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Abstract Based on continuous methodical advances and
developments, solid-state NMR spectroscopy has become a
powerful tool for the investigation of various materials,
including polymers, glasses, zeolites, fullerenes, and many
others. During the past decade, solid-state NMR spectros-
copy also found increasing interest for the study of
biomolecules. For example, membrane proteins reconsti-
tuted into lipid environments such as bilayers or vesicles,
protein aggregates such as amyloid fibrils, as well as
carbohydrates can now be studied by solid-state NMR
spectroscopy. This review briefly introduces the principles
of solid-state NMR spectroscopy and highlights novel
methodical trends. Selected applications demonstrate the
possibilities of solid-state NMR spectroscopy as a valuable
bioanalytical tool.
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Introduction

Bioanalytics deals with the detection and characterization
of proteins, nucleic acids, carbohydrates, and lipids. Liquid-
state nuclear magnetic resonance (NMR) spectroscopy has
become one of the most successful techniques for inves-
tigations of the structure and dynamics of biomolecules in

solution [1, 2]. During the past decade, solid-state NMR
spectroscopy found an increasing number of biological
applications, for example, the study of membrane proteins
in lipid environments (see Fig. 1), protein aggregates such
as amyloid fibrils, as well as crystalline proteins or protein
precipitates [3–22]. Biomineralization phenomena can be
studied by solid-state NMR spectroscopy as well [23],
including investigations on integral cells [24].

In special cases, conventional one-dimensional NMR
spectroscopy allows the detection and characterization of
certain biomolecules. A recent example is shown in Fig. 2.
Unexpectedly, chitin-based scaffolds could be identified for
the first time in the skeleton of the marine demosponge
Ianthella basta by solid-state 13C NMR spectroscopy [25].
Similar scaffold structures were also observed and charac-
terized by solid-state NMR spectroscopy in diatom cell
walls [26]. The biopolymer chitin exhibits a rather simple
and well-known 13C NMR spectrum; hence, the identifica-
tion of the spectral fingerprint can be solely based on one-
dimensional NMR spectroscopy. In most cases, however,
multidimensional NMR techniques must be applied in
analogy to liquid-state NMR spectroscopy to resolve the
various signals and to extract structural information from
the spectra. The aim of this review is to provide a brief
introduction to the principles of solid-state NMR spectros-
copy and to highlight emerging trends which may further
enhance the bioanalytical potential of solid-state NMR
spectroscopy.

Solid-state NMR—a short introduction

The first successful NMR experiments on condensed matter
were performed in 1945 [27, 28]. The famous Pake doublet
in solids, i.e., the line shape resulting from the magnetic
dipole–dipole interaction within isolated spin pairs, was
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discovered in 1948 for the 1H NMR signal of water
molecules in hydrated crystals such as gypsum [29]. Apart
from the homonuclear and heteronuclear magnetic dipole–
dipole interactions between neighboring nuclei, the chem-
ical shift anisotropy and—for nuclei with I>1/2—the

electric quadrupole interaction are the dominating line-
broadening interactions in solids [30]. The measurement of
chemical shifts in solids, therefore, mandatorily requires the
application of line-narrowing techniques to suppress the
aforementioned line-broadening interactions as much as
possible. This can be accomplished by mechanical spinning
of the sample [31] around an axis tilted by the magic angle
ϑm=54.7° with respect to the external magnetic field, B0, a
technique which is denoted magic-angle spinning (MAS) or
magic-angle sample spinning. Another approach for the
suppression of homonuclear magnetic dipole–dipole inter-
actions (homonuclear decoupling) is based on the irradiation
of special pulse sequences [32, 33] such as the Waugh–
Huber–Haeberlen (WAHUHA) sequence. Combined with
MAS, combined rotation and multiple-pulse spectroscopy
(CRAMPS) experiments result in an excellent spectral
resolution for strongly coupled homonuclear spin systems
such as 1H and 19F even if the available sample spinning
rates are rather low (see Fig. 3) [33–35]. Especially in
multidimensional NMR experiments, frequency-switched
Lee–Goldburg (FSLG) or phase-modulated Lee–Goldburg
(PMLG) decoupling or decoupling using mind-boggling
optimization (DUMBO) is nowadays usually applied for
homonuclear decoupling [36–38]. These sequences are
designed such that the homonuclear magnetic dipole–dipole
interaction is averaged out as efficiently as possible. The
combination of MAS and multiple pulse sequences is
necessary if the spin systems exhibit strong homogeneous
interactions such as homonuclear magnetic dipole–dipole
interactions among multiple spins. The suppression of these
interactions would require extremely high sample spinning
rates even beyond 100 kHz, which are not yet available (see
later). However, the combination of MAS and the described
pulse sequences results in superior resolution, as is shown
in Fig. 3.

