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Abstract In metabonomics it is difficult to tell which peak
is which in datasets with many samples. This is known as
the correspondence problem. Data from different samples
are not synchronised, i.e., the peak from one metabolite
does not appear in exactly the same place in all samples.
For datasets with many samples, this problem is nontrivial,
because each sample contains hundreds to thousands of
peaks that shift and are identified ambiguously. Statistical
analysis of the data assumes that peaks from one metabolite
are found in one column of a data table. For every error in
the data table, the statistical analysis loses power and the
risk of missing a biomarker increases. It is therefore
important to solve the correspondence problem by synchro-
nising samples and there is no method that solves it once
and for all. In this review, we analyse the correspondence
problem, discuss current state-of-the-art methods for syn-
chronising samples, and predict the properties of future
methods.
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Introduction

This critical review focuses on the correspondence problem
and its properties for metabonomics datasets. Starting from
the properties of NMR and chromatography–mass spec-
trometry data, a selection of current state-of-the-art syn-
chronisation methods are discussed. This review is intended
as a guide to the problem and to the current attempts at

solving it. Recent reviews dealing with this problem are
Listgarten and Emili [1] and Vandenbogaert et al. [2]. The
review of Listgarten has a wider scope—statistical methods
for comparative proteomic profiling. Vandenbogaert reviews
alignment of LC–MS images with focus on proteomics and
detection of biomarkers. In this review we give a more in-
depth description of the correspondence problem with focus
on metabonomics data from NMR and LC–MS.

What is correspondence?

The correspondence problem is about arranging things in
their proper place, i.e. putting the right values in the right
rows and columns of a data table. An illustrative example is
shown in Fig. 1. Suppose you want to compare suppliers of
fruit baskets to your office and you have a preference for
green apples. You would like to get the most fruit for your
money but there must not be too few green apples. The fruit
is sorted according to category and weighted. The weight
data are summarized in a data table on which you are going
to base your decision on which supplier to use. The table in
Fig. 1 cannot be used for reliable decision-making because
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of errors with fruits in the wrong columns. The problem
with statistical analysis of metabonomics datasets is fully
analogous, but the errors are less obvious because you
cannot tell the identity of a metabolite by looking at a peak.
In real metabonomics datasets (to be distinguished from
datasets constructed to test biomarker detection) there is no
known ground truth and the integrity of the data table can
only be checked for obvious errors by inspecting the raw
data. A synchronisation method should be without obvious
errors, although, in our experience, obvious errors appear
with most methods. It is often not feasible to check all the
columns of the data table. Obvious assignment errors reduce
the confidence in the assignments that cannot be judged.

What is metabonomics?

Metabonomics is concerned with non-targeted analysis of
biofluids to obtain quantitative or semi-quantitative infor-
mation about as many metabolites as possible. The
biofluids most commonly analysed are plasma, serum, and
urine [3–5], although in the literature there are also reports
of analyses of, e.g., cerebrospinal fluid [6], sweat [7], and
saliva [8].

Whenever non-targeted data are generated, the analysis
is less controlled compared with targeted analyses and the
correspondence problem becomes relevant. Shotgun, or
label-free, proteomics has the same problem with assigning
correspondence.

Metabonomics data and its properties

The most commonly used analytical platforms of metabo-
nomics are NMR, LC–MS, and GC–MS [9]. The data from

the different platforms are associated with their particular
properties and problems. The correspondence problem is
similar for all platforms but there are differences. Whenever
samples are measured there will be positional uncertainty in
the signals. When only a few analytes are targeted this can
be handled by the experimental procedure. In non-targeted
analysis, it is more difficult to optimise the experimental
procedure. The samples cannot be prepared by purification
in the same way and, therefore, the sample matrix will have
a greater effect on the observed data.

