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Abstract The surroundings of the former Kremikovtzi
steel mill near Sofia (Bulgaria) are influenced by various
emissions from the factory. In addition to steel and alloys,
they produce different products based on inorganic com-
pounds in different smelters. Soil in this region is multiply
contaminated. We collected 65 soil samples and analyzed
15 elements by different methods of atomic spectroscopy
for a survey of this field site. Here we present a novel
hybrid approach for environmental risk assessment of
polluted soil combining geostatistical methods and source
apportionment modeling. We could distinguish areas with
heavily and slightly polluted soils in the vicinity of the iron
smelter by applying unsupervised pattern recognition
methods. This result was supported by geostatistical
methods such as semivariogram analysis and kriging. The
modes of action of the metals examined differ significantly
in such a way that iron and lead account for the main
pollutants of the iron smelter, whereas, e.g., arsenic shows a
haphazard distribution. The application of factor analysis
and source-apportionment modeling on absolute principal
component scores revealed novel information about the
composition of the emissions from the different stacks. It is
possible to estimate the impact of every element examined
on the pollution due to their emission source. This
investigation allows an objective assessment of the different

spatial distributions of the elements examined in the soil of
the Kremikovtzi region. The geostatistical analysis illus-
trates this distribution and is supported by multivariate
statistical analysis revealing relations between the elements.
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Introduction

Many case studies of diverse metal pollution due to
atmospheric deposition have been reported [1–3]. Mostly,
quantitative analyses of the soil properties were performed.
Furthermore, studies focusing on the interactions between
soil and the biosphere (e.g., fungi, mosses, plants) have
been done [4, 5]. However, investigations on iron smelters
are rare. Currently, the volatile organic compounds in the
ambient air of steel mills [6] are being investigated. As in
most soil pollution studies, we carried out a quantitative
analysis of the soil properties. However, in the present
study we also applied various statistical approaches to
prove the significance of our observations.

In the last decades of the twentieth century the annual
production of the Kremikovtzi steel mill in Bulgaria was
about one million tons of steel. In addition, the steel mill
produced alloys and inorganic compounds, such as lime,
barite, and dolomite. The 2007 investigation by Schulin et
al. [7] considered only the vertical distribution of 19
elements in two different soil types in the southern region
of the metallurgical complex of Kremikovtzi. The authors
suggested that the soil types investigated (chromic luvisols
and alluvial fluvisols) contain different metal concentra-
tions due to their parent materials rather than due to the
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emission from the steel mill. Furthermore, they found no
variation of the element concentrations dependent on the
depth. It was concluded that the distributions of As, Cr, and
Ni were caused by geogenic processes and the distributions
of Pb, Zn, and Cu were caused by atmospheric deposition.
In contrast, the present study also includes the analysis for
other pollutants such as tracers for steel, iron alloys, and the
main inorganic products. We collected 65 samples in an
area of about 64 km2 in the Kremikovtzi steel mill region.
After determination of 15 elements, we used geostatistical
methods, cluster analysis, factor analysis, and source
apportionment modeling to analyze the complex data set.

Source apportionment modeling originates from inves-
tigations in air quality studies [8] and is not well known in
soil science. Recent reports have pointed out that it is
difficult to distinguish between contributions from different
sources to the pedosphere [9]. Davis et al. [10] used the
combination of principal component analysis and geo-
statistics to find different sources but did not calculate a
receptor model. Furthermore, traditional monitoring data
interpretation methods such as cluster analysis, principal
component analysis, and source apportionment modeling
were used to identify and apportion sources of soil
pollution around an iron smelting facility but were not
combined with geostatistics [11]. The present research
closes this gap by showing the possibility of combining
source apportionment modeling and geostatistics. The only
previous study dealing with the combination of these two
methods did not have a preliminary step able to select the
appropriate pollution tracers [12]. In the present investiga-
tion, geostatistical analysis as a preliminary step for
selection of tracers is introduced.

Material and methods

Study area, soil sampling, preparation, and analysis

The Kremikovtzi steel mill is located about 20 km northeast
of the Bulgarian capital, Sofia. We collected 65 samples in
an area of about 64 km2, of which 16 sampling points were
located within the boundaries of the steel mill (Fig. 1).
Owing to the anthropogenic interventions in this region, we
chose an irregular grid fitted to the local conditions as the
sampling design. Taking the samples on a regular sampling
grid was impossible since buildings, streets, mounds,
plants, or cultivated fields shape this area. Furthermore,
the complete coverage of the region investigated was
requested. To ensure the comparability of the samples, we
took the samples on grassland from soil not treated by
fertilizers and with comparable orographic conditions.

