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Abstract This paper approaches the problem of intersample
peak correspondence in the context of later applying statistical
data analysis techniques to 1D 1H-nuclear magnetic reso-
nance (NMR) data. Any data analysis methodology will fail
to produce meaningful results if the analyzed data table is not
synchronized, i.e., each analyzed variable frequency (Hz)
does not originate from the same chemical source throughout
the entire dataset. This is typically the case when dealing
with NMR data from biological samples. In this paper, we
present a new state of the art for solving this problem using
the generalized fuzzy Hough transform (GFHT). This paper
describes significant improvements since the method was
introduced for NMR datasets of plasma in Csenki et al.
(Anal Bioanal Chem 389:875-885, 15) and is now capable of
synchronizing peaks from more complex datasets such as
urine as well as plasma data. We present a novel way of
globally modeling peak shifts using principal component
analysis, a new algorithm for calculating the transform and
an effective peak detection algorithm. The algorithm is
applied to two real metabonomic 1H-NMR datasets and the
properties of the method are compared to bucketing. We
implicitly prove that GFHT establishes the objectively true

correspondence. Desirable features of the GFHT are: (1)
intersample peak correspondence even if peaks change order
on the frequency axis and (2) the method is symmetric with
respect to the samples.
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Introduction

The objective of this paper is to demonstrate a method capable
of establishing intersample correspondence between spectral
peaks in data obtained using 1H-nuclear magnetic resonance
(NMR) spectroscopy, typical of biological samples. The
problem of noncorrespondence is well known—it is a fact
that peaks do not remain in the same intersample position on
the frequency axis. Varying chemical and physical sample
properties induce peak shifts that make multivariate (or
univariate) analysis of the raw data matrix confusing or
pointless. It is not even likely that all peaks retain their
relative order; this phenomenon originates from the fact that
different analyte protons have different shift sensitivity to
varying sample properties such as pH, salt content,
temperature, etc. We hypothesize that the concept commonly
referred to as the matrix effect and its effect on peak location
are in fact deterministic, not random—a hypothesis that the
presented work supports and fully exploits.

Traditionally, the first approach to remedy the encoun-
tered synchronization problem is to minimize the variation
of physical and chemical parameters by controlling the
physicochemical properties of the sample using, e.g.,
buffers and isothermal analytic conditions, but this does
not fully remedy the problem.
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The second approach used is to preprocess the data in
such a way so that the influence of peak shifts is removed.
Suggested solutions are algorithmic of nature and include,
inter alia, bucketing, warping, and alignment approaches.
Bucketing [1–3] is the most straightforward of these
techniques and uses a piecewise integration of preselected
fixed spectral segments. The recognized problems with
bucketing are that (1) several unrelated peaks can end up in
the same bucket and (2) a single peak can be split between
buckets. Attempts to resolve the bucketing problems have
been made by, e.g., dynamically selecting the global bucket
boundaries, but the fact remains that this technique destroys
the information contained in a high-resolution NMR spectrum.

Warping [4–7] is another approach to solve the
correspondence problem; this class of techniques is most
widely used for aligning chromatographic data. Warping
works by establishing a transfer function that operates on
the time or frequency axis of the sample to be warped. The
transfer function maps points of the target and sample axis
to reach correspondence. After the transfer function is
established, the axis of the sample is transformed by
insertion, deletion, or interpolation to reach a warped
(synchronized) spectrum. Examples of warping techniques
are correlation-optimized warping [8, 9] and dynamic time
warping [10, 11]. These algorithms generally work well
on chromatographic data and simple NMR spectra but
perform unsatisfactorily in crowded regions of compli-
cated spectra and fail when peaks change places. These
methods also rely on the choice of a target spectrum,
i.e., the methods are not symmetric with respect to the
order of which spectra are processed. Furthermore,
warping parameters are subjected to manual selection
resulting in results that may vary considerably depending
on biased choice.

Another class of alignment techniques such as peak
alignment using reduced set mapping [12–14] is based on
reducing continuous spectra to peak lists using peak
detection. These peak lists are then matched over samples
using an appropriate choice of algorithm, e.g., a tree search.
The alignment class of algorithm does not use a continuous
warping function. Both the warping and alignment class of
algorithms are incapable of establishing correspondence
when peaks change order.

