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Abstract This article describes the use of the net analyte
signal (NAS) concept and rank annihilation factor analysis
(RAFA) for building two different multivariate standard
addition models called “SANAS” and “SARAF.” In the
former, by the definition of a new subspace, the NAS
vector of the analyte of interest in an unknown sample as
well as the NAS vectors of samples spiked with various
amounts of the standard solutions are calculated and then
their Euclidean norms are plotted against the concentration
of added standard. In this way, a simple linear standard
addition graph similar to that in univariate calibration is
obtained, from which the concentration of the analyte in the
unknown sample and the analytical figures of merit are
readily calculated. In the SARAF method, the concentration
of the analyte in the unknown sample is varied iteratively
until the contribution of the analyte in the response data
matrix is completely annihilated. The proposed methods
were evaluated by analyzing simulated absorbance data as
well as by the analysis of two indicators in synthetic
matrices as experimental data. The resultant predicted
concentrations of unknown samples showed that the
SANAS and SARAF methods both produced accurate
results with relative errors of prediction lower than 5% in
most cases.

Keywords Standard addition .Multivariate calibration .

Net analyte signal . Rank annihilation factor analysis

Introduction

A big role of chemometrics in analytical chemistry is
instrumental specialization. In other words, multivariate
calibration models are built to provide selectivity for a
multivariate analytical instrument in the presence of direct
interference. Direct or spectral interferences in chemical
analysis based on spectroscopic methods are those which
arise when a sensor is not completely specific for the
analyte and are quite common in most spectroscopic
methods of analysis. So, the development of multivariate
calibration methods such as principal component regression
and partial least squares (PLS) [1–3] reduced the problem
of direct interferences.

Calibration is the method of relating the known state of a
system to measured data collected from the system.
Generally, analytical signals can be classified as zero order
(e.g., include absorbance at a single wavelength, a single
pH measurement, or a single temperature measurement),
first order (e.g., absorption spectra, emission spectra,
chromatograms, and kinetic profiles), and second or higher
order (e.g., many hyphenated chemical analysis techniques
such as fluorescence excitation–emission spectra, chroma-
tograms with diode-array detection, and kinetic profiles
collected with array detectors) [4]. Multivariate calibration,
then, is the process of relating the known state of a system
to a series of measured variables describing the system. So,
it is clear that multivariate calibration is applicable to first-
or higher-order data. Nowadays, since many of the data
collected by analytical scientists are at least first order, the
use of multivariate calibration is becoming routine.
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For the compositional analysis of an unknown mixture,
another very serious problems that appears while using a
first-order multivariate model is the presence of an
unexpected interference that may render a chemical
analysis invalid [5–7]. This problem is named “indirect
interferences” (or “matrix effect”), which affect the signal
produced by the analyte of interest by alteration of, e.g.,
viscosity, surface tension, vapor pressure of the sample
solution, or pH and the other interactions between the
analyte and the other substances present in the sample
solution. The standard addition method (SAM) is a well-
known way to solve the problem of the matrix effect [8, 9].

In the presence of both direct and indirect interferences,
the analysis is accompanied by some complexity, and
specific approaches (e.g., combining different methods such
as matrix simulation, SAM with different multivariate
calibration methods) should be employed. In the case of
very complex samples, the usual way is to build the model
from samples that have a nature similar to that of unknown
samples. The analytes of interest are determined in these
samples using standard methods and their concentration is
related to the spectrum of the sample in the calibration step.
In this way, urea and uric acid in human blood plasma [10],
glucose in blood [11], protein, fat, and water in meat [12],
and reducing sugars, humidity and acidity in honey [13]
were determined. This method requires the collection of a
large number of calibration samples to get a representative
set that properly spans all known sources of variation.