1D 1H NMR

One-dimensional 1H NMR spectra of blood plasma or urine
takes the form of a forest of peaks in the region between 0
and 9 ppm. The widths of the peaks are mainly dependent
on the field strength of the magnet (measured in MHz).
Peak shapes are distorted from the ideal Lorentzian shape to
something less symmetric by an inhomogeneous magnetic
field or incomplete phase correction. The positions of peaks
along the ppm axis are sensitive to, e.g., temperature, pH,
and ionic strength [10]. It is, therefore, standard procedure
to buffer the samples and control the temperature during
data acquisition. More about the practical and instrumental
issues of NMR for metabonomics can be found in a recent
review by Fan and Lane [10].

Important properties of 1D 1H NMR data:

& Peak shifts are so large that peaks change order along
the ppm axis.

& Peak-shape distortion by an inhomogeneous magnetic
field may cause problems with peak detection—decon-
volution may give false-positive peaks if a symmetrical
peak shape is assumed.

& Limit of detection is quite high compared with, e.g.,
mass spectrometry.

& A metabolite usually has many different protons giving
rise to several peaks in the NMR spectrum; many peaks
will be also be split into multiplets.

The problem of correspondence for NMR is illustrated in
Fig. 2, in which two extreme spectra are shown in (a) and a
heat map of spectra in order of acquisition is shown in (b).
In (c), the samples of (b) have been ordered on the basis of
the histidine peak at approximately 7.03 ppm. The sorting
reveals that the shifts are structured and that some peaks
change order along the ppm axis.

LC–MS and GC–MS (full-scan MS)

Metabonomics data from LC–MS instruments are often
acquired with electrospray ionization and a high-resolu-
tion mass analyser, e.g. time-of-flight, orbitrap, or ion-
cyclotron-resonance. With GC–MS it is common to use

Fig. 1 Fruit data that illustrate the correspondence problem and
different errors in peak alignment. The amount of fruit is proportional
to the size of the image in the table
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electron ionisation with a quadrupole mass analyser
giving unit resolution in the m/z dimension. The data
have two measurement dimensions: retention time and m/
z, where the retention time dimension has the most peak-
shift problems.

Metabonomics LC–MS data are closely related to
shotgun or label-free proteomics data. The basic data
structure and problems with the data are the same. A
difference is that for metabonomics a protein precipitation
step may be performed rather than protein digestion. The
observed mass range may differ—normally approximately
50–1000 m/z in metabonomics whereas in proteomics data
is acquired in higher mass regions. The low-mass region is

advantageous because mass uncertainty increases with
increasing m/z.

Properties of chromatography-MS data:

& Peaks seldom change order along the retention time
axis, at least not peaks with the same m/z. It can happen
for peaks with different m/z (an example is given in
Fig. 3).

& A metabolite can have multiple signals in the m/z
dimension. These signals come from isotopes, adducts,
and fragments.

& The limit of detection of MS is generally lower than
that of NMR.
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Fig. 2 NMR spectra viewed as
heat maps in which a row repre-
sents a sample and each column
is a ppm value; the intensity is
colour coded. (a) Spectra from
the top and bottom rows of (c).
(b) Spectra in order of acquisi-
tion. (c) Spectra ordered by the
position of the histidine peak at
about 7.03 ppm
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& Chromatography–MS instruments are less stable than
NMR instruments which may cause increased run-to-
run variability.

& The chromatographic separation can be affected by
changes in pH, solvent composition, temperature, col-
umn ageing, etc. Also, the sample matrix is an important
factor in retention-time differences between samples.

The correspondence problem for chromatography–MS
data is less complicated than for NMR in respect of peaks
changing order. On the other hand there are two dimensions
to consider. Keeping isotopes, adducts, and fragments of a
single metabolite together, while allowing peaks to change
elution order may be difficult to combine in an algorithm.

Sources of peak shift

Peak shift can be attributed to three sources:

& instrument drift,
& the chemistry of the sample (matrix) and separation

system (if any), or
& random variation.

Instrument drift as a source of peak shift should be
relatively small; otherwise the experimental procedure
could probably be improved. Nevertheless, there will
always be an element of instrument drift in the data.