The Hough-based algorithm presented in this work
belongs to the alignment family of techniques as it uses a
sparse peak list and establishes correspondence without the
use of a transfer function. The presented method is capable
of assigning correct correspondence even when peaks
change order.

In a previous paper, we introduced the generalized
fuzzy Hough transform (GFHT) as a way to establish
correspondence by finding shift patterns associated with
physical and chemical sample properties [15]. The Hough

transform is originally an image analysis algorithm
[16–22], so in this context the NMR dataset is treated as
an image comprising a samples × bins matrix (pixels).
From this image, using peak detection, a new matrix X is
constructed wherein pixels where a peak maximum has
been detected is assigned the value 1, while the rest are
given the value 0. In its most simple form, the GFHT for
NMR data can be described as follows. One clearly
assignable peak is chosen for an entire dataset. The
intersample peak positions are recorded as a shift pattern.
This shift pattern multiplied by an expansion parameter α
(considered as an expansion of the shift pattern along the
frequency axis) is used as a model to describe the shifts of
peaks throughout the entire dataset. The GFHT is used
analogously as in image analysis to find parameterized
shapes in an image, i.e., the Hough is iterated through
predetermined values of the parameter α while recording
the Hough score h which measures how well the current
parameters and shift pattern describe the peak shifts. The
Hough score is recorded in a matrix H (denoted the Hough
transform space) designed to encompass the parameter
span and its resolution. In the NMR context, each
maximum in the Hough transform space corresponds to a
parameter set that matches the positions of a peak
throughout the entire dataset (all samples). The success
of this matching process is dependent on the observation
that the peak shifts can be described by this single-
parameter model. In the previous paper, we showed that
for plasma 1H-NMR data the single-parameter model was
adequate, but for the more complexly shifting urine data
the results were not satisfying.

In this work, the GFHT approach is taken several steps
further:

& To reach a solution where more complex data (in terms
of peak shifts) such as urine spectra also can be
aligned, we have incorporated a multicomponent peak
shift model (MCSM) of the peak shifts based on
principal component analysis (PCA) [23, 24]. The
MCSM is derived from a selection of a number of
model peaks whose individual peak shift patterns are
collated and used as the basis of a PCA model of latent
peak shift patterns. Linear combinations of the MCSM
components are now used to test for matches of
several different peak shift patterns in the NMR data.

& Because the incorporation of the MCSM significantly adds
to the computational complexity of the GFHT transform by
adding dimensions to the Hough indicator tensor (HIT), we
present a more efficient algorithm, i.e., a list implementa-
tion of the algorithm, for performing the calculations.

& We show that naïve sample classification can be used to
find peaks that are specific for a group of samples by
partitioning the HIT.
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& Since the GFHT is dependent on peak detection, we
have included the peak detection method used in this
work.

We demonstrate the extended GFHT alignment using
two already-published 1H-NMR datasets of different origin,
size, complexity, and acquisition mode. We show that the
GFHT establishes peak correspondence and that the
presented new additions make the extended GFHT a
powerful alignment technique fully capable of aligning
complex 1H-NMR datasets such as the ones encountered in
bioanalysis.

Method

We traverse the extended GFHT method by discussing the
data used, followed by an elaboration on the peak detection
algorithm, the implementation of PCA to establish the
MCSM, and end with a section demonstrating a faster way
of calculating the GFHT score, which is used to find the
parameters (αi) for corresponding peaks.

Datasets

Briefly, the Arabidopsis dataset comprises manually
designed samples made to mimic the metabolome of the
plant Arabidopsis thaliana [25]. The Arabidopsis set
contains 24 64 k spectra recorded on a Varian 600-MHz
instrument using 2D 1H–13C HSQC acquisition. The
samples contain 27 compounds, 24 biologically relevant
molecules, and three nonbiological standards. Seven of the
biologically relevant compounds are varied to mimic six
different phenotypes of A. thaliana; the rest are kept
constant. The concentrations of the seven varying
compounds are used as reference (“ground truth”) in the
validation of the GFHT method. The Arabidopsis set is
considered as “controlled” with respect to physicochemical
parameters. The samples were titrated to an observed pH of
7.400 (±0.004) and the data contain no true biological
variation. The Arabidopsis data still exhibit peak shifts,
indicating that peak shifts in H-NMR data are hard to
avoid.