We took component soil samples, consisting of five
subsamples, from the upper 0–20-cm layer. The soil

samples were dried, homogenized, and passed through a
2-mm sieve. We performed a microwave (power 1,200 W)
aqua regia digestion with a mixture of 21 mL HCl (12 M)
and 7 mL HNO3 (15.8 M) according to the German
standard [13] with 0.5 g of the soil twice for each sampling
site. After cooling, we made up the solutions to 100 mL
with dilute HNO3 (0.5 M). We determined the concen-
trations of 15 elements using a 5100 PC instrument from
PerkinElmer for flow injection hydride generation atomic
absorption spectroscopy, an AAS-3110 instrument from
PerkinElmer for flame atomic absorption spectroscopy, and
an Elan 6000 instrument from PerkinElmer for inductively
coupled plasma mass spectrometry.

All metals examined could be detected in concentrations
higher than the detection limits (Table 1) calculated
according to the indirect method of the German standard
[14]. Analyzing the certified reference material IAEA/Soil-
7 (International Atomic Energy Agency, Vienna) verified
the trueness (P=95%) of the analytical methods.

Overview of the theoretical fundamentals

Geostatistical methods

Geostatistical methods were used to analyze the spatial
dependence of data and their correlation, and finally to
estimate the concentration of the element of interest at an
unsampled location. The statistical theory behind this analysis
is the theory of regionalized variables, which means that the
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Fig. 1 Study area with the 65 sampling points in the Kremikovtzi
steel mill region, Sofia, Bulgaria
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variance between two realizations of the random function Z(X)
depends only on the step width h between those locations
and not on the absolute location in space [15]. Currently,
geostatistical methods are used in different environmental
analyses [16, 17], especially soil sciences [18, 19], or even
human health studies [20]. There are two important parts of
geostatistical analysis: first, the semivariogram analysis and,
second, the estimation by means of kriging.

For semivariogram analysis the semivariance γ(h) is
calculated as

gðhÞ ¼ 1

2nðhÞ
XnðhÞ

i¼1

z xið Þ � z xiþhð Þ½ �2; ð1Þ

where h is the step width, γ(h) the semivariance, n(h) the
number of sample pairs at each step width h, z(xi) the
realization of the random function at location i, and z(xi+h)
the realization of the random function at location (i+h).

The semivariogram is the graphical representation of the
semivariance γ(h) as a function of the step width h. After the
experimental semivariogram has been calculated, a theoret-
ical semivariogram is modeled by fitting a function to the
data points. We used exponential, Gaussian, linear, power,
and spherical models in this investigation. The nugget effect,
representing the microinhomogeneity of the data, the sill,
which represents the variance of the data, and the range, up
to which the data set is spatially correlated, are characterizing

parameters of those functions. Linear models are defined by a
slope and may have a nugget effect. They are not character-
ized by a range or a sill, which means that they never reach a
certain variance at a given distance. The parameters can be
used to detect spatial structures within the data.

Kriging estimation can be used to describe the spatial
distribution of the elements within a map. The results are
usually represented as isoline plots. This technique uses a
weighted moving average interpolation method, which
means that closer points have more influence on the
estimated value than more distant ones. The kriging
estimation is calculated as follows:

z» x0ð Þ ¼
Xn

i¼1

liz xið Þ; ð2Þ

where z*(x0) is the estimate of the unknown value z(x0), λi
are the weights of known neighboring points z(xi), and z(xi)
are the known neighboring points.

The weights λi are calculated on the basis of the semi-
variogram function, so that the kriging variance is minimized:

s2
k ¼

Xn

i¼1

lig z xið Þ � z x0ð Þ½ � þ m; ð3Þ

where s2
k is the kriging variance, z(xi)− z(x0) is the distance

between two known values z(x) at sample location i and 0, μ

is the Lagrange multiplier, and
Pn

1¼1
li ¼ 1.

More detailed mathematical information can be found in
[21, 22].