Solid-state NMR measurements of nuclei S with low
gyromagnetic ratio γS such as 13C, 15 N, and 29Si using
direct excitation are often extremely time-consuming (if not
impossible). Their intrinsically low sensitivity is caused by
the low spin polarization and sometimes low natural
abundance in combination with rather long longitudinal
relaxation times T1 determining the repetition time between
two subsequent scans (see later). Therefore, solid-state
NMR spectra of the aforementioned nuclei are commonly
acquired by cross-polarization (CP) experiments [39, 40].
The CP experiment is a typical polarization transfer
experiment. Nuclei I of high magnetogyric ratio γI such
as 1H and 19F typically serve as the source of magnetiza-
tion, which is transferred to neighboring nuclei S. The
physical basis of this polarization transfer is the hetero-
nuclear magnetic dipole–dipole interaction between I and S.
This experiment can result in a maximum signal enhance-
ment given by γI/γS. For a

13C{1H} CP experiment (S is

Fig. 1 Determination of water-accessible surfaces of membrane
proteins in a lipid environment by 1D water-edited solid-state NMR
spectroscopy. a 13C-detected 1D water-edited cross-polarization (CP)
experiments [15] performed on the chimeric ion channel KcsA-Kv1.3
at pH 7.5 with different longitudinal proton–proton mixing times as
indicated. b Surface representations of three different membrane
proteins studied by this experiment. From left to right, a monomeric
phospholamban mutant (AFA-PLN), sensory rhodopsin from Natro-
nomonas pharaonis (NpSRII), and the chimeric ion channel KcsA-
Kv1.3. Water-accessible residues are labeled in blue. (Reproduced
from Ader et al. [15] with permission from the American Chemical
Society)
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13C and I is 1H), this maximum enhancement factor
amounts to approximately 4. Since 1H nuclei often exhibit
a relatively short T1 compared with the S nuclei, the
effective signal-to-noise improvement factor within a given
measurement time is usually much larger than γI/γS (see
later). Ramped or adiabatic-passage CP experiments are
nowadays often preferred [41–43]. Heteronuclear 1H
decoupling sequences such as two-pulse phase-modulated
(TPPM) and small-phase incremental alternation (SPINAL)
decoupling [44, 45] are commonly applied during signal
acquisition to suppress the influence of the strongly coupled
1H nuclei upon the line width of the S signals (13C, 15 N,
29Si, 31P, etc.). Figure 4 demonstrates the application of the
described techniques for the measurement of highly
resolved solid-state 31P NMR spectra of crystalline O-
phospho-l-tyrosine. Note the shape of the 1H-decoupled 31P
NMR signal measured without MAS which is mainly
determined by the chemical shift anisotropy.

Fast MAS results in the removal of the influence of line-
broadening interactions from the spectra. Especially the
distance-dependent dipolar couplings are, however, a
valuable source of structural information. Reintroduction
of dipolar couplings allows the determination of internu-
clear distances. One frequently used technique is the
rotational echo double resonance (REDOR) experiment
[47] to selectively determine heteronuclear dipolar cou-
plings. Rotational resonance experiments [48] allow the
reintroduction of homonuclear dipolar couplings.

