a
relatively small number of linear combinations of the
original variables, considered as approximations of under-
lying factors (also known as latent variables) strongly
correlated with the response(s). When several response
variables must be modelled two approaches can be used:
the so-called PLS-1 algorithm computes the responses
one at a time while the PLS-2 algorithm provides all
responses in a single calibration procedure. In PLS-1 the
matrix of independent variables is decomposed to
identify the factors more correlated with a given
response, while in PLS-2 the matrices of dependent
variables and responses (X and Y, respectively) are
simultaneously decomposed and couples of Y and X
factors are used to build the model in place of regression
of Y onto X. The X factors are sequentially extracted
according to the decreasing order of the covariance with

Table 1 List of the molecular descriptors used in QSRR retention modelling of PCBs

Dimensionality Class

0D Constitutional descriptors (1)

2D Topological descriptors (12)

Walk and path counts (2)

Connectivity indices (1)

Information indices (6)

2D autocorrelation indices (12)

Edge adjacency indices (15)

Burden eigenvalue descriptors (12)

Topological charge indices (8)

3D Geometrical descriptors (8)

Radial Distribution Function (RDF) descriptors (34)

3D-Molecule Representation of Structures based on Electron diffraction (3D-MoRSE) descriptors (73)

Weighted Holistic Invariant Molecular (WHIM) descriptors (21)

GEometry, Topology, and Atom Weights AssemblY (GETAWAY) descriptors (32)

The number of variables belonging to a given class are given in parentheses
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the response, in the case of PLS-1, or with Y factors, in
the case of PLS-2. This procedure is iteratively repeated
until the next factor does not improve the model
performance, usually evaluated by cross-validation.

Results and discussion

GA-MLR modelling

GA-MLR analysis was carried out to find two appropri-
ate subsets of molecular descriptors among the large
number provided by Dragon able to separately encode the
effect of PCB structure on 1tR and 2tR. A preliminary GA-
MLR exploration of the data suggested that a quite good
modelling of 1tR could be obtained including only four
descriptors into the MLR model. Incorporation of a fifth
descriptor, as expected, was seen to produce a non-
negligible increase of the determination coefficient in
calibration (R2), but did not result in a comparable
improvement of predictive performance as measured by
Qloo-cv

2. After a large number of GA-MLR runs with
different starting chromosome populations, the set of
descriptors providing the highest Qloo-cv

2 was finally
selected (Table 2). As to 2tR accurate modelling required
five descriptors (given in Table 2), although model
performance was slightly worse as compared with that of
the four-dimensional relationship providing 1tR, but did
not increase sensitively after the addition of a sixth
descriptor. For both relationships, values of the regression
coefficients, their standard deviations, the standardised
regression coefficients and statistical significance of each
descriptor according to t test are given in Table 3. Table 4
displays the descriptive and predictive performance of the
MLR models, quantified by usual statistical indexes, R2,
standard error in calibration (SEC), Qloo-cv

2, determination

coefficient of external prediction (Q2), standard error in
leave-one-out cross-validation (SEPval) and external pre-
diction (SEPtest). In the same table, we also report the
average absolute relative error in calibration and predic-
tion (aae(%)cal and aae(%)test, respectively) defined as
follows:

aae %ð Þ ¼ 100

n

X t
0
R � tR

�� ��
tR

ð2Þ

where t′R is the computed or predicted retention time, tR is
the corresponding experimental value and the sum is
extended over the n samples of the calibration or
prediction set.

ANN modelling

In a preliminary stage of ANN modelling, we consider
all the nine molecular descriptors previously selected by
GA-MLR as the network inputs. The network was
optimised by evaluating through trial-and-error the effect
of typical ANN features, namely the learning rule and
duration, the number of hidden neurons, the form of the
activation function and the kind of variable scaling, on
the validation error. After a number of trials, in which
initial weights were randomly generated between −0.1
and 0.1, an acceptably low validation error was obtained
using a 9-8-2 network having the hyperbolic tangent as
the activation function of the hidden neurons. This
network was trained with quasi-Newton learning algo-
rithm for 46 epochs and input variables were subjected to
a range scaling between −1 and 1. Before applying this
model to the PCBs of the external prediction set we
attempted to reduce its complexity by removing possible
redundant input variables. To this end, we followed a
stepwise procedure using the method of weight zeroing

Table 2 Molecular descriptors selected by GA-MLR

Response Descriptor Class Meaning

1tR WA Topological Mean Wiener index

PW3 Topological Path/walk 3—Randic shape index

BEHv6 Burden eigenvalue
descriptor

Highest eigenvalue n. 6 of Burden matrix/weighted by atomic van der Waals volumes

