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Abstract Proton nuclear magnetic resonance (1H-NMR)-
based metabolomics enables the high-resolution and high-
throughput assessment of a broad spectrum of metabolites
in biofluids. Despite the straightforward character of the
experimental methodology, the analysis of spectral profiles
is rather complex, particularly due to the requirement of
numerous data preprocessing steps. Here, we evaluate how
several of the most common preprocessing procedures
affect the subsequent univariate analyses of blood serum
spectra, with a particular focus on how the standard
methods perform compared to more advanced examples.
Carr–Purcell–Meiboom–Gill 1D 1H spectra were obtained

for 240 serum samples from healthy subjects of the
Asklepios study. We studied the impact of different
preprocessing steps—integral (standard method) and prob-
abilistic quotient normalization; no, equidistant (standard),
and adaptive-intelligent binning; mean (standard) and
maximum bin intensity data summation—on the resonance
intensities of three different types of metabolites: triglycer-
ides, glucose, and creatinine. The effects were evaluated by
correlating the differently preprocessed NMR data with the
independently measured metabolite concentrations. The
analyses revealed that the standard methods performed
inferiorly and that a combination of probabilistic quotient
normalization after adaptive-intelligent binning and maxi-
mum intensity variable definition yielded the best overall
results (triglycerides, R=0.98; glucose, R=0.76; creatinine,
R=0.70). Therefore, at least in the case of serum metab-
olomics, these or equivalent methods should be preferred
above the standard preprocessing methods, particularly for
univariate analyses. Additional optimization of the normal-
ization procedure might further improve the analyses.
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Introduction

The high-throughput characterization of the biochemical
processes underlying specific phenotypes or diseases is
generally termed metabolic profiling or metabolomics. A
typical methodology in metabolomics is the application of
1H-nuclear magnetic resonance (NMR) on biological fluids,
such as blood serum or urine, yielding high-resolution
spectral profiles, “fingerprints”, of a whole range of
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metabolites [1]. Typical examples illustrating the success of
this methodology can be found in the fields of toxicology
[2], diet [3], and cardiovascular disease [4]. While other
methods, such as the different mass spectrometry technol-
ogies, often have the particular advantage of a larger
sensitivity, the major benefits of NMR are the non-
destructive character of the measurements and the relative
robustness of the results, allowing quantification of the
different metabolites [5].

However, the inherent nature of the technology and
samples results in the obligatory introduction of spectral
data preprocessing methods after acquisition. In the first
step, overdominating peaks such as the residual water peak
(even after presaturation) and urea in urine spectra are
removed, followed by normalization, data reduction, and
variable definition of the remainder of the spectra and, if
required, data scaling of the resulting variables. Currently,
several freely available software packages performing most
or all of these steps are freely available, e.g., HiRes [6],
MetaboAnalyst [7], Automics [8], and the R-package
Metabonomic [9] in addition to commercially available
softwares.

The necessity of the different preprocessing methods has
already been fully discussed by others, e.g., in [10] and
[11]. It typically comprises some form of data normaliza-
tion, often followed by binning, variable definition, and
data scaling. The preprocessing methods evaluated in this
manuscript are schematically illustrated in Fig. 1. Data

normalization is applied to reduce variation in the overall
concentration/intensities of the analyzed biofluids, both due
to natural variation (biological dilution effects) as to
experimental factors (e.g., biofluid dilution in buffer, gain
fluctuations NMR equipment). The standard method,
integral normalization, normalizes the individual intensities
of a specific spectrum by dividing them by the summed
intensity of that spectrum. Integral normalization is also
referred to as constant or total sum normalization. There are
alternative methods as well, such as probabilistic quotient
(PQ) normalization [12]. This algorithm usually starts with
the spectra after integral normalization and uses the latter to
generate a reference spectrum, typically a median spectrum.
For each of the individual spectra, a series of quotients is
generated by the element-wise division of the spectrum by
the reference spectrum. Regions containing no or possibly
interfering signals are ignored if possible, and the median
of the remaining quotients is subsequently used as
correction factor. Alternatively, the algorithm can be
applied on already binned spectra.