The application of multidimensional liquid-state NMR
techniques [49] to proteins and other biomolecules in
solution was a major breakthrough in biological NMR
spectroscopy [1]. Multidimensional NMR spectroscopic
techniques are also routinely used in solid-state NMR
spectroscopy. Figure 5 shows a 1H-31P heteronuclear
correlation (HETCOR) spectrum of the crystalline amino
acid O-phospho-l-serine without and with homonuclear

Fig. 2 An example for 1D
solid-state 13C NMR spectros-
copy in bioanalytics. Top: Un-
derwater photograph of a living
marine demosponge, Ianthella
basta. The diameter of the
sponge corresponds to about
1 m. Bottom: Photographs of I.
basta skeleton samples after
different isolation steps and
corresponding 13C {1H} CP
magic-angle-spinning (MAS)
NMR spectra. The spectrum of a
reference α-chitin sample is
shown for comparison. Dashed
vertical lines indicate the chem-
ical shifts of the signals in α-
chitin. (Reproduced from [25]
with permission from Elsevier)
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FSLG decoupling during the evolution time t1. The spectra
were measured under MAS at a sample spinning rate νr of
12 kHz. Ramped 1H-31P CP was used for polarization
transfer. Note the considerable improvement of resolution

in the indirect spectral dimension (1H spectrum) obtained
by the application of homonuclear FSLG decoupling during
the evolution time. The pulse scheme used for the FSLG
decoupled experiment is given at top of the figure. This
type of spectroscopy allows the detection of through-space
correlations, dipolar couplings between different nuclei
(here 1H and 31P). Through-bond correlations, i.e., J
couplings, can be detected by a solid-state NMR experi-
ment such as the incredible natural abundance double
quantum transfer experiment (INADEQUATE) [50–52]) or
total through-bond correlation spectroscopy (TOBSY) [53].
Furthermore, insensitive nuclei enhanced by polarization
transfer (INEPT) experiments—originally designed for
heteronuclear liquid-state NMR spectroscopy [2]—are also
feasible in solid-state NMR spectroscopy [54], especially
under efficient homonuclear 1H decoupling and at high
sample spinning rates for biological samples [55, 56].

In addition to the structural information described, solid-
state NMR spectroscopy also allows the determination of
dynamics such as intramolecular motions within the
biomolecules. One possibility is the analysis of relaxation
data, i.e., the study of the influence of thermal motions

Fig. 4 Demonstration of typical solid-state NMR techniques. Experi-
mental solid-state 31P NMR spectra of O-phospho-l-tyrosine measured
at B0=7.05 T (T=302 K). From top to bottom, static spectrum measured
using CP and heteronuclear two-pulse phase-modulated (TPPM)
decoupling, MAS NMR spectrum acquired without CP and hetero-
nuclear decoupling, MAS NMR spectrum measured without CP but
under heteronuclear TPPM decoupling, and MAS NMR spectrum
acquired with CP and heteronuclear TPPM decoupling (vr=5 kHz, 16
scans). Asterisks denote spinning sidebands. (Reproduced from [46]
with permission from Elsevier)

Fig. 3 Resolution in solid-state 1H NMR spectroscopy: MAS versus
combined rotation and multiple-pulse spectroscopy (CRAMPS). Note the
remarkable improvement in resolution observed in the CRAMPS
spectrum of crystalline glycine measured at only 4-kHz sample spinning
rate compared with fast MAS at 67 kHz. (The spectra were kindly
provided by U. Scheler, Leibniz Institute for Polymer Research Dresden)

Fig. 5 2D correlation spectroscopy. 1H-31P heteronuclear correlation
(HETCOR) spectrum of crystalline O-phospho-l-serine measured at
room temperature and a sample spinning rate of 12 kHz using small-
phase incremental alternation (SPINAL) 1H decoupling during signal
acquisition. Ramped CP with a mixing time of 2 ms was applied. The
spectrum was measured without (bottom left) and with (bottom right)
frequency-switched Lee–Goldburg (FSLG) decoupling during the
evolution time. Note the remarkable resolution improvement in the
1H dimension resulting from this homonuclear decoupling technique.
A structural model of O-phospho-l-serine as well as the pulse scheme
employed for the FSLG decoupled spectrum are shown at the top
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upon the longitudinal and transverse relaxation times T1
and T2, respectively. This could recently be applied to
investigate the mobility of chondroitin sulfate in articular
and artificial cartilage [57]. It should be noted that the
presence of thermal motions influences the shape and line
width of MAS NMR signals in a characteristic manner
depending on the correlation time, τC, of the motional
processes (see “Spectral resolution”). Elaborate techniques
have been developed for the study of proteins: For example,
mobile protein segments can be detected using the through-
bond correlation schemes introduced by Andronesi et al.
[5]. Conformational dynamics in proteins with correlation
times between milliseconds and seconds become detectable
in dipolar centerband-only detection of exchange (CODEX)
NMR experiments [58, 59] (see Fig. 6).