The largest source of peak shift is probably the
chemistry of the sample matrix and the separation system.
It is well known that peaks shift more in liquid chroma-
tography than in gas chromatography. In GC the chemical
processes are limited to the interaction between the
stationary phase and the sample constituents. In LC there
is an additional interaction with one or more solvents. The
solvents may undergo changes with time. For instance, the
pH may change slightly as a result of uptake of carbon

dioxide from air, and this could, in turn, affect the retention
behaviour of an acidic compound with pKa close to the pH
of the solvent. This kind of instrument-related chemistry
can be controlled. Thus, a good experimental procedure
minimizes peak shift because of instrument-related chem-
istry. For both GC and LC, column degradation can cause
peak shift and this cannot be prevented. There can also be
an effect of column-to-column differences in the retention
time of the same peak.

The chemistry of the sample cannot be controlled. The only
way to obtain similar properties for different samples is to
dilute them with buffer so that the original sample is a
negligible fraction of the prepared sample. This ruins the
possibility of detecting low-abundance metabolites irrespective
of instrumental technique. The practical compromise is to add a
small volume of buffer to the samples. This will not completely
buffer the sample. A good example is the pH-sensitive citrate
peaks which are notorious for shifting in 1D 1H NMR spectra.
They always shift, even when the samples are buffered.

The situation is not hopeless, chemistry is predictable
and, therefore, there is a possibility of correcting shifts of
chemical nature by the synchronisation method.

The part of the shift that cannot be attributed to either
instrument drift or chemistry can be regarded as random. The
random shift is, hopefully, small and can be handled with
more or less any existing alignment or warping method.

1D 1H NMR presents the greatest synchronisation
challenge where peaks frequently change order along the
ppm axis. In chromatography–MS data, the challenge is to
effectively use the information provided by the mass axis in
the best way, and to handle the larger amount of data.

The correspondence problem and methods
for alignment

Ambiguous correspondence

Although most peaks may have an obvious correspondence,
there are peaks for which there will be a question about
which assignment is correct.

a c

S
am

p
le

 A
S

am
p

le
 B

b

Fig. 4 Three cases of ambiguous assignments. (a) One peak in the
first sample can match either of two peaks in the second sample. (b)
Should both peaks be matched or just one? (c) Peaks changing order
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Fig. 3 Heatmap of 34 samples analysed by LC MS. The two peaks
have different masses, m/z = 316 for the shifting peak and m/z = 512
for the non-shifting peak. Data from Ref. [11]
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We have identified three basic cases of ambiguous
correspondence:

1. One peak in sample A can match either of two peaks in
sample B (Fig. 4a).

2. Two peaks in sample A can match two peaks in sample
B, but with little or no shifting of the peaks the last
peak in A matches the first peak in B (Fig. 4b).

3. Peaks change order between samples A and B
(Fig. 4c).

If there are only two samples one can probably afford to
try all the different assignments. It is not feasible to try all
assignments with multiple samples, because the number of
possible combinations grows too rapidly.

The local environment of other nearby peaks may affect
which assignment is made by the alignment or warping
method. This can lead to the correct assignment but not

always—there are cases where the local environment makes
a method assign the wrong correspondence (Fig. 5).

Information that can help (use of supporting information)

For two-dimensional data, the second dimension (m/z in
chromatography–MS) can contain information that can
facilitate correct peak assignment [12, 13]. Curve resolution
is a good choice for GC–electron ionization MS in which
several metabolites have mass peaks in common because of
extensive fragmentation [13]. In LC–electrospray MS, in
which fragmentation is limited, deisotoping and deadducting
can help produce second-order support. Unfortunately,
isotope ratios are similar for metabolites of similar mass
and exactly the same for metabolites with the same elemental
composition. Adduct formation may be more discriminative
between different chemical species, although the discrimina-
tory power is likely to be low. An advantage of deisotoping
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Fig. 5 Heatmaps of NMR spectra for 112 samples for comparison of alignment methods: (a) raw spectra (bin limits are shown as grey lines), (b)
COW, (c) PTW-2, (d) PTW-8, (e) PARS warping, and (f) FGHT with corresponding peaks are connected by grey lines
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and deadducting is that isotopes and adducts can be kept
together as pseudo-metabolites. The risk that monoisotopic
peak and peaks of higher isotopes or adducts are aligned
differently is eliminated and signal-to-noise is also improved.