The second dataset is a rat urine dataset collected during
a toxicity study of the metabolic impact of ethionine [12].
The ethionine set comprises 336 64 k spectra collected on a
Bruker 600-MHz instrument using NOESY acquisition.
One of the dosing groups, the high single dose (five rats
sampled twice per day for 7 days totaling 35 spectra) is
used to visualize the metabolic impact of the toxin. In the
validation of the ethionine, the class labels are arranged into
two groups; the high single dose in one group (dosed days
only) and the rest of the samples in another group to more

easily interpret the GFHT validation results in terms of
PCA score plots.

Bucketed data were created using a bucket size of
0.04 ppm with removal of the internal standards, resulting
in 256 buckets for both datasets. The full experimental
procedures and details for the Arabidopsis and ethionine
sets are described in the Electronic Supplementary
Material.

Peak detection

In its original image analysis application, the Hough
transform space is more easily interpreted when calculated
on a sparse feature (edge)-detected image. The same holds
true for the GFHT application to 1H-NMR data—a sparse
peak-detected matrix is required for the algorithm to yield
distinct maxima in the HIT (denoted Hough indicator array
in the previous paper). Any peak detection algorithm could
potentially be used with the GFHT but the results will
depend on the completeness of the peak lists generated. In
this paper, we present a naïve zero-area filter that is used
for peak detection. The filter is created without any prior
assumptions about the data.

The filter is derived from the internal TSP/DSS standard
peak of the (phase-corrected) spectrum to be peak-detected
but any baseline-separated peak of modest intensity could
also be used. Using a real peak to derive the filter shape is
preferred over using a theoretical lorentzian peak (or any
other peak shape depending on spectral preprocessing)
because to some extent the filter derived from the real peak
can compensate for global phenomena such as bad shim
and bad phasing. To construct the filter, set the original data
matrix as Z. A segment around the TSP/DSS peak in each
spectrum (z) is extracted and the second derivative with
reversed sign of this segment, normalized to a sum of zero,
constitutes the filter gnorm(z).

gðzÞ ¼ � d2y

dz2

gnorm g > 0ð Þ ¼ g g > 0ð Þ
� P

gðzÞ< 0
gðzÞ

P
g zð Þ>0

gðzÞ

ð1–2Þ

The filter and the spectrum are convolved. After this
filtering pass, a Lorentzian is fitted to each of the local
maxima in the convolved vector by least squares. If the
fitted Lorentzian does not have a maximum peak value
greater than three times the noise standard deviation, the
peak is discarded. The algorithm used for peak detection is:

1. Calculate the noise standard deviation in an empty part
of the spectrum
(e.g., −3.5 to −0.5 ppm for ethionine).
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2. Cut out a section, 0.06 ppm wide, around the internal
standard (TSP/DSS) peak at 0 ppm. Process this section
by a, e.g., Savitzky–Golay [26] second derivative with
reversed sign and adjust the resulting filter to a sum of
zero by multiplying the positive part of it by an
appropriate factor (Eq. 2) resulting in gnorm

3. Convolve the entire spectrum (z) with gnorm.

zcðnÞ ¼
X1
k¼�1

z n� kð Þ � gnormðkÞ ð3Þ

4. Detect all local maxima in the convolved spectrum (zc)
and record their position and sample number into a list.

5. For each maximum in the list, fit a Lorentzian plus a
linear baseline model to the raw data (z) to a window
around the maximum using least squares. The objective
function for the peak-fitting step is:

e k;m; bð Þ ¼
Xx0þi

x¼x0�i

yðxÞ � k x� x0ð Þ þ mþ ab

x� x0ð Þ2 þ a2

 ! !2

ð4Þ
where a, the peak shape, is derived from the TSP/DSS
peak and held constant throughout the spectrum; x0 is the
peak mode position; y(x) the intensity and 2i+1 the width
of the local segment in data points. m is a constant
baseline component. Discard peaks with S/N less than
three.

6. The positions of the remaining detected peaks are
inserted as ones in x or (for the updated way of
calculating the HIT) stored in a list together with the
maximum value of the fitted Lorentzian intensity and
the spectrum they were found in. This yields a list of
dimensions three times the number of detected peaks.

Figure 1 depicts the extraction, derivation of the filter,
convolution, and peak detection results. Depending on the
noise level, this algorithm typically reveals between 1,000
and 1,500 detected peaks per urine 1H-NMR spectrum
(600-MHz instrument). The peak detection is able to detect
most shoulders and overlapping peaks. However, the
algorithm does not perform well for peaks with a shape
that heavily deviates from the shape of the internal standard
peak, e.g., spinning sidebands and urea.