Another well-known way to solve the matrix effect, or
indirect interferences, is the generalized SAM (GSAM)
proposed by Saxberg and Kowalski [14]. It was the
generalization of the conventional (univariate) SAM in
multicomponent analysis. The GSAM can be applied in the
presence of both direct and indirect interferences. The
GSAM provides a means of detecting interference effects,
quantifying the magnitude of the interferences, and simul-
taneously determining analyte concentrations in different
branches of analytical chemistry [15, 16]. However, if there
was an unexpected and uncalibrated interference in the
standard addition set, the GSAM as a first-order SAM
could not eliminate its influence. Osten and Kowalski [17]
proposed a method based on curve resolution and a
calibration technique for background detection and correc-
tion in multicomponent analysis, but unfortunately this
method cannot provide a unique solution, because it is
applied to one-dimensional analytical signals. So, the
GSAM was extended to two-dimensional bilinear data to
reduce the problem [18].

Currently, the best choice to cover all indirect, direct,
and uncalibrated interferences is the second-order SAM
(SOSAM) [19]. The generalized rank annihilation meth-
od (GRAM) as a second-order calibration method has
been combined with SAM for high-performance liquid

chromatography–diode-array detection data [20]. But
since the GRAM is restricted by one mode having
maximally dimension two (i.e., two samples), this
application has been limited to only one addition for
each sample. Booksh et al. [21] have extended the SAM to
second-order instrumentation using trilinear decomposition.
Other methods, such as alternative trilinear decomposition
and parallel factor analysis, are also applied as the
decomposition tool in SOSAM [19, 22]. Although SOSAMs
have a high power in resolving matrix effect problems, the
first-order SAMs are still employed for different analytical
purposes. The first-order instruments are simpler and cheaper
than second-order apparatuses. In addition, SOSAMs need
specific types of instruments, which are not ready available
in all laboratories. So, in the absence of unexpected direct
interferences, a first-order SAM, e.g., the GSAM, could be
applied well.

Net analyte signal (NAS) calculation [23] is a well-
known and efficient method introduced as a powerful tool
in the development of new multivariate calibration
methods [24–27], wavelength selection and outlier detec-
tion [28, 29], multivariate figures of merit calculation [23,
24, 30], and the development of new spectral preprocess-
ing methods [31–36]. All of the NAS-based methods share
a similar idea, which is extracting a part of the signal that
is directly related to the concentration of the analyte of
interest, and which is hence useful for prediction purposes
[4, 24]. Applications to complex samples of biomedical
and pharmaceutical origin have recently been described
[27, 29, 31, 32, 35], including a case in which NAS
calculations enabled a significant reduction in the number
of calibration samples required [29]. By tacking the
Euclidean norm of the multivariate NAS vector, one
obtains the analogue of the univariate scalar signal, which
is directly related to the analyte concentration. In this way,
the multivariate model is represented as a univariate
calibration graph [37].

In this work, we used the concept of NAS calculations to
represent a first-order multivariate SAM as a univariate
standard addition graph. In this method, called “SANAS,”
the NAS vectors of the absorption spectra of an unknown
solution, spiked with various amounts of the standard
analytes, were converted to a scalar signal and then plotted
against the concentration of the added standards. By using
the resulting plot, we also calculated the figures of merit.
The method was applied to the spectrophotometric simu-
lated data as well as analysis of two indicators in synthetic
matrices. For comparison, the standard addition spectro-
photometric data were also analyzed by the rank annihila-
tion factor analysis (RAFA) method [38]. In this method,
called “SARAF,” the concentration of the analyte in the
unknown sample was iteratively changed until the rank of
the original data matrix was annihilated by one.
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Theory

Net analyte signal

In the current presentation, the data follow the Beer–
Lambert law for spectroscopic (linear and additive)
signals. NAS for an analyte is defined as the part of its
spectrum that is orthogonal to the spectral space of the
other sample components [23]. The theory of NAS
calculations has been described in detail elsewhere. The
NAS vector of the kth analyte in a multicomponent
mixture (r�k) can be computed by finding the orthogonal
part of its spectrum (rk) with respect to the contribution of
all other coexisting constituents:

r�k ¼ I� R�kR
þ
�k

� �
rk ; ð1Þ

where R−k represents the matrix of spectra with all
components in the mixture except the kth component,
Rþ

�k represents the Moore–Penrose pseudo inverse of R−k,
and I is an identity matrix having the same dimension as
R�kRþ

�k . The spectral variation caused by fluctuation of
instrumental and environmental conditions is also includ-
ed in the R−k matrix. The matrix (I� R�kRþ