The sample dimension can also be helpful. It may be
difficult to discover which the adduct peaks are, but
differences in retention time and intensity between
samples can help. Tentative adduct, fragment, and isotope
peaks can be tested by correlating the retention time
pattern and the intensity pattern with those of the
monoisotopic peak. If correlations are high, the tentative
peak belongs to the same pseudo-metabolite with high
probability, otherwise not. An example, and more detail,
are given in Ref. [14].

Inclusion of information about sample grouping in the
alignment algorithms is recommended in Ref. [1]. This
information can indeed improve the alignment results but
needs to be used with care because it can introduce bias
into subsequent statistical analysis. In the extreme, the
peaks of a differently expressed metabolite may end up as
two different metabolites because of the grouping of the
intensities. The reader with a bias towards statistical
subtleties might enjoy the book “Subset selection in
regression” by Miller [15] in which he analyses the subject
of bias in estimation.

In NMR, all the peaks of a multiplet will have the same
shift. The multiplet structure of proton signals can be used
to improve the possibility of correct assignment.

Methods for solving the correspondence problem

Most methods for solving the correspondence problem can
be classified into one of the following different approaches,
some more naive than others: binning, nearest-neighbour
clustering, warping, and combinations of these.

Every method that compares different alternatives has an
objective function that may be explicitly or implicitly
defined. Explicit objective functions are to be preferred
because they make the algorithms easier to understand
mathematically. If the warping alternatives are evaluated by
algorithmic rules, the objective function is implicitly
defined. That may be the natural human way of trying to
solve the problem by reasoning but it makes the methods
less transparent and more difficult to understand.

Binning

The simplest and most naive method is binning. In the past,
binning has been used frequently, and it still is [16–21]. In
binning, the measurement dimensions are divided into
segments and each segment is assigned a single number
that summarizes the data. The number can, for instance, be
the integral of the intensity or the maximum intensity. Bin

widths are chosen to be greater than the expected peak
shifts. For NMR metabonomics, the golden standard was
binning with bins 0.04 ppm wide. Recent improvements to
binning include mean filtering before using bilinear
modelling (e.g. PCA) [20] and adaptive binning in which
bin limits are located in minima of superpositioned data
[19]. Binning can circumvent ambiguity of type 1 by
combining the two peaks in B in the same bin. This will
partly destroy the information about the individual peaks
and hamper statistical analysis. If the same metabolite has
many peaks, as in NMR, information about the individual
peak intensities can be revealed by use of bilinear
modelling. Bilinear modelling can only partially overcome
the problem with multiple peaks in a single bin. For
example, information about a small peak next to a large
peak may be completely lost because of fluctuations of the
intensity of the larger peak. Binning can also avoid
ambiguity of type 2 by use of large enough bins. If both
peaks in the two samples end up in the same bin, the
problem is solved. In the same way, ambiguity of type 3
can be avoided. The problem with binning is the trade off
between loss of information and solving the correspon-
dence problem. Information is lost when one bin contains
more than one peak. To solve the correspondence problem
the bin limits must be chosen with care. It may even be that
correspondence is impossible to achieve with reasonable
bin sizes. The special case of a single bin always solves the
correspondence problem but is useless for data analysis.
Uniformly distributed bins of the same size will almost
certainly split peaks so that they end up in two adjacent
bins. Using minima of a superposition or another combi-
nation of data from all samples is not guaranteed to solve
ambiguous correspondences correctly.