Principal component analysis of shift patterns

The extended GFHT alignment method described in this
paper is based on the previous paper but extends the shift
pattern analysis by the addition of principal component

analysis revealing underlying (latent) shift patterns; we
denote this model as MCSM. To establish the MSCM of
the shift patterns, the shift pattern of several (typically around
ten to 15) easily assignable peaks are selected; their peak
position was recorded and arranged into a matrix (samples ×
peaks). After mean centering, a PCA of the peak location
matrix yields a few significant components where the score
vectors constitute the underlying shift pattern, see Fig. 2.

The relative magnitudes of the corresponding eigenvalues
(or explained variance) indicates the rank of the underlying
shift phenomena and hence the number of latent shift
phenomena occurring in the data. The success of the
extended GFHT method depends on the assumption that
there are relatively few (one to five) significant latent shift
components; otherwise, the resulting size of the HIT will
pose a computational obstacle.

Calculating and interpreting the Hough transform space

The MCSM is used by the extended GFHT to search the
data X for peak position matches using linear combinations
of the significant score vectors as match patterns. The
model for the location of a peak in all samples is:

d ¼ k þ a1s1 þ :::þ aKsK ð5Þ
Where δ is a vector of peak locations tested in the HIT; k

is the average location of the peak; K is the rank of the
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TSP peak
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Naive zeroarea filter
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Raw spectrum with detected peaks
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Convolved spectrum with detected peaks

ppm

Data points Data points

Fig. 1 Naive zero-area filter peak detection of a small section of
a 1H-NMR spectrum of rat urine. Top left panel: extracted TSP peak.
Top right panel: the derived zero-area filter shape. Middle panel:
spectrum convolved with the filter shape. (circles) Indicates detected
peaks and (x) indicate possible peaks that were detected by the filter
but then discarded in the lorentzian fitting step. Bottom panel: peaks
detected in the spectrum
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MCSM model; α1...αK are the shift pattern expansion
parameters and s1…sK are the corresponding score vectors
(latent shift pattern). Next, the range and resolution of
αis to be tested is user-defined and the calculation of the
Hough score for all combinations of αi for all positions

where peaks are present is performed. The initial MSCM
model gives an indication about the magnitude of the αis
and the resolution is usually set around 20–50 steps
between min(αi) and max(αi). The calculated Hough
scores are stored in the HIT.
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Fig. 2 PCA of the shift patterns
derived from ten peaks in the
synthetic Arabidopsis dataset.
The top row shows heat maps of
the ten peaks, with local maxima
(peak detected) marked with a
black line. The positions of the
peak maxima form a 24×10
matrix of parts per million values
which are analyzed with PCA
(bottom panel). The cumulative
variance-explained plot (bottom
left panel) shows that two or
three PCs describe the peak shifts
well. The scores (bottom middle
panel) constitutes the MSCM
and are further used as a model
for all peak shifts. The loadings
(bottom right panel) show the
magnitude of the first two shift
vectors (scores) that is needed to
explain the shift of the ten peaks
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Calculating the GFHT

The definition of the Hough transform from the feature-
detected data matrix X to the indicator tensor H is:

hk;l;m;::: ¼ f αl;m;:::; k
� �

f αl;m;:::; k
� � ¼

X
i

X
j

xij exp � 1

2

j� k � αl;m;::: � si�
s

� �2
" #

αl;m;::: ¼ a1ð Þl; a2ð Þm; :::
� �

ð6–8Þ

k is a position along the variable axis (ppm). a1, a2, etc. are
vectors containing evenly spaced values of the Hough
parameters for the principal components 1, 2, etc. si⦁ is
row i of the shape matrix S that is the scores from the
principal component analysis where each column is scaled
to unit standard deviation. σ is a fuzzy parameter which is
user-defined. σ=2 data points has been used throughout
this work. An example: size(X)=(i× j), rank(MCSM)=K
(K=2 as example) and we choose the following resolution
on the alphas; length(a1)=L, length(a2)=M, we (have) get
the following sizes S (i×K), h (1� 1� 1), H=(j×L×M),
α(1×K) and k is traversed from 1:j; l is traversed from 1:L
and m is traversed from 1:M.