�k ) is a
projection matrix that projects rk onto the null space of the
rows of R−k, which is the orthogonal complement of the
column space of R−k. In the classical calibration, R−k is
simply considered as pure spectra of all coexisting
components, except the analyte [23]. Several approaches
have also been proposed to obtain R−k and to construct the
projection matrix to use in a practical inverse calibration.
Lorber et al. [24], Berger et al. [25], Xu and Schechter
[26], and Goicoechea and Olivieri [27] used different
algorithms to find the R−k matrix. Here, we use the inverse
approach of Lorber et al. [24] based on RAFA for
computation of R−k. In this method, the absorbance data
matrix of calibration mixtures (R) is reproduced by
principal components analysis (PCA), or PLS using f
significant principal components, yielding Rreb. Then a
rank annihilation step in the f-dimensional space is used to
find the part of the original matrix spanned by the
interferences:

R�k ¼ Rreb � abckrT; ð2Þ
where bck is the projection of the vector of analyte
concentration ck onto the f-dimensional subspace and is
calculated by ĉk ¼ RrebRþ

rebck. The vector r is related to
the pure spectrum of the kth analyte or a linear
combination of the rows of R, which is chosen to include
a contribution from the spectrum of the kth analyte.
Although any reasonable spectrum can be used for this
purpose, it is recommended to use a spectrum that
contains maximal information on the analyte; therefore,

the pure spectrum of the kth analyte is the best choice. The
scalar α can be calculated as

a ¼ 1
�
rTRþ

rebbck : ð3Þ

Standard addition by NAS (SANAS)

Consider that the analysis of an unknown sample contain-
ing p different analytes is requested. To do standard
addition, a calibration set of standard mixtures of the
analyte, the same as those used in simple multivariate
calibration, is provided. If n standard solutions are used, the
concentration data are collected in a matrix Cs (n×p). These
solutions are prepared in a series of volumetric flasks
containing the same amounts of the unknown sample. The
absorption spectra of the resulting solutions are recorded,
digitized, and then collected in a standard addition data
matrix, Rsa (n×m), where m is the number of absorbance
readings per spectrum. A solution containing only the
unknown sample, without added standards, is also provided
and its absorption spectrum is collected in a row vector, run.
To calculate R−k by Eq. 2, the concentration of the analyte
of interest in the solutions is required. The concentration of
the analyte of interest in each standard addition solution (ck)
is equal to the concentration of the analyte in the unknown
sample (cuk) plus the concentration of the added standard
(csk), so ck=csk + cuk. Since cuk is not available, calculation
of R−k by Eq. 2 is not straightforward. The second way to
calculated R−k is using the pure spectrum (sk) of the kth
analyte; however, because of the matrix effect, sk cannot be
calculated correctly and therefore this method is also not
applicable.

In attempts to find a way to calculate R−k, the following
invention was made for this article. Each row vector of Rsa

[i.e., Rsa(i)] can be considered as the sum of the absorption
spectrum of the unknown sample and that of the standard
mixture added to the unknown sample:

RsaðiÞ ¼ ru þ RsmðiÞ; ð4Þ
where Rsm contains the absorption spectra of the calibration
set standards in the presence of the matrix effect. This is
shown graphically in Fig. 1. Therefore, by subtracting the
unknown absorption (ru) from Rsa, we can obtain the
absorption matrix of the standards only (Rsm) that are
affected by the unknown matrix. The subscript “sm” is used
to denote both the standard solution and the matrix effect.
Rsm can be decomposed to the concentration and pure
spectrum data matrices according to the Beer–Lambert law:

Rsm ¼ Cs Sm; ð5Þ
where the rows of Sm are the pure spectra of the analytes
affected by the unknown’s matrix. Since the concentrations
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of standards producing Rsm are known, this matrix can be
used for calculation of R−k. To do so, Rsm is subjected to
PCA or PLS analysis and then is reproduced by using the
first f significant principal components to produce Rsa,reb,
and then R−k is simply calculated using Eq. 2.