Binning can be excellent for quickly obtaining an overall
picture of a dataset. One can only expect to find big
changes using binning. Small but significant changes will
probably be obscured because of loss of information. Many
methods have been compared with binning and shown to be
superior [22–24]. The reason why binning is still used
today is that, so far, no method has proven to be sufficiently
easy to use and sufficiently successful in producing better
results. An example is seen in Prince et al. [25], in which
the authors use the method ChAMS [26], which performs
poorly with obvious and gross errors. It is obvious that
ChAMS has a warp path which is too flexible (Fig. 6).
Examples of this kind may scare the non-expert from using
warping or peak alignment methods for sample synchroni-
sation. The non-expert sticks with binning because it is the
“fast food” of synchronisation (you know what you get and
that you get it right away) rather than trying to be chefs of
haute cuisine by using state-of-the-art methods. Binning is
not the best approach but has acceptable worst-case
performance.
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Nearest-neighbour clustering

Next to binning, perhaps the most common way of solving
the correspondence problem is by nearest-neighbour clus-
tering. In many papers different forms of clustering is used
[7, 14, 27–30]. Some methods allow assignment of two or
more peaks from one sample to a cluster [28, 30], resolving
this “collision” later [28]. Not all methods needing collision
resolution use it [31]. Clustering is normally performed on
peak lists and is closely related to binning in minima of
superpositioned data.

When it comes to handling the three cases of ambiguous
correspondence, clustering is quite a naive method. For the
first case the results will be sensitive to the exact position of
the peak in sample A and the peak is likely to get different
assignments in different samples. In the second case, the
last peak in Awill always match the first peak in B whether
this is correct or not. The third case where peaks change
order cannot be assigned correctly. At most, one of the
peaks can be correctly assigned.

Warping

Warping is the term for transforming the measurement
dimension of samples to achieve correspondence. The
simplest example of warping is to offset the retention-time
axis of one sample so that the retention times of the peaks
better match those in a second sample, called the reference
sample. More advanced transformations can, e.g., be linear
[32], a second order polynomial [33], piece-wise linear [34–
36], or based on b-splines [37]. Warping functions are nor-
mally required to be monotonous. Otherwise, loops can be
created on the measurement axis. Loops are undesirable and
lack physical meaning. Warping methods make sense phy-
sically and chemically because peak shifts in, e.g., chroma-

tography are often correlated. If one peak shifts to a later
retention time, neighbouring peaks are likely to do the same,
especially if the peak shift depends on instrument-related
chemistry such as a slight difference in LC gradient or
column degradation. For NMR the situation is more compli-
cated. Some peaks may shift substantially whereas others
with almost the same ppm do not shift at all (Fig. 5). The
warping function can be estimated from the raw data [38, 39],
from peak lists with pre-specified correspondences [40], or
from peak lists without pre-specified correspondences [41].

Warping using raw data Many warping methods which use
the raw data are based on dynamic programming to
evaluate different solutions. Dynamic programming (DP)
is a method of solving optimisation problems by dividing it
into smaller subproblems and using recursion to construct
the globally optimum solution [42]. The typical DP
problem is to find the shortest path between two points in
a connected graph and the solutions to the correspondence
problem can be posed as a graph. Early examples of DP-
based warping for synchronising samples in chemistry is
dynamic time warping (DTW) [38] and correlation opti-
mised warping (COW) [39]. A very good introduction to
both methods is available elsewhere [34]. There are a
number of recent uses and modifications of DTW [25, 26,
43] and COW [37, 44–46].

There are a few methods that are based on local
segment-wise optimisations without trying to achieve a
globally optimum solution [23, 47, 48]. Compared with the
most closely related DP-based method COW, their only
merit is perhaps their computational speed. For compre-
hensive separations, e.g. LC × LC, this seems to be the only
type of method available [49, 50].