The results can be verified with the help of full cross-
validation. In succession, all sampling points are eliminated
and newly estimated according to Eqs. 2 and 3. To evaluate
the cross-validation, two parameters were used. First,
Pearson’s correlation coefficient (r) calculated according
to Eq. 4 should be 1 for a perfect estimation:

r ¼
Pn

i
z xið Þ � z xið Þ½ � z» xið Þ � z» xið Þ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i
z xið Þ � z xið Þ½ �2 P

n

i
z» xið Þ � z» xið Þ½ �2

s ; ð4Þ

where z(xi) is the observed known value, z xið Þ is the mean
of the observed known values, z*(xi) is the estimated
known value, z» xið Þis the mean of the estimated known
values, and n is the number of observations.

Furthermore, as a measure of uncertainty, the root mean
square error of prediction (RMSEP) can be calculated for
the cross-validation:

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
z xið Þ � z» xið Þ½ �2

n

vuuut
: ð5Þ

Table 1 Overview of detection limits and standard deviations of the
methods applied for the elements determined

Element Method Unit Detection
limit

Standard
deviation of
method

As FI-Hydride
AAS

µg/L 2.09 0.216

Ca Flame AAS mg/L 0.37 0.04

Cd ICP-MS µg/L 1.11 0.088

Co ICP-MS µg/L 5.50 0.777

Cr ICP-MS µg/L 1.90 0.359

Cu ICP-MS µg/L 5.09 0.902

Fe Flame AAS mg/L 3.61 0.243

K Flame AAS mg/L 0.45 0.042

Mg Flame AAS mg/L 0.15 0.015

Mn Flame AAS mg/L 0.98 0.108

Na Flame AAS mg/L 0.27 0.03

Ni ICP-MS µg/L 2.64 0.473

Pb ICP-MS µg/L 4.46 0.679

V ICP-MS µg/L 9.22 1.22

Zn ICP-MS µg/L 8.03 1.21

AAS atomic absorption spectroscopy, ICP-MS inductively coupled
plasma mass spectrometry, FI flow injection
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For geostatistical analysis we used the software package
R version 2.9.0 with the package gstat and Surfer 9.0.

Source apportionment modeling on absolute principal
component scores

Source apportionment modeling can be used to quantify
the contribution of different sources to the soil in the
study area [8]. This technique is widely used for
describing air pollution [23, 24] and aquatic systems [25,
26]. A multiple linear regression of the total concentra-
tions on the absolute principal component scores (APCS)
is done to use this method. First, a factor analysis is
necessary to calculate the APCS. Factor analysis is used to
reduce the dimensionality of a data set and to find hidden
correlations or structures. Therefore, the matrix of all
measured values X is divided into the product of a matrix
of factor loadings A and a matrix of factor scores F, and a
matrix of residuals Q:

Xmn ¼ AmtFtn þQmn; ð6Þ
where m is the number of features, n is the number of
objects, and t is the number of factors.

The covariance matrix of all features is computed, and
then an eigenvalue analysis is performed to extract the
factors. In this work we used varimax rotation to enable an
easier interpretation of the factors [27].

The resulting factor scores are used to compute APCS
for each sampling point. Z-scores have to be created,
because the factor analysis is based on normalized data
(Eq. 7). These Z-scores represent the absolute zero
concentration at a so-called “zero day,” on which none of
the sources have yet influenced the samples.

z0ð Þi ¼
0� x

s
; ð7Þ

where s is the standard derivation, x is the mean, and (z0)i is
the concentration on the “zero day.”

Absolute zero principal component scores and further-
more APCS are calculated with these resulting (z0)i and the
factor score coefficients. This step is followed by multiple
linear regression of the total mass as a function of APCS as

Mk ¼ z0 þ
Xp

j¼i

z jAPCSjk ; ð8Þ

where Mk is the particle mass record during observation k, ζ
is the particle mass contribution, APCSjk is the rotated
APCS for component j at observation k, and j...p is the
number of pollution sources.

Furthermore, the element source profiles of the esti-
mated source impact can be calculated. A detailed
mathematical description can be found in [28]. We used

the software package STATISTICA 6.1 for source
apportionment modeling.

Results and discussion

Chemical analysis

The mean values and distribution measures of the elements
examined are listed in Table 2. We found the range of the
element concentration to be different. The values for Cd,
Co, Cr, Cu, Fe, K, Na, Ni, and V were within 1 order of
magnitude. The concentration of Ca ranged from 0.07 to
153 mg/g (4 orders of magnitudes) owing to the geogenic
origin of this metal. In contrast, Cd, Mn, Pb, and Zn had
25–41 times as high concentrations in polluted samples as
in unpolluted ones owing to their anthropogenic origin.