Consequently, the NAS vectors of the kth analyte in the
standard addition samples are calculated by replacing rk in
Eq. 1 by Rsa,reb:

R�
sa;k ¼ I� R�kR

þ
�k

� �
Rsa;reb; ð6Þ

where Rsa,reb is the Rsa (matrix of standard addition data)
that is rebuilt with the appropriate number of factors. The
row vectors of R�

sa;k represent a direct relationship with the
concentration of the kth analyte in standard addition
samples (the summation of unknown and added standard
concentrations). By plotting the Euclidean norm of these
vectors R�

sa; k

��� ���� �
against the concentration of the added

standards of the kth analyte, one obtains the standard
addition graph (Fig. 1).

Standard addition by RAFA (SARAF)

Generally, the rank of a nonsquare matrix can be reduced
using Weddeburn’s formula [39]. RAFA is another rank
reduction method [38], and enables one to determine the
analyte of interest in the presence of unknown interferences
using a single calibration sample. SARAF and SANAS
have similar theory and therefore they have many common
steps. Equation 2 for calculating R−k was derived by Lorber
et al. [24] on the basis of a noniterative inverse RAFA. In
this equation, if ck has been selected correctly, R−k will
have one rank lower than that of the original data matrix. In
the SAM, owing to the unknown value of the analyte's

concentration in the unknown sample, ck is not available for
Rsa. As noted previously, ck=csk+cuk. Thus, to determine the
correct value of ck, cuk is iteratively varied and in each
iteration ck and then R−k are calculated:

R�k ¼ Rreb � a cuk þ cskð ÞrT: ð7Þ
In classical RAFA, the contribution of the analyte of

interest in the absorbance data matrix (Rk) is annihilated
directly. According to the Beer–Lambert law, Rk can be
calculated as

Rk ¼ ckskm
T ¼ cuk þ cskÞskmT;

�
ð8Þ

where skm is the sensitivity vector of the kth analyte affected
by the unknown's matrix, which can be calculated by least-
squares regression of Eq. 5:

Sm ¼ Cþ
s Rsm: ð9Þ

It should be noted that the calculated Sm is the same for
Rsm and Rsa. Therefore, the annihilation of the contribution
of the kth analyte from the standard addition absorbance
data matrix can be easily achieved:

R�k ¼ Rsa � cuk þ cskð ÞskmT
� �

: ð10Þ
Only at one specified value of cuk the rank of R−k is

annihilated by one, which is the correct value of the analyte
concentration in the unknown sample. PCA can be used to
determine at what value of cuk rank annihilation has
occurred. The use of relative standard deviation (RSD) is
a common method applicable for determination of the
number of principal components [40]:

RSDðf Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼fþ1

ei

 !,
m n� fð Þ½ �

vuut ; ð11Þ

where ei is the ith eigenvalue, and n, m, and f are the same
as defined previously. At the correct value of cuk, the rank
of R−k is f−1 and therefore its fth RSD is at the minimum
value.

Experimental

Instrumentation

Electronic absorption measurements were carried out using
an Ultraspec 4000 spectrophotometer (Phamacia Biotech,
UK), equipped with 10.0-mm quartz cells. Absorbance data
were collected using the Swift(II) software program of the
instrument, and were then transferred to a Pentium IV
personal computer with the Windows XP operating system
for subsequent manipulation. All necessary programs were
written in a MATLAB (version 7, The MathWorks)

Rsa Ru Rs= +Rsa Ru RsRsaRsa RuRu RsRs= +

ru

ru

ru

ru

rs4

rs3

rs2

rs1

Rsa = +
ru

ru

ru

ru

rs4

rs3

rs2

rs1

RsaRsa = +

Fig. 1 The SANAS method
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environment. pH measurements were performed with a
Metrohm 707 (Switzerland) pH meter equipped with a
combined glass electrode.

Reagents

All experiments were performed with analytical reagent
grade chemicals. Stock solutions of alizarin red S (ARS)
(0.01 mol L−1), Bengal rose B (BRB) (0.01 mol L−1),
cetyltrimethyl ammonium bromide (CTAB) (0.01 mol L−1),
and phosphate buffer of pH 7 (0.05 mol L−1) were prepared
by dissolving suitable amounts of the compounds in doubly
distilled water. The standard solutions were obtained daily
from these solutions by appropriate dilutions.