Sensitivity and spectral resolution are the crucial
parameters which determine and limit the applicability of
any spectroscopic technique. Often, the available amounts
of biological samples are rather limited—in particular if

isotope labeling is necessary. The detection of very small
amounts of sample is, therefore, particularly important for
bioanalytical applications. Furthermore, the complex bio-
molecules often exhibit numerous signals, resulting in
resolution problems. The following sections are, therefore,
devoted to the discussion of sensitivity and resolution
especially with respect to novel biological applications of
solid-state NMR spectroscopy.

Improvements in sensitivity

The signal-to-noise ratio obtained in an NMR experiment
depends on the macroscopic magnetization of the sample,
which is determined by the spin polarization P. The spin
polarization is given by

P ¼ 100%
Nþ1=2 � N�1=2

�
�

�
�

Nþ1=2 þ N�1=2
ð1Þ

for spin-1/2 nuclei. Here, N+1/2 and N-1/2 are the popula-
tions of the two Zeeman energy levels corresponding to
magnetic spin quantum numbers +1/2 and -1/2, respective-
ly. These populations are given by the Boltzmann distribu-
tion in thermal equilibrium. For spin-1/2 nuclei, one can
write within the high-temperature approximation, which is
valid at room temperature and the currently available
magnetic fields,

P ¼ 100%
h� gIB0

2kT
: ð2Þ

ħ is the Planck constant divided by 2π, k denotes the
Boltzmann constant, and T is the absolute temperature.
Note that the signal-to-noise ratio also depends on
various other parameters, for example, the coil filling
factor, the sample volume, the noise figure of the
preamplifier, and the temperature of the detection coil
[60, 61]. Furthermore, the signal-to-noise ratio increases
with the square root of the number of scans which are
added to acquire the free-induction decay. The repetition
time between two subsequent scans is limited by the
longitudinal relaxation time. After a π/2 excitation pulse,
polarization buildup times of about 5 times T1 are
commonly allowed before the next scan. Consequently,
the signal-to-noise ratio depends on the square root of the
measurement time.

As can be seen from Eq. 2, the spin polarization and
hence the signal-to-noise ratio can be enhanced by
increasing the magnetic field B0. Over the past few
decades, the field strength of commercial spectrometers
has continuously increased. Nowadays, superconducting
magnets up to approximately 23 T are available. Pulsed
magnets with maximum fields up to 56 T could be
developed and used for the detection of 1H NMR spectra

Fig. 6 Detection of slow conformational dynamics by dipolar
centerband-only detection of exchange (CODEX). Top: Structure of
the α-spectrin SH3 domain with colour-coded residue mobility. Blue
indicates immobile residues and red (backbone) and green (side
chains) indicate mobile residues. Unassigned or undetected residues
are shown in white. (Reproduced from Krushelnitsky et al. [58] with
permission from the American Chemical Society)
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[62]. However, the room-temperature equilibrium spin
polarization P of 1H nuclei amounts to only 0.02% even
at 56 T. This is the physical reason for the intrinsically low
sensitivity of NMR spectroscopy. Therefore, sensitivity
improvement remains one of the major methodical chal-
lenges in NMR spectroscopy [63, 64].

The spin polarization can be enhanced by sample
cooling in special cases. This, however, requires very low
temperatures, which cannot always be applied, especially in
the case of biological samples. Furthermore, MAS at
temperatures below approximately 100 K is technically
difficult. The creation of nonequilibrium spin polarizations
by hyperpolarization experiments is, therefore, an important
field of methodical development.

Hyperpolarization methods

We have already described the advantages of the CP
experiment. However, the maximum polarization gain in
this experiment is limited by γI/γS. Other techniques are
capable of delivering considerably higher spin polariza-
tions. Promising hyperpolarization approaches which have
already been exploited for solids or solid surfaces are
dynamic nuclear polarization (DNP), chemically induced
nuclear polarization (CIDNP)/photochemically induced
nuclear polarization (photo-CIDNP), and spin-exchange
optical pumping (SEOP).