Spectral binning or bucketing tries to improve and
facilitate the subsequent statistical data analysis by reducing
the number of variables. For standard binning, this includes
the division of the spectra into equally sized (typically
0.04 ppm) bins. There exist more advanced binning
algorithms as well, e.g., adaptive-intelligent (AI) binning
[13] and Gaussian binning [14], which, in general, try to
focus on a better peak definition through the identification

Fig. 1 Schematic overview.
Once unwanted spectral regions
are removed, there is usually a
global difference in resonance
intensities between the spectra
(a). Data normalization aims at
reducing these differences (b). If
complete spectra are not to be
used, they are divided into
subsets by binning (c). For each
of these bins (delineated by the
dotted lines), a new variable is
defined (d) and used in the
subsequent analysis.
Adaptive-intelligent binning was
applied and, for each bin, a new
variable was defined by taking
the maximum intensity
(horizontal lines in d) for each
spectrum. Remark: Probabilistic
quotient normalization can also
be applied on the newly defined
variables (not shown)
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of conserved minima among the spectra and the application
of these minima as bin edges. After the division of the
spectra into several bins, the different original spectral
intensities in each bin have to be transformed into a single
new variable. For the remainder of this manuscript, this will
be referred to as “variable definition.” The most common
procedures for this purpose are the use of the sum/average
(standard) or maximum of the individual spectral intensities
within each bin as new variable.

An alternative to binning is the application of algo-
rithms, sometimes library-based, capable of peak identifi-
cation (“peak picking”)—often in combination with peak
alignment—and listing, e.g., PARS [15], targeted profiling
[16], Hough transform-based alignment [17, 18], and
recursive segment-wise peak alignment [19]. Also here, in
most cases, both maximal and averaged/summed intensities
can be used for the subsequent analysis.

Finally, depending on the specific nature of the
subsequent analytical methodologies, data scaling of the
individual variables can be required, e.g., by performing
unit variance or Pareto scaling. Since the performance of
the specific data scaling procedures largely depends on
the biological relevance of the individual variables in the
context of the experiment and cannot be estimated by
our design (cf. infra), this report does not describe its
effect.

Despite the fact that more innovative methodologies are
available, the standard preprocessing methods are still
widely used. The aim of this article is therefore to evaluate
the effects of these standard methods in blood-serum-based
metabolomics experiments and to compare them with the
effects of a selected set of more advanced methods. A
similar evaluation has already been performed for urine
spectra [11], but it has to be noted that blood serum (and
plasma) strongly differs from urine due to a higher
viscosity, lipid and protein content, and a more prominent
peak overlap, which all complicate the analysis of serum
spectra. On the other hand, urine has the particular
disadvantage of being more prone to peak shifts induced
by matrix-dependent differences such as pH, salt content,
temperature, etc. [20].

Here, the different methods will be evaluated by
analyzing their effects on the correlation of the resulting
datasets with independently measured variables. Carr–
Purcell–Meiboom–Gill (CPMG) spin echo pulse sequence
experiments were used to obtain NMR spectra for 240
blood serum samples from apparently healthy subjects of
the Asklepios study, a longitudinal population study
focusing on aging, cardiovascular hemodynamics, and
inflammation and their interplay in cardiovascular disease
development [21]. The data were preprocessed with
different data normalization (either integral/constant sum
or PQ normalization), binning (no, equidistant, or AI

binning), and variable definition (sum or max) procedures.
Since PQ normalization can be applied prebinning and
post-binning, both options were independently evaluated.

Subsequently, these differently preprocessed datasets
were correlated with the triglyceride, glucose, and creati-
nine concentrations measured by standard analytical tech-
niques. The rationale is that triglyceride, glucose, and
creatinine can be considered as prototypes of different types
of metabolites, exhibiting chemical shifts ranging from
roughly 0.5 to 4 ppm, the most peak-dense region of serum
spectra. In addition, the three metabolites include peaks of
different intensities: triglycerides are characterized by
different resonance intensities, including large peaks;
glucose is generally represented by medium-intensity
peaks, while for creatinine only relatively small peaks can
be found. Furthermore, these metabolites can also easily be
quantified by standard photometric laboratory procedures,
providing independent measurements that compose the
adequate testing ground to evaluate the performance of
the different preprocessing methods with respect to subse-
quent univariate analyses.