RDF055m RDF Radial Distribution Function—5.5/weighted by atomic masses
2tR EEig09x Edge adjacency index Eigenvalue 09 from edge adj. matrix weighted by edge degrees

EEig10x Edge adjacency index Eigenvalue 10 from edge adj. matrix weighted by edge degrees

EEig15x Edge adjacency index Eigenvalue 15 from edge adj. matrix weighted by edge degrees

JGI2 Topological charge index Mean topological charge index of order 2

Mor14m 3D-MoRSE 3D-MoRSE—signal 14/weighted by atomic masses

Retention modelling of polychlorinated biphenyls 907



proposed by Nord and Jacobbson [43] to evaluate the
relative importance of ANN inputs. According to this
approach, the influence of a given descriptor to define the
network response can be related to the deterioration of
model performance when the effect of that variable is
removed by zeroing the corresponding weights. The
importance of a given descriptor is quantified by (SECx-

zeroed -SECfull)·σx, where SECfull and SECx-zeroed are
standard errors provided by the full network and the
network in which weights associated to the corresponding
input are zeroed, respectively, and σx is the standard
deviation of the variable of interest. In each step of the
iterative variable elimination, after the less important
variable has been removed the network is re-optimised
with respect to the number of hidden neurons and the
number of learning epochs. Stepwise variable elimination
is terminated before an unacceptable worsening of
validation error is observed. Using the above strategy,
four molecular descriptors (RDF055m, Mor14m,
EEig10x, and EEig15x) were removed. The reduced
ANN model was finally calibrated with a 5-6-2 network
learned for 102 epochs; its descriptive and predictive
performance is displayed in Table 4. As compared with
MLR, ANN comparably or slightly better models 1tR and
2tR. It must be noted that, while all calibration data were
used to build the MLR models, update of network weights
could benefit from more limited chemical information, as
a number of calibration data (20 out to 70) served to
optimise the ANN-based model. Although the ANN
model computes the two retention times in a single
calibration procedure and utilises a reduced descriptor
set, its performance is substantially comparable to that of
MLR, which is recommended according to a parsimony
criterion. In summary, simulation of the two-dimension
GC×GC chromatogram of PCBs appears as a linear problem,
while resorting to higher computational flexibility offered by
ANN seems unjustified.

PLS modelling

PLS regression does not require preliminary variable selection
and can model the retention times in the two dimensions of a
GC×GC chromatogram both in two separate one-response
steps, in which retention time in one dimension is modelled
(PLS-1), or in a single two-response step (PLS-2). In the
circumstance of correlated responses PLS-2 regression, in
which the target properties are simultaneously calibrated, is
recommended. When the responses are independent, PLS-2
models can require many factors, whereas PLS-1 provides less
complex and usually more precise models [42]. In the PLS
application presented here, the two response variables are
expected to be uncorrelated if the separation mechanisms in
the two interfaced columns are truly independent [21]. In theT
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circumstance that a clear understanding of this aspect is
lacking, it cannot be known in advance whether PLS-1
works better than PLS-2 or not. Both PLS-1 and PLS-2 were
performed on the autoscaled variables. The optimal number
of latent factors was found by means of leave-one-out cross-
validation procedure, by examining the influence of PLS
model complexity on Qloo-cv

2. Maximum of Qloo-cv
2 in PLS-

1 modelling of 1tR was observed for 15 latent factors,
whereas 19 and 23 latent variables are required to maximise
Qloo-cv

2 in PLS-1 modelling of 2tR and PLS-2 regression,
respectively. However, in these last two cases, the increase of
Qloo-cv

2 passing from a 15-latent-variable model to the one
with the optimal complexity was relatively small. Therefore,
we finally choose 15 latent variables also in these cases. The
performance of PLS-1 and PLS-2 models in calibration and
prediction is illustrated in Table 4. These results reveal that
PLS-1 regression provides a slightly better predictive
capability than PLS-2 modelling, although the difference
between the PLS-1 and PLS-2 models becomes smaller if the
number of latent variables in the PLS-2 model is increased
up to 23. If compared with GA-MLR counterparts, the PLS-
1 models for 1tR and 2tR exhibit a noticeably better
descriptive and predictive performance, which is not unex-
pected as PLS regression incorporates all the chemical
information encoded by the 237 molecular descriptors, while
in MLR models retention times are related to a small set of
selected descriptors.