To evaluate these results considering the impact of the
pollution, the optimum and action values of the new
Dutchlist are presented for As, Cd, Co, Cr, Cu, Ni, Pb,
and Zn in Table 3 [29]. The Dutchlist is seen as the
unofficial guideline for risk assessment.

Over 90% of the sampling sites have higher contents of
Cu and Pb than the optimum threshold (Table 3). Half of
the sampling points exceed the optimum threshold for As,
Cd, or Zn. For Co, Cr, and Ni the optimum threshold is
exceeded for a couple of sampling sites. The situation for
the action threshold is completely different. About 40% of
the sampling points are highly contaminated with As and
only 5–12% are contaminated with Cu, Pb, and Zn. The
comparison of the results with another investigated iron-

Table 2 Mean values and distribution measures of the elements
analyzed

Element Unit Mean
value

Minimum
value

Maximum
value

Standard
deviation

As µg/g 56.0 6.99 154 34.3

Ca mg/g 14.9 0.07 153 29.4

Cd µg/g 1.17 0.20 6.07 1.04

Co µg/g 16.4 9.39 28.5 4.28

Cr µg/g 68.2 30.3 120 17.5

Cu µg/g 85.7 34.9 292 56.8

Fe mg/g 58.4 22.0 301 47.8

K mg/g 7.4 1.71 11.8 2.31

Mg mg/g 4.96 0.76 13.1 2.78

Mn mg/g 4.30 0.58 15.4 3.95

Na mg/g 0.313 0.108 1.42 0.216

Ni µg/g 41.9 12.2 106 17.8

Pb mg/g 0.316 0.039 1.62 0.349

V µg/g 72.6 30.6 126 18.7

Zn mg/g 0.236 0.055 1.67 0.256
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smelting facility in the UK shows a different kind of
pollution from that found in the Kremikovtzi region.
Whereas the area polluted with Cd, Cr, Cu, Ni, and Zn is
smaller for the Kremikovtzi region, the area polluted with
As is almost the same [30]. Furthermore, the maximum
concentration of Pb is of about the same magnitude. The
comparison with a German iron smelter shows comparable
maximum concentrations for Pb and Zn, whereas the
maximum concentrations for Cd, Cr, and Ni are lower for
the Kremikovtzi region as well [31]. These comparisons
suggest that Cr and Ni are not used for steel alloys in the
Kremikovtzi region.

Geostatistical analysis

We used kriging estimation to interpolate the concentrations
of the elements examined in the areas between sampling

points. First, a semivariogram analysis for all elements was
necessary. The elements were not transformed because the
results should be compared with the source apportionment
modeling. We used a visual fit of the possible theoretical
semivariogram to the experimental semivariogram to select
an adequate model. To confirm those results we performed
a cross-validation for ordinary kriging. The correlation
coefficients and the relative RMSEP values were estimated
for each model chosen (see Table 4). The semivariograms
showed a typical behavior for elements in heavily polluted
areas [32, 33].

For most of the elements, a Gaussian model was found
to be the most appropriate. In addition to the Gaussian
model, we used three spherical models, three exponential
models, one linear model, and one power model. The range
for all elements except Cu and V was around 1 km or less.
So, there was no high spatial correlation of the elements
over the complete region.

To evaluate the results of the semivariogram analysis, we
used the correlation coefficients and the RMSEP values.
For a perfect estimation the correlation coefficient would be
1. For eight elements the correlation coefficients are above
0.6, which is acceptable in environmental analysis. For
some elements the correlation coefficients are around 0.4
owing to the random, rather than normal distribution of
these elements. The estimated RMSEP values are small for
elements with a small concentration range and the RMSEP
values were unsatisfactory for elements with a high range.
For Ca, with a RMSEP of 179%, we found concentrations
from 0.07 to 153 mg/g and for Co, with a RMSEP of 24%,
we found concentrations from 9.39 to 28.5 μg/g (see
Table 2). To avoid these problems, the calculations could be

Table 3 Number of sampling points exceeding the thresholds for As,
Cd, Co, Cr, Cu, Ni, Pb, and Zn of the new Dutchlist (threshold in
parentheses)