Materials and methods

Samples and independent metabolite concentration
measurements

For a complete overview of the subjects and the Asklepios
study goals and methods, we refer to [21]. The Asklepios
study complies with the Declaration of Helsinki. The
ethical committee of the Ghent University Hospital ap-
proved the study protocol, and a written informed consent
was obtained from each participant prior to enrollment into
the study.

Serum samples from 240 male Asklepios study partic-
ipants, aged 35–55 years old, were obtained from venous
blood, which was sampled in Venosafe serum tubes
(Terumo, Haasrode, Belgium), cooled at 4 °C, and
centrifuged. Samples were transferred to Nunc CryoTube
vials (Nunc A/S, Roskilde, Denmark) and stored long-term
at −80 °C. Serum triglyceride concentrations were assayed
by the esterase PAP kinetic colorimetric reaction (without
glycerol correction). For serum glucose quantification, the
standard hexokinase enzymatic method was used. Serum
creatinine concentrations were measured by a rate-
blanked kinetic Jaffé method. Quantification of the three
metabolites was performed using commercial reagents on
a Modular P automated analyzer (Roche Diagnostics,
Mannheim, Germany). Median (interquartile range) con-
centrations for triglycerides, glucose, and creatinine were,
respectively, 108.5 (85.4–149.8), 94 (88–99), and 0.94
(0.87–1.04) mg/dl.
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NMR measurements

Samples were defrosted, and 250 μl of serum was diluted in
550 μl aliquots (10% D2O, 0.9% NaCl w/v). All measure-
ments were performed at 30 °C throughout, on a Bruker
Avance II spectrometer, operating at 1H frequency of
700.13 MHz, equipped with a 5 mm TXI-Z ATMA probe
and a BACS-60 sample changer, under TopSpin 2.0. Water
signal suppression was obtained by presaturation (2.22 s
relaxation delay, 50 Hz B1 field strength). Each individual
CPMG spin echo was repeated 20 times and resulted in a
total delay of 20 ms to allow for T2 relaxation editing
(based on [22]). Each spectrum was constructed by
accumulating 64 scans (0.78 s acquisition time each) of
16,384 complex time domain points, resulting in a spectral
width of 30 ppm. Uniform handling of all samples was
maximized by automated tuning and matching as well as
gradient shimming using the Topshim routine for each
serum sample. The “baseopt” routine in the TopSpin 2.0
software was used during acquisition to obtain flatter
baselines. Before Fourier transformation, zero filling was
applied to the 131,072 real-time domain points, followed
by apodization with a squared cosine bell window function.
All spectra were referenced to the chemical shift of lactate
(methyl signal, left peak of the doublet, 1.335 ppm).

Data preprocessing and analysis

Data normalization and binning procedures were imple-
mented in Matlab, version 7.2 (The MathWorks, Natick,
MA) as in house-written routines. Only the region 12 to
−3 ppm was used for further analysis, and the water peak
region was excluded (5.12 to 4.48 ppm). For PQ normal-
ization, the peak-rich region between 4.4 and 0.5 ppm was
used as normalization region. Equidistant binning was
applied on the region of 10 to −0.5 using 0.04 ppm bins.
For AI binning, the regions of 12 to 10 and −1 to −3 ppm
were considered as noise regions, and the quality parameter
was equal to 0.3. Noise bins were removed before further
analysis. More information on the AI binning procedure is
available in [13]. Standard statistical procedures were
performed in R 2.10.0 (correlation analyses) and PASW
statistics 18 (univariate general linear model). Statistical
tests were two-sided, and the level of significance was 0.05.