Comparison of various QSRR approaches

Figure 2 displays the sequential steps followed in the
generation and validation of each model, while Table 4

summarises both descriptive and predictive performance
of the various approaches. These results reveal that 1tR is
always better modelled than 2tR regardless of the kind of
regression method. It must be remarked that although a
relatively small number of PCBs have been used in
calibration (about 1/3 of all congeners), prediction of 1tR
is very good and comparable or better than that of
retention times of PCBs in one-dimensional GC under
less severe cross-validation conditions [24–29]. Generally,
all the 209 congeners are used to generate the model and
predictive performance is evaluated by leave-one-out
cross-validation [24–27] or by testing the model on a
number of data samples extracted from the calibration set,
after these have been already used in variable selection
and model building [28, 29]. In this work, the various
models are tested on really unknown data samples, as the
139 PCBs of the prediction set have not been involved in
any previous model generation stage. Ren et al. [30], who
analysed the same data set investigated in the present
work, even though they did not model 2tR, used 155 PCBs
to calibrate a four-dimensional MLR model for 1tR
successively tested on the remaining 37 PCBs giving
resolved peaks. These authors obtained a model for 1tR
with a noticeably worse descriptive and predictive perfor-
mance (R2=0.976, Q2=0.975) than those generated in the
present work, for which R2 and Q2 values are greater than
0.998 and 0.995, respectively. Better predictive perfor-
mance of our models is also witnessed by the lower
average absolute error, ranging between 0.7% and 1.3%
(Table 4), than that (about 3%) obtained by Ren and co-
workers. On chromatographic level such improvement
seems considerable: first of all, model generation

Table 4 Summary of descriptive and predictive performance of the
various regression methods used in QSRR modelling of PCBs:
coefficient of determination in calibration, validation and prediction

(R2, Qval
2, Qtest

2) and related standard errors (SEC, SEPval, SEPtest);
average absolute relative errors in calibration (aae(%)cal) and
prediction (aae(%)test)

Regression
method

Model descriptors Modelled
response

R2 SEC aae(%)cal Qval
2 SEPval Qtest

2 SEPtest aae(%)test

MLR RDF055m, BEHv6, PW3,
WA

1tR 0.9979 76 1.21 0.9975a 83a 0.9954 80 1.23

Mor14m, JGI2, EEig15x,
EEig10x, EEig09x

2tR 0.9815 0.08 2.29 0.9776a 0.09a 0.9402 0.10 2.87

ANN BEHv6, PW3, WA, JGI2,
EEig09x

1tR 0.9985 63 1.00 0.9983b 68b 0.9945 88 1.25
2tR 0.9920 0.06 1.65 0.9807b 0.08b 0.9649 0.08 2.11

PLS-1 237 descriptors, 15 latent
variables

1tR 0.9999 16 0.26 0.9985a 66a 0.9987 43 0.68

237 descriptors, 15 latent
variables

2tR 0.9993 0.02 0.44 0.9819a 0.08a 0.9793 0.06 1.59

PLS-2 237 descriptors, 15 latent
variables

1tR 0.9995 36 0.57 0.9978a 77a 0.9979 55 0.82
2tR 0.9986 0.02 0.62 0.9812a 0.08a 0.9778 0.06 1.64

a Leave-one-out cross-validation
b Internal validation set

Retention modelling of polychlorinated biphenyls 909



requires collection of a relatively small number of
retention data. Moreover, the low prediction error can
prevent incorrect peak assignment of almost co-eluting
PCBs.

Modelling of 2tR provided by the various approaches is
not as good as that of 1tR, and the results seem to be more
dependent on the regression method. In this connection, it
must be noted that residuals are seen to be always quite
homogenously distributed around zero, which suggests the
absence of systematic errors, but the variability range of
deviations was seen to be influenced by the kind of
regression method, as witnessed by the aae(%) values
reported in Table 4. In other terms, the kind of regression
method apparently influences the model precision. As

expected, we found that precision increases if a greater
number of calibration data are employed, or decreases if
size of calibration set is diminished, but we always
obtained a quite uniform residual distribution and did not
detect outlier points. It should be also noted that even a
moderate change in the size of calibration data set can
modify the pool of variables selected by GA-MLR and
relative importance of original descriptors within PLS
latent variables, but the alternative best models generated
with a given regression method, if built using the same
calibration set, were seen to exhibit substantially compa-
rable performances. Based on the whole of statistical
parameters collected in Table 4, PLS-1 is the statistical
method providing both the best descriptive and predictive

PLS-2PLS-1

CALIBRATION 
SET 

PREDICTION 
SET 

generation and optimisation of molecular geometries, 
computation of molecular descriptors(1664), 

removal of highly correlated and constant descriptors (237 left) 