Element No. of sampling sites
exceeding the optimum value

No. of sampling sites
exceeding the action value

As 46 (29 μg/g) 26 (55 μg/g)

Cd 30 (0.8 μg/g) 0 (12 μg/g)

Co 11 (20 μg/g) 0 (240 μg/g)

Cr 3 (100 μg/g) 0 (380 μg/g)

Cu 60 (36 μg/g 6 (190 (μg/g)

Ni 8 (35 μg/g) 0 (210 μg/g)

Pb 62 (0.085 mg/g) 8 (0.53 mg/g)

Zn 33 (0.14 mg/g) 3 (0.72 mg/g)

Element Semivariogram Cross-validation

Type Nugget Partial sill Range (km) r Relative RMSEP (%)

As Gaussian 95 740 0.74 0.62 47

Ca Gaussian 100 700 0.6 0.41 176

Cd Gaussian 0 1.2 0.6 0.84 49

Co Spherical 0 18 0.9 0.38 24

Cr Linear 225 25a 0.40 23

Cu Spherical 0 4,500 2.8 0.85 34

Fe Gaussian 880 2,200 1.2 0.84 44

K Spherical 1.8 3.9 1.1 0.39 29

Mg Gaussian 4.7 4.5 1.4 0.44 51

Mn Gaussian 4.5 12 1.0 0.80 55

Na Exponential 0 0.05 0.5 0.63 54

Ni Exponential 100 220 0.74 0.05 43

Pb Gaussian 0.025 0.13 1.0 0.88 51

V Power 0 300 2.0 0.30 24

Zn Exponential 0 0.09 0.72 0.64 82

Table 4 Results of semivario-
gram analysis for all elements
including the results from
cross-validation after kriging
estimation for the given model

RMSEP root mean square error
of prediction
a Slope

Geostatistical and multivariate statistical analysis of heavily and manifoldly contaminated soil samples 2679
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Fig. 2 Isoline plots for all elements after kriging estimation
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carried out with the lognormal transformed data. However,
a calculation with the lognormal transformed data was not
possible in this work because we wanted to apply the
results of geostatistics to the source apportionment model-
ing. In summary, it can be said that the semivariogram
analysis showed satisfactory results for the elements As,
Cd, Cu, Fe, Mn, Na, Pb, and Zn.

In Fig. 2 the kriging estimation for all elements based on
the semivariogram models listed in Table 4 are displayed as
isoline plots to visualize the results.

The distributions of the elements differ a lot. Whereas
Cd, Cu, Fe, Pb, and Zn have the highest concentration in
the center of the factory, As, Co, K, Ni, and V show a rather
haphazard distribution. K and V, for example, have their
lowest concentration in the center of the steel mill. The
region is not polluted by Co and Ni even though these
elements are used for steel coating. High concentrations of
Ca, Cr, Mg, and Na were detected in the southeastern part
of the factory. The emission of the elements Ca, Mg, and
Na is connected with lime production. Furthermore, the
concentrations of Ca and Mg are high in the northern part

of this area owing to their geogenic origin. For these two
elements there are two different factors responsible for their
distribution: the lime production and their geogenic origin.
Elements usually connected with steel production—such as
Cd, Cu, Fe, Pb, and Zn—have high concentrations in the
area of the stacks of the iron smelter. The isoline plots of Fe
and Pb almost look alike, which indicates that those
elements are highly correlated. One of the main reasons is
that the ore is rich in Pb. It is notable that Mn shows high
concentrations in the center and as well in the southeastern
part of the factory. Despite the lime production—indicated
by Ca, Mg, and Na—the alloy production is located in this
area. This explains the high concentrations of Cr and Mn in
this southeastern part of the factory.