Simulated data set

Spectra were simulated as a sum of Gaussian functions,
calculated at constant intervals (200 channels). Ternary
mixtures of three analytes (A1, A2, and A3) were assumed.
Figure 2 shows the generated pure absorption spectra of the
analytes in pure form and in the presence of the matrix
effect. Many unknown samples with randomly generated
concentration combinations, which were evenly distributed
in the range 0.0–1.0 with a mean of 0.5 and unit standard
deviation, were used. In addition, a calibration set com-
posed of nine standard samples was also generated. The
response data were calculated by postmultiplication of the

concentration by pure spectra considering the signal
additive principle. Normally distributed homoscedastic
noise at a given level (standard deviation of absorbance
unit) was added to the exact data.

Experimental data set

The unknown sample was a synthetic mixture of two
indicators, ARS and BRB, in a complex matrix composed
of high concentrations of CTAB (0.01 M) and phosphate
salts (0.05 M, pH 7). Some binary mixtures of ARS and
BRB with different concentrations were prepared in the
synthesized matrix (Table 1). The linear dynamic range of
each analyte was determined separately and the amounts of
analytes in unknown samples and standards were selected
in their corresponding linear ranges.

The calibration standard set was composed of nine
randomly designed binary mixtures of indicators, where in
the first sample the concentrations of both analytes were
taken as zero (Table 2). These solutions were used for
standard addition experiments. In the case of each unknown
sample, to a series of nine volumetric flasks (10.0 mL)
containing a constant amount of unknown sample (i.e.,
1.0 mL) were added desired volumes of 0.01 M indicators
(to reach to the final concentrations indicated in Table 2)
and the mixtures were then diluted to the mark with doubly
distilled water. The absorption spectra of the resulting
solutions were recorded in the wavelength range from 300
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Fig. 2 Pure spectra of three
analytes in the simulated data set
in pure form (left) and in the
presence of a matrix effect
(right)

Multivariate standard addition method solved by net analyte signal calculation and rank annihilation factor analysis 1969



to 700 nm at 2,500 nm/min scan rate. The absorption
spectrum of each sample, digitized in 1-nm intervals, was a
row of the Rsa matrix, whereas the first solution, containing
no added standard, was selected as the unknown sample
(ru). By subtracting ru from every row of Rsa, we obtained
Rsm.

The 450–650-nm wavelength interval was selected from
the total recorded spectra to continue the calculations and
analysis. The dimensions of available matrices for analysis
were 9×201 (Rsa), 9×201 (Rs), 1×201 (ru), and 9×2 (Cs).

Figures of merit

The selectivity, sensitivity, and limit of detection (LOD) in
multivariate calibration can be calculated to study the
quality of a given analytical method using the NAS concept
[23]. If Rsa,reb in Eq. 6 is replaced by Rsm,reb, the result will
be the NAS of the calibration standards affected by the
unknown matrix R�

sm

� �
. The variances of this matrix are

directly related to the concentration of the analyte of
interest in the calibration set:

R�
sm ¼ cks

�
k ; ð12Þ

where s�k is the net sensitivity vector of the kth analyte. The
ratio of the norm of this vector to the norm of the pure
spectrum gives a measure of multivariate selectivity:

SELk ¼
s�k
�� ��
skk k : ð13Þ

The sensitivity for the kth analyte was calculated using
the following equation [23]:

SENk ¼ s�k
�� ��: ð14Þ

We can also calculate the LOD, as another important
figure of merit, using the following equation [4]:

LODk ¼ 3 "k k
s�k
�� �� ; ð15Þ

where ε is a measure of the instrumental noise at different
wavelengths. The value of ||ε|| was estimated, in turn, by
registering spectra for several blank samples and calculating
the norm of the NAS for each sample and the corresponding
standard deviation. The latter was taken as an approximation
to ||ε||.