Parametric time warping [33] and semi-parametric time
warping [37] use continuous functions to warp the time

Fig. 6 Comparison of OBI-
Warp and ChAMS, where
ChAMS is obviously too flexi-
ble. Known correspondences are
marked with × symbols.
(Reproduced with permission
from Anal Chem (2006)
78:6140 6152. Copyright 2006
American Chemical Society)
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dimension by iteratively minimising the squared difference
between a reference and a sample chromatogram.

The continuous profile model (CPM) method by
Listgarten et al. [51, 52] is a hidden-Markov model for
estimating a true unobserved chromatogram using expecta-
tion maximization. The method was initially designed to
align replicate samples but has been extended to align
samples of different origin [52]. The method is perhaps the
only example of a warping method that does not use a
reference sample—a very tractable feature.

Warping of peak lists Warping using data in the form of
peak lists is perhaps the most diverse field of warping. Two
different approaches can be identified—the landmark peaks
approach and the tentative assignment approach. In the
landmark peaks approach, the warping function is estimated
from landmark peaks with known correspondence. After
warping peak correspondences are reassigned. Some algo-
rithms stop here [40], others refine the warping function
iteratively. The first landmark peaks can be found by
clustering [40, 53, 54] or, in proteomics, by LC–MS–MS
identification [55–57]. The tentative assignment approach
makes a list of possible assignments and uses this list to
estimate the warping function by robust regression [35, 55].

Warp2D [46] extends COW into two dimensions with
overlap between Gaussians in the objective function.

A few methods use successive pair-wise alignments to
avoid specifying a reference sample [58–60].

Peak alignment followed by warping All methods that align
peaks in one dimension can be used for computing a
warping function. Johnson et al. [61] use nearest-neighbour
clustering followed by piecewise linear interpolation be-
tween matched peaks to find a warping function. PARS [24]
uses tentative assignments and constructs a graph problem
that mimics DTW and is solved by dynamic programming.
It is not originally a warping method but a peak alignment
method. For PARS, linear interpolation between matched
peaks produces a piecewise linear warping function.

Warping and ambiguous correspondence For the first case
of ambiguous assignment, warping methods have a greater
chance of finding the correct correspondence than cluster-
ing methods—if there is local support from nearby peaks
with unambiguous correspondence. Then, warping methods
can be expected to find the true solution. If the warping
function is too flexible, however, the warping will collapse
to a nearest-neighbour method.

The second case of ambiguous assignment can, often,
also be handled by warping, again because of support from
unambiguous matches.

The main drawback of warping methods is the necessary
requirement of a monotonic warping function. Warping can,

therefore, not find the correct correspondence for the third
case with peaks changing order. The exception is if peaks
change order in LC–MS and the peaks have different
masses and the mass channels are warped independently.

Warping does not always completely solve the corre-
spondence problem. If the data are to be modelled by bi or
trilinear methods warping the raw data is sufficient. For
further statistical analysis of peak lists, peak detection may
be needed and nearest-neighbour clustering is always
needed. In many warping methods for peak lists, nearest-
neighbour clustering is included in the method and need not
be performed explicitly after warping.

Image-processing methods An interesting and promising,
but currently immature, approach inspired by image regis-
tration is amsrpm [41] which uses robust point matching [62]
to align peak lists. The method is very slow and it is,
therefore, difficult to optimise its parameters [56]. Amsrpm
uses fuzzy correspondence and simulated annealing to match
samples to a reference. The method can also align total-ion
chromatograms. Its ambiguity-resolving properties are sim-
ilar to those of other warping methods.

The generalized fuzzy Hough transform method [22]
(GFHT) is based on a method for detecting shapes and
objects in images which has been adapted for NMR-data.
The key features of the GFHT method is that it can solve all
three ambiguities by pre-calibrating the model on the shifts
of peaks with known correspondence.