Cluster analysis

Cluster analysis is an unsupervised learning technique. In
this study we used the agglomerative hierarchical cluster
analysis according to Ward [34]. Applying cluster analysis
for the elements examined shows a separation between
elements emitted by the steel mill, which can also be
distinguished into iron production (cluster 3), lime produc-
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Fig. 3 Dendrogram of cluster analysis for all variables (Ward’s
method)

Table 5 Factor loading matrix after varimax rotation

Element Factor 1 Factor 2 Communality

Cd 0.802 0.412 0.833

Cu 0.915 0.166 0.814

Fe 0.931 0.020 0.909

Mg 0.260 0.770 0.437

Mn 0.738 0.556 0.864

Na 0.021 0.913 0.643

Pb 0.978 0.083 0.952

Zn 0.797 0.315 0.769

Explained variance 65% 17%

Table 6 Source apportionment for the different sources for each
variable

Element r Relative RMSEP (%)

Cd 0.90 37

Cu 0.93 24

Fe 0.93 29

Mg 0.81 32

Mn 0.92 36

Na 0.91 28

Pb 0.98 21

Zn 0.85 53

Cd Cu Fe Mg

Mn Na Pb Zn

Fig. 4 Contribution of each source for the elements included in the
source-apportionment modeling (blue source 1, red source 2, yellow
unexplained)
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tion (cluster 2), and elements originating from diffuse
sources (cluster 1) (Fig. 3).

The elements in cluster 1 are those with a haphazard
distribution according to the kriging estimation. The fact
that As, Cr, and Ni originate from geogenic sources [7] was
confirmed independently by cluster analysis. Usually Cr
and Ni would be expected to be grouped with Fe because
they are essential constituents in steel alloys. There are two
specific production-related reasons as to why this is not the
case in the Kremikovtzi region. Firstly, the Ni content is
very low in the ore [35]. Secondly, the amount of low-alloy
steel production is small and the electric arc furnaces are
better equipped with dust-removing filters than the other
production facilities. The elements in clusters 2 and 3 are
the ones with high concentrations in the areas of the factory
used for iron production (Cd, Cu, Fe, Mn, Pb, and Zn) and
for lime production (Ca, Mg, and Na).

Source apportionment modeling

Factor analysis

We performed a factor analysis to conduct source
apportionment modeling on principal components. The
results of the geostatistical and cluster analysis showed that
a reduction of variables for the source apportionment
modeling was necessary. The factor analysis was performed
with the elements Cd, Cu, Fe, Mg, Mn, Na, Pb, and Zn
because those elements were not haphazardly distributed.
Ca was removed because of its high RMSEP. The factor
loadings after varimax standard rotation are listed in
Table 5.

It is possible to distinguish between two factors explain-
ing about 82% of the variance together. Factor 1 represents
the elements that are emitted by the steel factory and factor
2 represents the elements emitted by the lime production.
The communalities are high except for Mg.

Absolute principal component scores

We performed source apportionment modeling for the two
main factors detected using factor analysis. The two factors
represent the source iron production (factor 1) and lime–
alloy production (factor 2). The resulting model has a
correlation coefficient of 0.94 and an RMSEP of 26%.
Source 1 explains 65% of the computed model, source 2
explains 12%, and about 23% cannot be connected to either
source. After identifying the two sources, we considered the
impact of them for each metal. Therefore, we calculated the
contribution of each polluting source to the metal concen-
tration. The correlation coefficients and the RMSEP values
for each metal are presented in Table 6. The impact of each
source on the metals examined is illustrated in Fig. 4.

Except for Zn, the RMSEP values are below 40%. The
correlation coefficients are above 0.8 for all elements
except Mn and Zn.

Only the concentrations of Cu, Fe, and Mg are
influenced by sources outside the Kremikovtzi steel mill.
Fe and Pb are mainly emitted by source 1 (more than 70%)
and just slightly by source 2. Na and Mg are mainly emitted
in the southeastern part (source 2) of the factory. The other
elements—Cd, Cu, Mn, and Zn—are emitted by both
sources but with different intensities. Whereas Cd and Mn
are emitted by both sources almost equally, Cu and Zn are
emitted threefold more by source 1 than by source 2. Those
results prove as well that source 1 is the iron production
and source 2 is a combination of lime and alloy production.

Conclusion

The combination of the geostatistical analysis and the
source apportionment modeling is very beneficial. The
kriging plots allow a graphical description of the area,
which helps one interpret the emission sources. Further-
more an objective variable reduction can be accomplished.
As source apportionment modeling with all elements was
unsatisfactory, finding an objective tool which allows an
element reduction was very important. We pointed out two
main emission sources with the help of source
apportionment modeling. One is the iron smelter and the
other one comes from the southeastern part of the factory,
which is a combination of lime and manganese–iron–alloy
production. To separate those two in more detail, a study
including more sampling points inside the territory of the
steel mill should be done.
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