Results

Starting from the raw CPMG data, there were 14 combina-
tions of different preprocessing methods possible: three types
of normalization (integral, PQ prebinning, PQ post-binning) ×
two types of binning (equidistant, AI binning) × two types of
variable definition (average/sum, max) + two types of

normalization (integral, PQ) for the complete spectra
(no binning and therefore no variable definition either).
This yielded 14 differently preprocessed datasets, which
we will simply refer to as “preprocessed datasets”
(Table 1). The resulting number of variables in these
preprocessed datasets is generally comparable for all
methods (ranging from 259 to 272), except when complete
(i.e., not binned) spectra were used (number of variables
equals number of data points = 62,718).

For each of the preprocessed datasets, we aimed to
assess whether the values of the individual variables could
be used as a proxy for the corresponding metabolite
concentrations, thereby identifying the best combination
of preprocessing methods. Hence, we independently mea-
sured the concentrations of three metabolites (triglycerides,
glucose, and creatinine, Table 1) and assessed how well
they correlated with the different variables of the prepro-
cessed datasets. Therefore, for each of these metabolites
and each preprocessed dataset, Pearson correlations were
calculated between the independently measured concen-
trations of the selected metabolite and each variable of the
preprocessed dataset. As each of these metabolites displays
multiple resonances at distinct frequencies in a single
spectrum, we subsequently selected the maximum correla-
tion for that dataset for further analysis. This yielded three
maximum Pearson correlation values per preprocessed
dataset, one for each independently measured metabolite.
The different correlation values (R) have been summarized
in Table 1 and were ranked in order to clarify the
preprocessing-specific effects. Visual inspection of Table 1
already reveals that the same methods have rather similar
effects for each of the metabolites. This will be further
elaborated throughout the results section, but first, it should
be validated whether the corresponding peaks are indeed
the metabolites under study.

Metabolite validation

The resonances corresponding with the maximal correla-
tions were compared with published data [23], thereby
evaluating whether the matching metabolites were indeed
triglycerides, glucose, and creatinine. Except for several
creatinine correlations, explicitly indicated in Table 1, we
could indeed confirm that, with a very high probability, the
resonances belonged to the three metabolites under study. The
resonances corresponding to the correlation maxima are
depicted in Fig. 2a (triglycerides), b (glucose and creatinine).

Metabolite- and preprocessing-specific effects

The different methods and metabolites were statistically
compared using a full-factorial analysis of variance
(ANOVA; constructed as a univariate general linear model
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in PASW), with removal of non-significant terms (P>0.05),
yielding the model displayed in Table 2. Due to the large
differences in R value variance between (and within) the
different metabolites (Table 1), the complete set of R values
was transformed into z scores before inclusion as dependent
variable. Since the effects of binning and variable definition
cannot be studied using complete spectra (not binned), the
latter were not included in the model. In the remainder of
the results section, the different significant effects are
explored, and more specific interaction terms are provided
where necessary.

Metabolite-specific effects

The largest effect is the difference between the different
metabolites (P<0.001, Table 2). The analysis consistently
yields very good correlations for triglycerides (R=0.95 to
0.99), while the results for creatinine have a rather large
range (R=0.19 to R=0.70), from acceptable to completely
unsatisfactory, particularly for those correlation maxima not
corresponding with creatinine (Table 1). Generally, the
correlations for glucose (R=0.46 to R=0.76) are better than
the creatinine correlations, but inferior compared to trigly-
cerides. Figure 2 depicts the corresponding peak heights,
which are rather similar for triglycerides and glucose, but
smaller for creatinine. Resonance intensity therefore only
partially explains the differences in maximum correlations.

Effect of normalization

The ranking of the preprocessing methods according to
their performance (maximal R values) in Table 1 illus-
trates the highly significant (Table 2, P<0.001) difference
between integral and PQ normalization, prebinning and
post-binning. The standard method, integral normaliza-
tion, scores inferior for each of the metabolites: both for
triglycerides and glucose, integral normalization yields
worse results irrespective of the other preprocessing
methods (Table 1, triglyceride and glucose). For the
smaller creatinine peaks, its negative effect is surpassed
by that of variable definition; within both variable
definition groups (max or sum), however, integral normal-
ization again scores consistently worse than PQ normali-
zation (Table 1, creatinine).