Results and discussion

Simulation data

Many synthetic unknown samples containing three analytes
were examined. The hypothetical spectra of the compounds
in pure form and in the presence of matrix effects are
shown in Fig. 2. Obviously, the absorption spectra were
assumed to be highly overlapped so that those of analytes
A2 and A3 are overlaid under the spectrum of A1. To study
the noise effect, different amounts of homoscedastic noise
(random error with standard deviation of absorbance unit)

Sample ARS concentration (×105M) BRB concentration (×106M)

1 0.0 0.0

2 1.0 10.0

3 4.0 7.0

4 9.0 4.0

5 2.0 5.0

6 5.0 6.0

7 7.0 1.0

8 10.0 2.0

9 3.0 8.0

Table 2 Composition of
calibration standards added to
each of the unknown
experimental samples

Sample ARS concentration (×105M) BRB concentration (×106M)

1 1.0 2.0

2 2.0 3.0

3 4.5 1.5

4 7.0 5.0

5 5.0 3.5

6 4.0 6.0

Table 1 Composition of
unknown experimental samples

ARS alizarin red S, BRB Bengal
rose B
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were added to both ru and Rs before constructing Rsa. The
resultant standard addition plot obtained by the SANAS
method in the presence of noise (0.02 standard deviation of
the signal) for one of the hypothetical unknown mixtures
(with the composition A1 0.40, A2 1.10, and A3 0.75) is
represented in Fig. 3a. Obviously, linear standard addition
plots similar to those of univariate standard addition were
obtained. The intersection of the linear calibration graph
and the concentration axes gives accurately the negative
sign of the analyte’s concentration in the unknown mixture.
Table 3 lists the results for analysis of the hypothetical
unknown mixture in the presence of different added noise
levels. .The simulation was done 1,000 times with the same
conditions (noise level, peak positions of analyte concen-
tration). The mean of 1,000 prediction values is reported
together with their standard deviation in parentheses. As
observed, approximately accurate and precise results were
obtained even in the presence of noise, with a standard
deviation of 0.005 to 0.02. Similar results were obtained for
analysis of other hypothetical unknown mixtures.

The simulated standard addition data sets were also
analyzed by the SARAF method. The variation of the RSD
against the analyte concentration for the unknown sample
mentioned above is represented in Fig. 3b. As observed, the
RSD passes through a distinct minimum at the actual
concentration of the analyte in the unknown sample. The
results obtained at different noise levels (Table 3) confirm
the good accuracy and precision of the SARAF since even
in the presence of 0.02 noise levels, the analyzed and actual
values are completely matched for all analytes. The same
results were obtained for analyses of other unknown
samples.

Experimental data

In this section the result of applying two proposed
multivariate SAMs to the spectrophotometric data of the
binary mixtures of two indicators, i.e., ARS and BRB, in
the presence of a significant matrix effect will be discussed.
As observed from Fig. 4, the absorption spectra of the
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indicators represent a clear shift in going from pure water to
the synthetic unknown matrix. The unknown matrix not
only changed the peak position of the indicator’s spectrum
but it also affected the peak intensity. As shown in Fig. 4,
the unknown matrix shifted the absorption spectra of both
indicators to higher wavelengths. An increase in absorbance
of ARS and a decrease in absorbance of BRB are observed
in the presence of the unknown matrix. Owing to high
overlap between the absorption spectra of the indicators
on one hand and significant matrix effects on the other
hand, the simultaneous spectrophotometric determination
of these indicators in this matrix is not feasible by the
conventional univariate SAM. On the other hand, such
analysis will be feasible by using the SAM combined with
multivariate calibration, i.e., SANAS and SARAF methods.
To examine the performances of the proposed methods,
some binary synthetic unknown mixtures of the indicators
(Table 1) were analyzed. For the SAM, in the case of each
unknown sample, nine randomly designed standard solutions
(Table 2) containing the same amount of unknown sample
were prepared and their absorption spectra were recorded.