Naïve partitioning and a new algorithm for calculating
the GFHT score

First, consider the natural partitions of a typical 1H-NMR
dataset for metabolic profiling. There are often two or more
groups of samples involved in these kinds of studies, e.g.,
one group dosed with a candidate drug and one control
group or one group with a lesion and one healthy group.
This partitioning can be exploited by separately calculating
the GFHT with a local HIT for each of the sample groups
and using the maximum value in the local HIT to update the
global HIT. By dividing the HIT, we assign higher weights to
peaks that are only present in a specific group. These peaks
will now be detected and aligned although they are not
present in all samples, i.e., these peaks will not be regarded
as noise peaks. This is a useful feature when looking for

biomarkers for a certain condition. If there is only one class
label in the sample set, all spectra can be treated as a single
class. The use of this partitioning can be seen in Fig. 6.

Equations 6–8 are the mathematically strict way of
defining the GFHT transform, but in practice the GFHT can
be calculated in an alternative way that is faster by using a
peak list instead of the large feature-detected matrix X. This
modification does not alter the solution. The complexity of the
indicator tensor and consequently also the number of calcu-
lations grows exponentially with the number of shift patterns
(K) and linearly with the chosen resolution of the parameters
(αi). Because of the discussed algorithm complexity issue, it
is desirable that the efficiency of the algorithm improves. The
improved algorithm is cast as follows:

1. Arrange your detected peaks for the whole dataset in
a peak list; each peak should have the entries sample

Table 1 GFHT parameters used for the ethionine and synthetic Arabidopsis datasets

Dataset Spectra Model peaksa PCs (K) Variance explained
by model (%)

α range HIT size (H)b Peaks alignedc

Ethionine 336 10 3 93.7 [−30, 30] 65; 536� 41� 21� 21 839

Arabidopsis 24 10 2 98.7 [−100, 100] 65; 536� 51� 21 356

a The number of manually selected peaks making up the MCSM
bThe dimensionality of the HIT is K+1; the α1 step size is, e.g., (30−(−30))/41=1.46 (ethionine)
c The number of detected maxima in the HIT
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Fig. 3 Validation results for PLS1 models of the seven constituents
with variable concentrations in the Arabidopsis dataset. Y is
autoscaled. The dataset was divided into a calibration set comprising
19 samples and an external validation set comprising five samples;
7×91 PLS1 models were built for Bucketed (dashed curve) and

GFHT (solid curve) data. RMSEV ¼ 1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n

y� yp
� �2r

, where n is

the number of external validation samples (n=5); y is the true
concentration and yp is the predicted concentration of the external
validation samples. The horizontal line represents the mean RMSEV
error for random Y data
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and position on the frequency axis. For the Arabidop-
sis dataset, this peak list has 3×78,029 entries
indicating that 78,029 peaks were detected in the 24
samples.

2. Decide on the range and resolution of the αi values.

3. Create a zero-filled local HIT (L1, L2,…) per sample
class, each spanning K dimensions plus one dimension
for the frequency (ppm) axis. If memory problems
occur in this step, go back to step 2 and reduce the
parameter resolution (decrease length(ai)) or analyze
the dataset in sections by dividing the frequency axis
into segments. Note that the number of classes can be
one.

4. For each sample class, calculate L as described below.
For each permutation of the parameters α, do (a–d):

(a) Create one vector (hlocal) with k elements (one
element per data point on the frequency axis).

(b) For every peak in the peak list that belongs to the
current sample class, calculate the peak location δ

on the frequency axis corrected for the current set
of parameters, α (Eq. 5).

(c) Add a normalized Gaussian to hlocal centered on
this corrected maximum δ (Eq. 7).

(d.) Update the slice of the local HIT corresponding to
the current α:
L(·, l, m,…)=hlocal.