The effect of normalization also appears to depend on
the type of binning (global interaction term, P=0.031,
Table 2). Inspection of the specific interaction terms reveals
that this can be attributed to a better effect of PQ
normalization post-binning compared to prebinning, but
only for AI-binned spectra (specific interaction term AI
binning × PQ normalization, post-binning vs. prebinning:
P=0.024). This can also be seen in Table 1 by a pairwise
comparison of the R values for PQ normalization post-
binning and prebinning, with other preprocessing methods
equal. For example, one can look at AI-binned PQ-

Table 1 Ranked maximum correlations of triglyceride, glucose, and creatinine concentrations for different normalization, binning, and variable
definition procedures

Triglyceride Glucose Creatinine

Bins Norm. Var. R Bins Norm. Var. R Bins Norm. Var. R

AI PQ (post) Sum 0.988 AI PQ (post) Max 0.756 AI PQ (post) Max 0.696

No PQ NA 0.987 AI PQ (post) Sum 0.696 AI PQ (pre) Max 0.625

AI PQ (pre) Sum 0.987 AI PQ (pre) Sum 0.695 Eq PQ (pre) Max 0.619

Eq PQ (pre) Sum 0.985 Eq PQ (pre) Sum 0.684 No PQ NA 0.579

Eq PQ (post) Sum 0.985 Eq PQ (post) Sum 0.680 Eq PQ (post) Max 0.573

AI PQ (post) Max 0.981 No PQ NA 0.675 AI Integral Max 0.533

AI PQ (pre) Max 0.980 AI PQ (pre) Max 0.674 Eq Integral Max 0.525

Eq PQ (post) Max 0.980 Eq PQ (pre) Max 0.673 No Integral NA 0.516

Eq PQ (pre) Max 0.979 Eq PQ (post) Max 0.619 AI PQ (post) Sum 0.414

No Integral NA 0.970 No Integral NA 0.503 AI PQ (pre) Sum 0.345

Eq Integral Sum 0.970 AI Integral Sum 0.495 Eq PQ (pre) Sum 0.214a

AI Integral Max 0.966 AI Integral Max 0.490 Eq PQ (post) Sum 0.213a

AI Integral Sum 0.965 Eq Integral Sum 0.471 AI Integral Sum 0.194

Eq Integral Max 0.954 Eq Integral Max 0.464 Eq Integral Sum 0.186a

Norm. normalization method, Var. the variable definition method, R the Pearson correlation coefficient, Integral and PQ (pre/post) integral and
probabilistic quotient (prebinning or post-binning), Eq and AI equidistant and AI binning, NA not applicable (in not binned spectra, the variables
themselves are used)
aMaximum correlation values for a variable (5.74 ppm) most likely not corresponding with creatinine resonances (3.04 and 4.05 ppm)
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Fig. 2 Maximum correlations for triglycerides, glucose, and creati-
nine. Partial averaged spectrum indicating regions (horizontal bars,
length depends on binning method) of maximum correlations with
triglycerides (TX, a), glucose (GX, b), or creatinine (CX, b) for the
different preprocessing methods X, with X=1 (AI binning, integral
normalization, maximum intensities), 2 (AI binning, integral normal-
ization, summed intensities), 3 (PQ normalization post-AI-binning,
maximum intensities), 4 (PQ normalization post-AI-binning, summed
intensities), 5 (PQ normalization before AI binning, maximum
intensities), 6 (PQ normalization before AI binning, summed intensities),
7 (equidistant binning, integral normalization, maximum intensities),

8 (equidistant binning, integral normalization, summed intensities),
9 (PQ normalization post-equidistant-binning, maximum intensities),
10 (PQ normalization post-equidistant-binning, summed intensities),
11 (PQ normalization before equidistant binning, maximum intensities),
12 (PQ normalization before equidistant binning, summed intensities),
13 (integral normalization, no binning), or 14 (PQ normalization, no
binning). For creatinine maximum correlations C8, C10, and C12, the
matching spectral region (5.76 to 5.72 ppm) does not correspond
with a known creatinine chemical shift and was therefore not
depicted in this figure
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normalized spectra with maximum intensity variable defi-
nition for each metabolite (AI PQ max in Table 1): AI PQ
(post) max scores better than AI PQ (pre) max for
triglycerides (R=0.981 vs. R=0.980), glucose (R=0.756 vs.
R=0.674), and creatinine (R=0.696 vs. R=0.625). This is
also the case for spectra with summed intensity variable
definition in combination with AI binning, but not always for
equidistant-binned spectra.