DNP relies on the spin-polarization transfer from
electrons to nuclei [65] (see also Fig. 7). In the case of
diamagnetic samples, the samples have to be doped with
appropriate paramagnetic agents [66]. The paramagnetic
substances can be brought into contact with the molecules
of interest, for example, by freezing glass-forming
solutions containing paramagnetic solutes as well as the
sample molecules. Spin diffusion among 1H nuclei can
result in the efficient distribution of the DNP-enhanced
nuclear spin polarization throughout the samples. The past
few years have seen considerable methodical progress in
DNP experiments [67–69] which made it possible to
combine DNP with MAS. These methodical advances are
currently paving the way to a variety of novel bioanalyt-
ical applications [70–72].

The CIDNP effect was discovered in 1967 independently
by two groups [73–75]. It occurs as a result of radical ion
reactions and is often explained by the radical pair
mechanism. The electron-spin-dependent recombination
probability of radical pairs is influenced by the nuclear
spin, i.e., the hyperfine coupling between electrons and
nuclear spins. Therefore, reactions involving radical pairs
can result in strongly enhanced nuclear spin polarizations;
for details, see the recent review by Bargon [76]. Photo-
CIDNP was discovered shortly after the first CIDNP
experiments had been performed [77, 78]. Since then,

photo-CIDNP has become an important tool for photo-
biochemical investigations. Photo-CIDNP could also be
combined with MAS [79] to study photobiochemical
processes by solid-state NMR spectroscopic techniques
[80–83].

SEOP is an experimental approach which can be applied
to hyperpolarize noble gases such as 129Xe (see Fig. 8 as
well as [84–86]). Optical pumping of alkali atoms, usually
Rb, results in highly polarized electron spin systems.
Electron spin polarization is then transferred to the nuclear
spins by the formation of short-lived Rb–Xe van der Waals
complexes or Rb–Xe collisions via hyperfine coupling.
These processes lead to a 129Xe spin polarization 4 to 5
orders of magnitude higher than the equilibrium spin
polarization in commonly used spectrometers. 129Xe is an

Fig. 7 Dynamic nuclear polarization (DNP). a The solid-state DNP
experiment under MAS. b Time-dependent growth of 1D 13C NMR
signals of a nanocrystalline, amyloidogenic peptide (GNNQQNY7-13)
using a biradical polarizing agent (TOTAPOL). The spectra were
acquired after 5, 10, 20, 30, 45, 60, and 75 ms of microwave
irradiation. c The intensity of the spectral lines normalized to
maximum intensity of each signal. Lines indicate calculated fits using
growth time constants of 15–17 s for crystal signals (a–d) and 7–8 s
for glycerol peaks (e, f). The samples were prepared by mixing peptide
nanocrystals with glycerol containing the biradical TOTAPOL as
described in [70]. (a, b Reproduced from van der Wel et al. [70] with
kind permission from the American Chemical Society)
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important probe atom which was originally introduced by
Ito and Fraissard [87] in surface NMR spectroscopy.
Hyperpolarized xenon was then suggested to enhance the
NMR of solid surfaces [88]. In addition, xenon is also
frequently used in biological NMR spectroscopy [89–97] as
well as for imaging purposes [98, 99]. SEOP, therefore,
offers a variety of solid- and liquid-state NMR experiments
(for reviews, see [96, 97]) even under MAS [100],
including spin-polarization-transfer techniques such as the
spin-polarization-induced nuclear Overhauser effect (SPI-
NOE) [101] and spin-polarization-induced enhancement by
Hartmann–Hahn dipolar recoupling (SPIDER) [102]. Bio-
sensor applications of xenon have recently found special
interest in biological liquid-state NMR spectroscopy as well
as in imaging [103–105].