5. Normalize each HIT by dividing each element by the
number of samples in the corresponding class.

6. Calculate the final HIT (H) by taking element-wise
maxima of L:
H(k, l, m,…)=max(L1(k, l, m,…), L2(k, l, m,…),...)

Analogous to the image analysis application of the
Hough transform, each local maximum in the HIT indicates
a possible peak with parameterized correspondence over the
sample dimension which is equivalent to the concept that
each local maximum describes a parameterized shape in
an image. Depending on the quality of the initial spectral
peak detection and the MCSM, there can also be some
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Fig. 4 Alignment results from a
small segment of the Arabidopsis
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(HIT) projected on α1. Detected
local maxima in H are marked
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indicating low intensity), with
overlaid predicted peak positions
(black lines) equivalent to the
Hough maxima for each of the
24 samples. The bottom panel
shows two spectra (as indicated
by arrows—the blue and green
horizontal lines in the middle
panel) where corresponding
peaks are indicated (s—singlet,
d—doublet, t—triplet)
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false-positive maxima and some peaks that are missing a
corresponding maximum. Since the HIT can have many
dimensions, finding local maxima in the HIT is not a
trivial task; in this work, we have manually given starting
guesses for maxima locations of each peak by visual
inspection of 2D projections of H (see Fig. 4, top panel)
and then iteratively located the nearest local maximum.
Other suggested methods can be found in, e.g., [18, 20].

Validation method

Since it is difficult to validate alignment of first-order data
such as 1D-NMR data, we have opted for a data-driven
approach: modeling capability and visual inspection. First, we
acknowledge that the NMR data used is of (semi)quantitative
nature, i.e., that the peak areas (or heights) are proportional to
the concentration of analyte and that all peaks corresponding
to one analyte (multiplicity) will covary linearly in a dataset
where the concentration of analyte changes.

Equipped with a very controlled but real dataset such
as the Arabidopsis set where all concentrations are
known, all samples have a true internal standard and the
samples are pH-controlled; we can test the following
hypothesis: although we remove one or more of the peaks
originating from one molecule, the remainder of the
associated peaks should still reflect the concentration of
that molecule. This hypothesis can be tested using a
calibration model. A validation of the hypothesis that
small peaks are consistently aligned can now be
constructed as follows: (1) in the aligned (or bucketed)
data, remove the largest peak (variable), (2) make a PLS
model using the remaining data, (3) record the ability of
the model to predict the concentration (RMSEV), (4)
remove the second largest variable, etc. By examining the
model error as a function of remaining variables, we can
now draw conclusions about the quality of the remaining
peak intensities and hence the alignment quality.

Results and discussion

The parameters used for the GFHT alignment of the
ethionine and Arabidopsis datasets are provided in Table 1.
A notable difference between the two datasets is that the
ethionine dataset has a more complex shift pattern structure
(K=3) than the Arabidopsis dataset (K=2); this is probably
due to the samples in the latter dataset being titrated to
constant pH.

Validation of the Arabidopsis alignment results

Using the variable removal where we consecutively remove
variables from aligned and bucketed data while building

PLS1 models, we can see, Fig. 3, that the bucketed data
models starts to deteriorate when approximately 30% (75)
of the largest variables are removed whereas for the aligned
data the breakdown occurs when approximately 75% (260)
of the variables are removed.

The difference between the breakdown rates between
GFHT-aligned and bucketed data constitutes more than
350% difference in information retrieval between the
methods. This does also indicate that the GFHT is capable
of correctly assigning intersample peak correspondence for
the Arabidopsis data.

Another useful feature from the GFHT is the possible
support for peak annotation using the HIT. Figure 4, top
panel, shows a window into 2D projected Hough scores in
the HIT for different α1 obtained from the alignment
process. The location of one maximum reveals the value of
the α1 and when analyzing the second α-dimension (for the
Arabidopsis data, K=2) we get α2. By multiplying these
alphas with their corresponding score vector in the MCSM,
we can now predict the location of the peak in all samples.
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This is shown as the black lines in the middle panel in
Fig. 4.

The top panel in Fig. 4 can also be chemically
interpreted. Peaks originating from equivalent protons will
have the same shift pattern and thus the same value of the α
parameters. The similarity of the α parameter can be used
to elucidate which peaks originate from equivalent protons,
i.e., nearby Hough maxima with the same α are (likely to
be) multiplets originating from one molecule. This is true
even in cases where overlap makes manual assignment of
multiplicity peaks difficult or impossible. This intersample
proton peak correspondence feature can be viewed as
pseudo-2D experiment data of proton coupling using mode
support, i.e., by having Hough support over many samples,
we can untangle the correspondence between multiplets in
all the 1D spectra comprising the dataset. This feature of
the GFHT can also improve quantification methods by
using integrals (or intensities) from several corresponding
peaks for quantification.