Effects of binning

AI binning generally generates better results, since it
consistently yields better correlations for each condition
than its equidistant-binned counterpart (standard method;
P<0.001, Table 2). For example, when looking pairwise at
PQ-normalized spectra, post-binning, and with maximum
intensity variable definition (PQ (post) max in Table 1), AI
binning performs better than equidistant binning for
triglycerides (R=0.981 vs. R=0.980), glucose (R=0.756
vs. R=0.619), and creatinine (R=0.696 vs. R=0.573). The
same conclusion is valid for all other comparisons between
AI- and equidistant spectra, with only one exception
(triglycerides, integral normalization with summed in-
tensity variable definition). Furthermore, AI binning
even yields comparable or better results than not binned
spectra.

As demonstrated in Fig. 2, the spectral regions
corresponding with maximum correlations in Table 1 often
overlap for equidistant and AI-binned spectra, which
suggests that the most likely cause for the better perfor-
mance of AI binning is a better variable definition. This is
particularly clear for the creatinine correlations in Fig. 2b,
where only the singlet peaks identified by AI binning
actually correspond with the full creatinine peak. For not
binned spectra, only the (approximate) maximum of the
singlet is selected, while for the other methods the bins
include other metabolites as well.

Effect of variable definition

While the use of summed intensities for each bin (standard
method), as variable definition method, generally yields
better results (P=0.001, Table 2), the effect of variable
definition depends to an even larger extent on the
metabolite under study (interaction term metabolite ×
variable definition: P<0.001, Table 2). For example, when
looking at triglycerides, within either the PQ normalization
(post-binning and prebinning) or the integral normalization
group, summed intensity variable definition almost always
scores better than when maximum intensities were used
(Table 1). On the other hand, in the case of creatinine, the
use of summed intensities always yields inferior results
(specific interaction term for creatinine: P<0.001, Table 2).
The results for glucose were less straightforward.

As the difference is very clear and large for the small
creatinine peaks (pairwise R value differences >0.2), but
only minor for the larger triglyceride peaks (pairwise R
value differences <0.01), the use of maximum intensities
appears to be the most appropriate general solution
(Table 1). The latter conclusion contrasts the significant
result from the ANOVA (P=0.001, Table 2); however, one
should take into account that this model was based on z
values and thereby does not integrate the size of the
deleterious effect when summed intensities for smaller
peaks are used.

A last significant interaction can be found between the
types of normalization and variable definition (P=0.020,
Table 2), which may be attributed to the positive effect of
using maximum intensity (instead of summed intensity)
variable definition after integral normalization (specific
interaction term, P=0.008). It is unclear how this interac-
tion term can be explained, but, as the positive effect is
small, particularly when compared with the large, negative
effect of integral normalization, its practical implications
are irrelevant.

A comment on data normalization

The effect of data normalization was the most important
modifiable effect in Table 1. Therefore, we compared the
global impact of integral and PQ normalization on the
preprocessed datasets. In a first step, as explained before,
all correlations (R) between the independently measured
triglyceride concentration and the resonance intensities for
all chemical shifts in a single preprocessed dataset were
calculated. But instead of identifying the maximal R value,
here, the R2 values were calculated for all variables of the
specific dataset and summarized in frequency polygons
(equivalent to histograms, but with only the line connecting
the midpoints of the tops of the virtual histogram bars
depicted). This was performed for both AI-binned and

Table 2 ANOVA estimating effect of preprocessing methods on Z-
transformed R values

Term F value P value

Intercept 0.000 1.000

Metabolite 475.951 <0.001

Normalization 81.363 <0.001

Binning 24.058 <0.001

Variable definition 13.268 0.001

Normalization × binning interaction 4.047 0.031

Variable definition × metabolite interaction 94.496 <0.001

Variable definition × normalization interaction 4.677 0.020

The adjusted R2 value for the full model was 0.975
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equidistant-binned spectra, in each case with both maximum-
and summed intensity variable definition (available as
Electronic Supplementary Figure S1, panels a and b).