Enhanced spin polarizations can also be produced by
hydrogenation reactions using parahydrogen [106, 107].
This parahydrogen-induced polarization (PHIP) effect can
be created either in high field (parahydrogen and synthesis
allow dramatically enhanced nuclear alignment, PASADENA
[106]) or in low field (adiabatic longitudinal transport after
dissociation engenders net alignment, ALTADENA [108]).
PHIP is increasingly being exploited in liquid-state NMR
spectroscopy [109], for example, in spin-polarization-transfer
experiments [110, 111]. The PASADENA approach could be

applied to study H2 chemisorption on ZnO [112].
Recently, Adams et al. [113] developed an approach for
the reversible interaction of parahydrogen with organic
substrates mediated by metal complexes. This approach
results in signal enhancement factors up to approximate-
ly 800 in 1H, 13C, and 15 N NMR and can be used in
magnetic resonance imaging as well. Finally, it should be
mentioned that hyperpolarized spin systems provide the
basis for extremely fast 2D experiments, so-called
ultrafast 2D NMR spectroscopy [114]. In contrast to
conventional 2D NMR spectroscopy, such techniques
allow the detection of 2D spectra within a single scan or
only a few scans.

T1 shortening and related approaches

As already mentioned, the signal-to-noise ratio obtained in
an experiment after a certain time increases strongly if T1 is
short. T1 shortening is, therefore, another promising
approach for sensitivity enhancement. The addition of Cu
(II)Na2EDTA as a chelated paramagnetic relaxation agent
results in about 2 orders of magnitude shorter T1 values for
protein microcrystals [115]. Linser et al. [116] combined
this approach with partial deuteration of the samples by the
recrystallization of a protein in 9:1 D2O/H2O solution in the
presence of the relaxation agent. Paramagnetic doping of
solid proteins such as amyloid fibers and ubiquitin was
combined with very fast MAS and low-power radio-
frequency pulse sequences in the paramagnetic-relaxation-
assisted condensed data collection (PACC) experiment
[117]. This experiment results in a reduction of T1 by
orders of magnitude and allows the detection of 2D solid-
state NMR spectra for protein concentrations in the nano-
molar range.

Another time-saving solid-state NMR approach is the
relaxation enhancement by a lower temperature of adjacent
spins (RELOAD) experiment [118]. This experiment is
based on the idea that selective excitation of spins such as
13C which are strongly coupled to 1H nuclei is followed by
enhanced relaxation due to 1H-driven spin diffusion from
nonexcited spins, thus resulting in faster magnetization
recovery.

Microcoils

The sensitivity of an NMR experiment on a sample of given
volume depends on the coil filling factor, i.e., the ratio
between the coil volume and the sample volume. If the
available sample volume is rather small, the use of
microcoils results in a significant improvement in the
signal-to-noise ratio. The need to study low sample
volumes especially in biological NMR spectroscopy has
stimulated numerous attempts to develop appropriate

Fig. 8 Spin-exchange optical pumping (SEOP). Top: The SEOP
process. Bottom left: The setup of a typical xenon polarizer. Bottom
right: Demonstration of the sensitivity gain obtained for the 129Xe
NMR signal of xenon gas. The bottom spectrum was measured in
thermal equilibrium at 5 bar, B0=7.04 T. The top spectrum was
obtained for hyperpolarized 129Xe at 0.04 bar (40% spin polarization).
(The graphic at the bottom left is reproduced from Fink et al. [86] with
permission from the American Physical Society)
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microcoil systems also for solid-state NMR spectroscopy
[119–124]. Solenoid microcoil systems have been devel-
oped for wide-line solid-state NMR spectroscopy [119]. In
addition, even MAS NMR spectroscopy of nanoliter
samples became feasible: one approach uses a conventional
rotor as a carrier of a capillary containing the nanoliter-
sized sample (see Fig. 9) [121–123]. Despite this extremely
small sample volume, the sensitivity is even sufficient for
2D experiments [122] as well as quadrupolar tensor
determination [123]. Another approach is the magic-angle
coil spinning (MACS) experiment [124]. A tuned microcoil
is tightly wound around the sample, which is placed in a
glass capillary. The capillary and the microcoil are then
inserted into a conventional MAS rotor. Wireless coupling
between the tuned microcoil and the probe generates a high
radio-frequency field and leads to enhanced detection
sensitivity.