The number of principal components used for calculat-
ing Rsa,reb from Rsa was obtained using leave-one-out
cross-validation. For all unknown samples, optimum results
were obtained by using two principal components for both
analytes. The resultant SANAS plot is represented in Fig. 5
for one unknown sample (i.e., sample 2 in Table 1), and the
predicted concentrations of the indicators in all unknown
samples by the SANAS method are listed in Table 4. The
plots shown in Fig. 5 clearly indicate the success of the
proposed SANAS method in converting second-order data
of experimental samples to univariate order so the data can
be easily seen and interpreted. On the other hand, a close
agreement between the actual and predicted values of the
concentrations of both analytes in unknown samples is
found. The relative errors are in a reasonable range. All the
predicted ARS concentrations have a relative error with an
absolute value almost smaller than 9% and in most cases
lower than 4%. The predicted concentrations of BRB
represent relative errors smaller than 4.4%, except for
samples 1 and 3, which have relative errors of 6.78 and
9.07%, respectively.

The results of the analysis of the multivariate standard
addition data by the SARAF method are also represented in
Table 4. The corresponding SARAF plots for unknown
sample 4 (Tables 1 and 4) are shown in Fig. 6. As observed,
the SARAF plots reached a distinct minimum at a
concentration equal to that in the unknown sample. Similar
observations were obtained for other unknown samples. The
relative errors of prediction obtained by the SARAF method
(Table 4) confirm that this proposed method has a very good
prediction ability for unknown concentrations especially for
BRB. The relative errors are lower than 5% in most cases. A
comparison between the results obtained using SANAS and
SARAF shows that both methods gave comparable results,
whereas the latter produced better results in some cases.

A comparison was also made between the methods
proposed in this article and the well-known GSAM
proposed by Saxberg and Kowalski [14]. In this case,
PLS regression was used to model the relationship between
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Table 3 Mean value and standard deviation of the predicted concentrations obtained by applying SANAS and SARAF for the 1,000 repeatedly
simulated data containing three analytes A1, A2, and A3 with concentrations of 0.40, 1.10, and 0.75, respectively

Standard deviation of random noise SANAS SARAF

A1 A2 A3 A1 A2 A3

0 0.400 (±0.000) 1.100 (±0.000) 0.750 (±0.000) 0.400 (±0.000) 1.100 (±0.000) 0.750 (±0.000)

0.005 0.411 (±0.017) 1.083 (± 0.022) 0.747 (±0.007) 0.421 (±0.030) 1.032 (±0.027) 0.741 (±0.006)

0.01 0.431 (±0.029) 1.054 (±0.039) 0.746 (±0.012) 0.436 (±0.012) 1.140 (±0.078) 0.760 (±0.025)

0.02 0.438 (±0.042) 1.024 (±0.056) 0.768 (±0.020) 0.441 (±0.072) 1.190 (±0.069) 0.771 (±0.028)

The values in parentheses are the standard deviations of the 1,000-times simulations
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Rsm and ck and then the calculated regression coefficients
were premultiplied by Rsa to calculate the total analyte
concentrations in the standard addition samples. The
analyte’s concentration in the unknown sample was
calculated by subtracting the standard concentrations from
the calculated concentrations in the previous step. The
results are represented in the last four columns of Table 4. It
is clearly observed that the GSAM produced underesti-
mated values in comparison with SARAF in most cases,
whereas comparable relative prediction errors were
obtained by SANAS and the GSAM in most cases and
better results were obtained by SANAS in some cases.

Thus, it could be said that SARAF resulted in almost better
predictions. However, it is difficult to prefer SANAS over
the GSAM for prediction error, but SANAS is a simple
method creating a visual standard addition plot.

The lower prediction errors obtained using SARAF can
be attributed to the limited numbers of calculation steps
without the need to obtain a projection matrix as is used in
SARAF (Eqs. 1 and 6). In addition, the objective function
in SARAF is matrix rank and the rank annihilated matrix
(R−k) is simply calculated by matrix subtraction (Eq. 10).
Moreover, random noises cannot significantly affect the
rank determination by PCA. The RSD value calculated by

Table 4 The predicted concentration of indicators in unknown samples and the percent relative errors obtained by three different multivariate
standard addition methods