Both in Supplementary Figure 1a and b and for both
variable definition types, it is clear that standard, integral
normalization yields a larger amount of substantially high
correlations compared to PQ normalization, except for the
highest correlations (corresponding to the maximal R values
in Table 1). For 240 samples, a R2-value>0.1 already
corresponds with a P value of <10−6, Supplementary
Figure 1 therefore demonstrates that after integral normal-
ization of a specific dataset, almost all of its variables are
highly correlated with the triglyceride concentration. Since
this is biologically more than doubtful, it most likely
implies that a large amount of the correlations depicted in
Supplementary Figure 1 are artificial, and might be
explained by the fact that integral normalization is largely
affected by the quantitatively very prominent lipid fraction
in blood serum. This introduction of artificial dependencies
most likely contaminates the original variables.

Based on Electronic Supplementary Figure S1, it is most
likely that also for PQ normalization, an important amount
of the correlations is artificially introduced by the normal-
ization process itself, although to a far lesser extent than for
integral normalization. This effect was also weakly present
for correlations with glucose and virtually absent for
creatinine. PQ normalization prebinning yielded results
comparable to post-binning (data not shown).

Discussion

NMR spectroscopy is increasingly applied for the simulta-
neous measurement of a broad spectrum of metabolites in
biofluids. The data presented in this manuscript support the
concept that 1H-NMR-based metabolomics, with appropri-
ate preprocessing, can be an excellent tool for determining
the blood serum phenotype caused by or associated with
disease. Indeed, disturbances in the metabolites studied
(triglycerides, glucose, creatinine) are for example closely
interrelated in the metabolic syndrome, a prediabetic
condition predisposing to cardiovascular and renal disease
[24].

The study of more metabolites, with independent
measurements, would have further increased the ability to
make generally applicable conclusions. However, the
different chemical properties of the three metabolites under
study, their variation in resonance intensities and frequen-
cies, and our rather straightforward results lead us to
suggest that these findings already give a clear indication
of the effects of the different preprocessing methods. We
demonstrated that, for univariate metabolomics data analy-
sis, one should avoid the use of the standard preprocessing

methods and prefer applying an intelligent data reduction
algorithm, PQ normalization (post-binning), and the use of
maximal intensities for each bin. When combined with
other appropriate preprocessing procedures, binning
improves results compared to the use of complete (i.e.,
not binned) spectra. Although some of our conclusions can
most likely be generalized to other biofluids (e.g., intro-
duction of artificial correlations), such as urine, an
important limitation of this research is that our conclusions
are only valid for univariate data analysis. For this
manuscript, we only evaluated correlations, but we are
certain that an optimal correlation, i.e., with a minimal
deviation from the actual values, will also yield optimal
results for other commonly used univariate methods, such
as, for example, t tests.

Our design did not readily allow us to assess the impact
of different preprocessing procedures on commonly used
multivariate methods, such as principal component analysis
(PCA) and partial least squares (PLS) analysis. This was,
among others, caused by the large amount of variance
orthogonal to the metabolites studied, which has a major
effect on these methods. For example, it was impossible to
obtain any predictive value when applying PLS regression
to estimate creatinine levels, for any of the preprocessing
methods evaluated, most likely because the relative
variance of the corresponding peaks was too small (data
not shown). On the other hand, while experiments
involving spiked samples, e.g., [11], represent a departure
from normal experimental conditions, they have the major
benefit of eliminating these other sources of variance.