Results from the ethionine dataset alignment

Interpreting the results from the alignment of the
ethionine dataset is not as straightforward as for the
synthetic Arabidopsis dataset as the Y-block (class label)
is not as well defined. Here, we have adopted a similar
approach as used with the Arabidopsis data but settled for
PCA models since PCA often is used for assessing
metabolic trajectories. In this experiment, we have used
the full set of GFHT-aligned and bucketed variables, two
sets (GFHT and bucketed) where the variables are the ones
with intensity of 5% of the maximum intensity (n=817,
183) and finally two sets where the intensity is less than
0.5% of maximum intensity (n=435, 142). In the score
plots, Fig. 5, of these six models, we can see that indeed
the scores patterns of the full models are similar. This is
expected since both models are reflecting the most
intense (varying) peaks—these should be represented in
both the bucketed and GFHT-aligned data. At the 5%
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3.3 3.35 3.4 3.45 3.5
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Fig. 6 Awider region of the ethionine data with GFHT-aligned peaks.
Red peaks are assigned from the HIT partition assigned by the single
high-dose samples. Black peaks are assigned from the rest of the

samples. The alternating gray/white fields indicate typical buckets
(0.04 ppm)
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cutoff, we can see that the bucketed data still has some
ability to separate the dosed time points whereas the
GHFT-based model indicates an even more refined model
compared to the model of the full data. The two
phenomena seen in the full data are in the 5% GFHT
model almost orthogonal and coinciding with the PC
axes. Examining the 0.5% cutoff models, we can see that
the bucketed data model has lost all separation power
whereas the GHFT-based model still shows good
separation. We interpret these models as that the GFHT
is successfully aligning peaks in the more complicated
ethionine data—even very small peaks. We can also see
that the variability of the controls are increasing for the
bucketed data as the magnitude of the variables is
decreasing, indicating less interpretable PCA models for
buckets with low intensities.

Using the information from the naive partitioning of the
HIT, we also have an opportunity to label the peaks in the
ethionine data according to which local HIT the maxima
were found. In Fig. 6, the GFHT-aligned peaks are shown
for a wider spectral segment. Here, the peaks which were
class-labeled as the single high dose (and hence have a
separate HIT) are plotted in red whereas peaks detected in
the control set are plotted in black. The information this
carries is that there are red peaks that are a consequence of
the dosing event. This can also be seen in the figure—some
of the red peaks are not present in control set. This
information can be further used to either remove data from
the dataset (obvious exogenous compounds) or to focus on
peaks that are present in one partition but not the other
(possible biomarkers). Figure 6 also indicates the extent of
information loss when using bucketing—there are many
peaks in each bucket for the ethionine data; the information
each of these peaks carry is lost or confounded when
bucketed.

Conclusions

The alignment results supported by the validation method
demonstrate that the extended GFHT alignment method
presented in this paper works for more complex samples
such as urine.

The extended GFHT can effectively use the deter-
ministic nature of peak shifts in 1H-NMR data to
construct a multicomponent shift model for the shifts of
all detected peaks using mode support, i.e., using peak
location and shift information from many samples. The
Hough indicator tensor maxima location establishes the
linear combinations of the MCSM (αi) necessary to
predict the location of all corresponding peaks in the
analyzed dataset, hereby establishing intrasample peak
correspondence.

The existence of a finite number of peak shift patterns
holds true for the two datasets examined in this work and
there is reason to believe it holds for any 1H-NMR dataset
which indicates that the peak shifts in 1H-NMR data are
deterministic (we have successfully analyzed several
H-NMR datasets).

The extended GFHT hereby solves the correspondence
problem for any dataset for which a multicomponent peak
shift model with a finite number of parameters can be
established.

We show that the HIT carries additional information to
the intrasample peak locations, i.e., there is support for
multiplet correspondence assignment in all 1D spectra
analyzed.

We show that the partitioning of the HIT can be used to
establish peak origin in time series or data with other
known partitions.

We (implicitly) show that the postalignment informa-
tion carried by low-intensity peaks is more readily
available after alignment with GFHT, opening an
opportunity for the field of metabolic profiling to
establish more confidence about the generated data and
to look further than the usual suspects when searching
for biomarkers or biopatterns.

Lastly, we emphasize that the GFHT method presented,
unlike many other methods, is symmetric, i.e., the order of
which the spectra are analyzed does not influence the
alignment results and that the GFHT is capable of aligning
peaks which change order.
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