Sample Actual values SANAS SARAF GSAM

Predicted Relative error Predicted Relative error Predicted Relative error

ARS BRB ARS BRB ARS BRB ARS BRB ARS BRB ARS BRB ARS BRB

1 1.0 2.0 0.90 2.14 −9.77 6.78 1.01 2.11 1.0 5.5 0.86 2.10 −14.2 5.0

2 2.0 3.0 1.93 3.12 −3.69 4.09 2.00 3.08 0.2 2.7 1.92 3.09 −4.0 2.8

3 4.5 1.5 4.40 1.64 −2.26 9.07 4.21 1.53 −6.4 2.0 4.37 1.61 −2.8 7.7

4 7.0 5.0 7.22 5.01 3.14 0.16 7.11 4.88 1.6 −2.4 7.17 4.97 2.4 −0.7
5 5.0 3.5 5.24 3.59 4.86 2.67 5.16 3.52 3.2 0.6 5.24 3.55 4.7 1.6

6 4.5 8.0 4.42 7.95 −1.88 −0.57 4.11 7.95 −8.7 −0.6 4.07 8.00 −9.5 0.1

The concentration unit of ARS is ×105 M and that of BRB is ×106 M

GSAM generalized standard addition method

y = 0.259x + 0.5009

R2 = 0.9994

0.00
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Fig. 5 SANAS plots of
unknown sample 2 with actual
concentrations of 2×10−5M
ARS and 3×10−6M BRB
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Eq. 11 is a measure of random error in the data and in rank
annihilation analysis it reaches a minimum value (at the
correct value of cun) irrespective of the random noise level
[38]. In SANAS, errors in Rsa are propagated to the NAS
vectors of analyte k R�

sa;k

� �
, which are subsequently

propagated to the NAS standard addition plot. In other
words, the slope and intercept of the SANAS plot are
sensitive to the random errors or the presence of outliers.
Hence, the values predicted by SANAS are more affected
by random (or even systematic) errors with respect to
SARAF. A similar discussion can be given for the lower
prediction ability of the GSAM compared with SARAF.
Actually, the random (or systematic) errors in Rsm are
propagated to the regression coefficients obtained by the
least-squares methods (such as principal component
regression and PLS), which are then propagated to the
predicted concentration of unknown samples using the
calculated regression coefficients. As a conclusion, since
the concentration of the unknown sample determined by
SARAF is not calculated by regression coefficients or
regression lines, it is less affected by the error propagation
from the original data. However, this should be examinedmore
by application of these methods to different samples using
different analytical data (e.g., fluorescence, voltammetry,
chromatography).

One of the well-known applications of NAS in multi-
variate calibration is the calculation of figures of merit.

After calculating Rsm, which contained spectral information
on nine calibration mixtures of both indicators in the
presence of matrix effects, we calculated the NAS vectors
of these mixtures R�

sm

� �
for each analyte by replacing Rsa,reb

in Eq. 6 by Rsm,reb. Then analytical figures of merits (i.e.,
selectivity, sensitivity) were calculated using Eqs. 12–15.
The results are listed in Table 5. As observed, for both
indicators similar selectivity was obtained.

Conclusion

By application of NAS calculations to the multivariate
standard addition data, the two-dimensional array of
absorbance data was successfully converted to a one-
dimensional array, similar to the univariate SAM. The
resultant SANAS plot allowed us to calculate the concen-
tration of interfering analytes in the unknown samples with
a significant indirect matrix effect. Also, the proposed
method was used to calculate the analytical figure of merit
in multivariate calibration. The prediction results for both
simulated and experimental data confirmed the power of
the SANAS method in analyzing multivariate standard
addition data. On the other hand, better results were
obtained when the data were analyzed by the SARAF
method, a combination of the SAM and the RAFA method.
In spite of the higher accuracy of the SARAF method, it
cannot produce a visualized standard addition graph.
Although the proposed methods produced results comparable
with those of the well-known GSAM, they have the
advantages of simplicity and data visualization ability.

Owing to the order-reduction ability of the NAS
calculations and some limitations of the three-way SAMs,
the proposed SANAS method may also be used for
analyzing second-order data and converting them to simple

Table 5 Figures of merit for analysis of indicators

Selectivity Sensitivity (M−1)

ARS 0.624 2.62×104

BRB 0.623 2.33×105

Fig. 6 SARAF plots of unknown sample 4 with concentrations of 7×10−5M ARS and 5×10−6M BRB
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univariate calibration graphs. Study of this topic is in
progress in our research group.
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