Spectral resolution

As already stated, solid-state NMR spectroscopy usually
relies on the application of line-narrowing techniques, in
particular MAS. The spectral resolution is, therefore,
determined by the residual line width of the MAS-
narrowed signals. Apart from trivial experimental imper-
fections such as a misadjustment of the magic angle, field
inhomogeneities, etc., the residual line width of MAS NMR
signals is determined by the following effects [125–131]:

1. The incomplete suppression of the line-broadening
influence of internal magnetic interactions. This is
particularly true for the influence of strong homonu-
clear dipolar couplings (e.g., among 1H or 19F nuclei)
as well as second-order quadrupolar effects for I>1/2.

2. The interfering effect of random molecular motions
with the coherent averaging techniques of MAS and
heteronuclear decoupling [129–131]. This effect is
demonstrated in Fig. 10.

3. Distributions of the isotropic chemical shift which may
be caused by distributions of parameters such as bond
lengths, bond angles, etc.

4. Distribution of the isotropic value of the magnetic
susceptibility and line-broadening due to the anisotropy
of the magnetic susceptibility.

�Fig. 9 Microcoil MAS probehead for 1H spectroscopy [122]. a Kel-F
holder with inserted fused-silica capillary containing powdered sample
material. The capillary has inner and outer diameters of 320 and
400 μm, respectively. The sample height is 800–1,100 μm, leaving
some space to close off the capillary with Teflon tape. Typical sample
volumes of 64–88 nl result. b A 2.5-mm Varian rotor with a Kel-F
holder and capillary inside the custom-made press-on tool. c Upper
front of the 2.5-mm Varian stator with the mounted holder of the
solenoid microcoil. d Microscope image of the silica capillary
spinning inside the microcoil. The radio-frequency coil has 7.5
windings and the isolated copper wire has a diameter of 115 μm.
The inner and outer diameters of the radio-frequency coil are 450 and
680 μm, respectively. e 2D 1H spectrum of a single crystal of l-
tyrosine–HCl with dimensions 230×230×800 μm3=42 nl obtained at
9.4 T and 12-kHz MAS frequency, where FSLG homonuclear
decoupling was applied in the indirect 1H dimension. (Reproduced
from Brinkmann et al. [122] with permission from Elsevier)
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In particular the effects described in item 1 are strongly
influenced by the external magnetic field B0 as well as the
sample spinning rate νr. To evaluate the influence of B0 and
νr on the spectral resolution, it should be remembered that
the frequency difference between two neighboring signals
of given chemical shift difference Δδ increases linearly.
That means the resolution increases linearly if the residual
line width of the two signals remains constant at the
frequency scale, i.e., if the magnetic interactions responsi-
ble for the residual line width do not depend on B0. This is,
in principle, true for the magnetic dipole–dipole interaction.
Strong homonuclear magnetic dipole–dipole interactions
among magnetically equivalent nuclei can only be averaged
out completely by very high sample spinning rates [126–
128] or in CRAMPS experiments (see earlier). The residual
line width of spin systems such as 1H is dominated by the
homonuclear magnetic dipole–dipole interaction and can be
written as follows:

ΔnMAS
1=2 ¼ 1

A

ΔnIIð Þ2
nr

: ð3Þ

ΔνII denotes the homonuclear contribution to the static line
width, i.e., the line width without MAS. The geometry-
dependent factor A is typically found within the range 10–
40 [126]. That means the residual line width is proportional

to 1/νr (see also Fig. 11) and the suppression of the
homonuclear magnetic dipole–dipole interaction would
require sample spinning far beyond 100 kHz [126, 127],
which is not yet possible. This is the reason why directly
detected 1H MAS NMR spectra of such systems are often
poorly resolved. It is, however, important to note that the
spectral resolution in homonuclear spin systems may
increase even more strongly than linear in B0. The reason
for this unexpected behavior is the truncation of the
Hamiltonian in homonuclear spin systems at high fields
resulting in a reduction of the line width with increasing B0

even at the frequency scale [132].
The past decade also saw considerable progress in the

development of faster MAS probes [128]. Maximum sample
spinning rates of approximately 70 kHz are now available.
Combined with suitable homonuclear decoupling techniques
[133, 134], such high sample spinning rates result in solid-
state 1H NMR spectra of considerable spectral resolution.