Another important reason why PCA- and PLS-based
analyses are rather inappropriate in this setting is that the
normalization procedure introduced artificial correlations
with particularly the larger triglyceride and glucose peaks,
making it unclear whether good performance of PLS or
PCA might be attributed to proper data preprocessing,
whether it is the consequence of the introduction of these
artificial correlations.

Zhang and coworkers evaluated different preprocessing
methods on urine serum spectra [11]. They concluded that
an intelligent data reduction method (they used peak
picking, in combination with maximal intensities) should
be preferred and that, in the case of univariate analyses,
integral normalization yields the best results—although
they did not evaluate PQ normalization. Good performance
of integral normalization in the case of urine spectra has
been reported before [25], but it is clear that the major
drawback of this method is the fact that metabolites with
(several) large peaks will have a detrimental effect on the
normalization factor, both in urine [10, 26] as in the lipid
and protein-rich serum, while other methods, such as PQ
normalization and histogram matching normalization [26],
reduce this effect. However, our data demonstrate that
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additional optimization of the normalization procedures
might be required to fully eliminate the introduction of
artifacts in the variance–covariance structure of the result-
ing dataset. The application of endogenous standards, with
independent measurements, might provide a good alterna-
tive, under the strict conditions that the corresponding
peaks are non-overlapping with other metabolites and, more
important, that the optimal normalization factor is reso-
nance intensity independent.

Our results suggest that PQ normalization particularly
scores better when applied post-AI-binning (or after the
application of equivalent, intelligent data reduction proce-
dures). We propose that this can be attributed to the fact that
larger peaks are divided in several variables by equidistant
binning, which will—again—introduce a bias in the
calculation of the normalization factor.

Although the effect was smaller than for other prepro-
cessing methods, AI binning scored consistently better than
the standard method, equidistant binning (matched on other
procedures), and scored comparable to or better than lack of
binning. The most obvious reason for this is a better
variable definition, also in combination with a maximum
intensity variable definition. Maxima of the same metabo-
lite tend to fall in the same bin (peak shift effect is reduced,
also compared to not binned spectra), and higher intensities
of other peaks are generally excluded.

This is important as the use of maxima yields generally
good results and scores clearly better for smaller peaks. The
latter might be explained by the fact that any remaining
baseline or introduced artifact is proportionately small for
larger peaks but contributes for a substantial part to the
summed intensities of small peaks. The use of maximal
intensities will counteract this effect for small peaks but
yields marginally worse results for larger peaks, probably
because of the fact that summed intensities somewhat
reduce the random noise on the individual intensities. These
observations lead us to suggest that, when combined with
other appropriate preprocessing methods, variable defini-
tion by the use of maximum intensities should be generally
preferred.

Independent of the preprocessing methods evaluated
here, it should be noted that additional optimization of the
experimental procedures could also significantly improve
the presented results. Optimization studies of the NMR
experimental setup, such as [22], combined with indepen-
dent metabolite measurements, as performed in this study,
might yield optimal conditions which further enhance the
correlation between NMR metabolomics results and the
true metabolite concentrations For example, a longer
CPMG pulse train delay (than the 20 ms used here) might
yield better macromolecular suppression and a better
creatinine quantitation. However, this might also result in
an inferior triglyceride quantitation, again illustrating the

difficult tradeoff in the quest for an optimal “general”
methodology.

Concluding remarks

In summary, this manuscript illustrates the importance of an
appropriate choice of preprocessing procedures, since every
procedure has a clear effect on the eventual data quality. If
data preprocessing is to be followed by univariate data
analyses, at least in the case of serum metabolomics, the
standard preprocessing methods, i.e., integral data normal-
ization and equidistant (or no binning), should be avoided
and replaced by PQ normalization post-AI-binning or
equivalent methodologies. Although PQ normalization intro-
duced less artificial correlations than integral normalization,
additional optimization of the normalization procedure might
further improve results. If low-intensity metabolites also
belong to the scope of the experiment, the use of maximal
intensities yields the best overall results. It is unclear whether
these methods also yield the best results for multivariate
analyses; future experiments using other designs, e.g., with
spiked-in metabolites, might reveal the answer.
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