209 
PCBs

70 
PCBs 139 

PCBs 

calibration/prediction data partition 

variable 
selection by 

GA 

model 
optimisation by 
leave-one-out 

cross-validation 

separate 
modelling of 

1tR and  2tR 

MODEL 
VALIDATION 

partition of calibration data in a 
training set (50 PCBs) and a 

validation set (20 PCBs) 

optimisation of the 
ANN model based 
on combined MLR 

descriptors  

elimination of 
redundant descriptors 

optimisation of the 
reduced network 

simultaneous 
modelling of 
1tR and 2tR 

selection of latent 
variables by 

cross-validation 

MLR ANN 

selection of latent 
variables by cross-

validation

separate 
modelling of 

1tR and  2tR 

MODEL CALIBRATION 

simultaneous 
modelling of 
1tR and 2tR 

Fig. 2 Sequential steps in the
generation and validation of the
various retention models
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performance and, for this reason, will be discussed in
more detail. Figures 3 and 4 display the agreement
between experimental 1tR and 2tR values, respectively,
and the corresponding values computed or predicted by
PLS-1. Trends of calibration and prediction error of 1tR
and 2tR are shown in Figs. 5 and 6, respectively.
Calibration residuals for both 1tR and 2tR are within
±1%. It can be observed that prediction residuals for 1tR

are within ±1.5% with the exception of about dozen cases,
but the maximum absolute error does not exceed 3.7%.
Prediction errors for 2tR are within ±7%, but absolute
relative error of most of the PCBs (excepting less than
twenty cases) is lower than 3%. Figure 7 displays a
comparison between the computed GC×GC chromatogram
of the 70 PCBs congeners of the calibration set and the
experimental one. As a consequence of excellent perfor-
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Fig. 6 Plot of relative (%) calibration and prediction residuals for 2tR
given by the PLS-1 model
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Fig. 4 Agreement between experimental 2tR values (in seconds) and
those computed or predicted by means of PLS-1 modelling
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Fig. 5 Plot of relative (%) calibration and prediction residuals for 1tR
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Fig. 3 Agreement between experimental 1tR values (in seconds) and
those computed or predicted by means of PLS-1 modelling
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mance of PLS-1 in calibration, computed coordinates of
PCBs in the two-dimensional chromatogram are almost
superimposed to the corresponding experimental ones.
Figure 8 shows the agreement between the experimental
chromatogram of the 139 PCBs belonging to the test set
and the predicted one. Even if simulation of the two-

dimensional chromatogram in prediction, as expected, is
not as good as in calibration, the result is promising
anyway. Differences between predicted and expected
coordinates of PCBs in the two-dimensional chromato-
gram are mainly located along the second dimension, as a
consequence of greater error on 2tR. As the chromatogram
consists of a large number of peaks and many PCBs
almost co-elute, the observed prediction error does not
allow unequivocal assignment of chromatographic peak to
PCB structure, excepting those analytes giving isolated
peaks, but the overall qualitative feature of the experi-
mental GC×GC chromatogram is nicely reproduced by the
PLS-1 model. It must be remarked that, according to QSRR
approach, the proposed methods evaluate only the effect of
solute structure on the peak coordinates of PCBs within the
GC×GC chromatogram, but are incapable of predicting
changes in the retention times due to changes of separation
conditions (column and/or temperature programme varia-
tions) in one or both dimension. However, experimental
effort required to optimise GC×GC separation by exploring
dependence of chromatogram resolution from the separation
conditions may be highly reduced, as the proposed method
allows accurate simulation of the full two-dimensional
chromatogram of PCBs using retention data of about 1/3
congeners.

Conclusions

In this paper, we evidence that the experimental GC×GC
chromatogram of PCBs can be accurately predicted using a
QSRRmodel calibrated with retention data of about 1/3 of the
congeners collected under the same separation conditions.
The effect of structure on retention time in both dimensions
can be successfully encoded by theoretical molecular descrip-
tors quickly available by means of various computational
methods. The regression methods that have been compared in
this investigation (MLR, PLS-1, PLS-2, and ANN) exhibit
quite similar performances and retention in the second
dimension is always slightly worse modelled as compared
with that in the first dimension. Probably, the effect of
molecular structure on the retention time in the second GC
column is only partially established as a consequence of very
rapid analysis and great compression of retention times. Based
on predictive performance, PLS-1 seems to slightly prevail on
the other regression methods. PLS-1 modelling, apart from
providing lower prediction residuals than the other investi-
gated regression methods, can work on the full matrix of
theoretical descriptors without the need of preliminary
variable selection. ANN coupled to a suitable variable
selection method and PLS-2, although in this specific case
exhibit a little worse performance than PLS-1, are promising
tools able to provide the two-dimensional chromatogram in a
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Fig. 8 Agreement between experimental two-dimensional GC×GC
chromatogram referring to the 139 PCBs of the prediction set and the
predicted chromatogram by PLS-1
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chromatogram referring to the 70 PCBs of the calibration set and the
calculated chromatogram by PLS-1
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single calibration procedure and may be advantageous in the
circumstance that the interfaced columns of the GC×GC
system are less dissimilar than those investigated in this work.
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