Another possibility to reduce the homonuclear magnetic
dipole–dipole interaction in strongly coupled 1H spin
systems such as solid proteins is partial deuteration, a
method which allows the measurement of highly resolved
1H-detected spectra of proteins in the solid state. This is of
special interest: Multidimensional solid-state NMR spectra
of proteins are usually not 1H-detected owing to the rather
poor spectral resolution. For sensitivity reasons, however,
1H detection is highly desirable (see earlier) and, hence,
commonly applied in multidimensional liquid-state NMR
spectroscopy of proteins. At high levels of deuteration,
extremely well resolved solid-state 1H NMR spectra of
proteins can be detected [135]. The optimum exchange
level of exchangeable protons in solid proteins amounts to

Fig. 11 Residual line width (Hz) of the 1H MAS NMR signals of
alanine as a function of 1/νr measured at 600 MHz. The available
sample spinning rates do not result in a complete removal of the
influence of the homonuclear magnetic dipole–dipole interaction.
(Reproduced from Samoson et al. [128] with permission from
Springer)

Fig. 10 The influence of thermal motions upon MAS NMR signals.
MAS NMR spectra for dominating chemical shift anisotropy (CSA)
were calculated as a function of the correlation time τC of the thermal
motions. Sample spinning rate 1 kHz, ωIβCSA 2 kHz, ηCSA 0.5.
Increasingly fast motions (i.e., decreasing correlation times τC) are
accompanied by an increasingly strong line broadening and gradually
disappearing spinning sidebands. The maximum residual line width, i.
e., worst spectral resolution, is obtained for νr=1/τC. For further
decreasing correlation times, the signals become narrower owing to
motional averaging similar to the behavior observed in liquid-state
NMR spectroscopy. (Reproduced from [131] with permission from
Academic Press)
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30–40%, as could be measured recently [136] (see also
Fig. 12). HETCOR experiments on crystalline, perdeuter-
ated proteins allow the identification of hydroxyl protons,
the study of their hydrogen bonds, and determination of
exchange dynamics [137].

The line width and shape of nuclei with I>1/2 is
usually determined by the electric quadrupole interaction
in second-order perturbation theory [138]. This broaden-
ing is proportional to 1/B0; therefore, increasing field
strengths lead to a corresponding nonlinear improvement
of spectral resolution.

Finally, it should be noted that the line width increases
linearly with B0 at the frequency scale if the residual line
width reaches the limiting “natural” line width determined
by the distribution of the isotropic chemical shift and/or
the magnetic susceptibility of the sample. Increasing
magnetic fields do then not further improve spectral
resolution.

Conclusions

Triggered by continuous methodical advances, solid-state
NMR spectroscopy is increasingly important for the study
of biological problems. Apart from stronger magnetic fields
and faster MAS devices, remarkable methodical improve-
ments are, for example:

– Hyperpolarization techniques (DNP, CIDNP/photo-
CIDNP, SEOP)

– Microcoils in combination with MAS (nanoliter
samples!)

– T1 shortening for sensitivity improvement.

Prominent biological applications of solid-state NMR
spectroscopy are:

– Membrane proteins/peptides
– Protein aggregates such as amyloid fibrils
– Photobiochemical processes (e.g., by photo-CIDNP

experiments)
– Investigations of integer cells
– Biomineralization phenomena

Solid-state NMR spectroscopy can serve as an analytical
tool to identify substances by characteristic spectroscopic
parameters (chemical shifts, J-coupling constants, etc.).
Furthermore, solid-state NMR spectroscopy allows inves-
tigations of the spatial structure as well as dynamics of
biomolecules without the need for crystalline samples. The
capability of characterizing dynamical processes is the
reason why solid-state NMR spectroscopy is often useful
even for crystalline samples because the provided informa-
tion complements the structural information obtained by
diffraction studies. In summary, it can be stated that solid-
state NMR spectroscopy is an increasingly important tool in
bioanalytics.
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Fig. 12 1H-detected 1H-15 N HETCOR spectra of the α-spectrin SH3

domain for samples recrystallized in H2O/D2O solutions containing
20, 60, and 100% H2O in the crystallization buffer. The spectrum
recorded for the sample prepared with 20% exchangeable protons is

shown in red. Two classes of cross-peaks are highlighted belonging to
residues which are either remaining or disappearing in the spectra in
the sample prepared with 100% H2O in the crystallization buffer.
(Reproduced from Akbey et al. [136] with permission from Springer)
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