Algorithm/method symmetry The methods derived from
DTW use one sample as a target to which all other samples
are aligned. This makes the algorithms simple to understand
and implement. The drawback is that the method becomes
asymmetric in relation to the samples. Choosing a different
target sample may affect the alignment or warping results.
It is a desirable feature that an algorithm solving the
correspondence problem is symmetric so that there is a
unique solution that does not depend on an arbitrary choice
of target. Creating compound targets based on all samples
is likely to degrade the results unless performed carefully.
Shifting peaks will be blurred or even lost if averaging over
NMR-spectra or TICs is used.

Today, there are a few symmetric methods available for
more than two samples. The GFHT [22] and CPM [52] are
examples of symmetric methods. Some warping methods
that use tentative assignments of peak lists and regression to
fit warping functions are symmetric, e.g. XCMS [40] has
symmetric warping as an option.

Using raw data vs. peak lists There are alignment methods
that use the raw data and methods that use peak lists. The
main argument for using the raw data is that you are not
dependent on a peak-detection step which might introduce
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errors by failing to detect peaks. The reasons for using peak
lists are that they present the relevant information more
compactly and with improved signal-to-noise ratio from
averaging when integrating a peak.

From experience, we have observed that the number of
peaks increases with decreasing intensity approximately as
#peaks ∝ 1/intensity. Pushing the limit of data analysis
requires that you accurately detect, align, and further
analyse peaks very close to the limit of detection. Accurate
detection would mean that an experienced experimentalist
confirms that you have very few false positive and very few
false negative peaks in your peak list. A high fraction of
false positives and false negatives will severely disturb the
alignment results. Small peaks may be difficult to align
using raw data, unless they are automatically aligned by
surrounding larger peaks.

The ambiguity where peaks change order can possibly
be resolved by aligning peak lists with support from an
extra dimension. By warping the raw data, peaks can never
be shifted around each other. For LC–MS, warping the raw
data often requires binning of the m/z axis which destroys
information that can be used for alignment.

Example of warping 1D 1H NMR data A dataset consisting
of NMR spectra from 112 replicate quality-control samples
of human plasma [22] is used to demonstrate different
methods assigning correspondence in NMR data. In this
data there are approximately 30 peaks and several examples
of peaks changing order along the ppm axis. The methods
demonstrated are: binning, PTW (second-order polynomi-
al), PTW (eighth-order polynomial), COW, PARS-warping,
and GFHT. The results are shown as heat maps in Fig. 5.
Notice how 0.04-ppm-wide bins all contain more than one
peak. A trained eye can find ten peaks in the third bin from
the right. PTW-2 improves the alignment but is not flexible
enough. With PTW-8 it seems that most peaks are properly
aligned but there are a number of erroneous assignments.
The same is true for COW, which performs well for most
samples but gives strange results for some of the extreme
samples. PARS-warping performs worse than COW by
being too flexible, which results in alignment errors. PARS-
warping is performed on peak list data with about 25 peaks
per sample. The GFHT is calibrated on the pattern of peak
shifts of the histidine peaks at 7.03 ppm and it finds the true
correspondence in most cases. Note especially how it
handles the peaks changing order along the ppm-axis. For
NMR, it is important how the correspondence problem is
solved. The large fraction of peaks changing places (up to
30%, not shown [22]) may be one explanation of why
NMR is losing ground to LC–MS in metabonomics. It has
been impossible to get the correspondence right for NMR
datasets. Another explanation is the relatively low sensitiv-
ity of NMR.

Example of warping LC–MS data The example of warping
LC–MS data is limited to comparing the warping functions
of seven different methods for warping two samples of
blood plasma [14]. There is no ground truth other than that
which can be guessed from the chromatograms. The point
here is to show how similar the warping functions of
different methods are. The methods included in this example
are: 1. PTW-2, 2. PTW-8, 3. COW-TIC, 4. CPM, 5. Trac-
Mass [14], a nearest neighbour assignment on peak lists
followed by least-squares fit of a twelfth-order polynomial (a
naive warping method), 6. XCMS, which aligns approxi-
mately 3,000 peaks and computes a warping function using
robust regression, and 7. amsrpm-TIC.

The warping results are presented in Fig. 7. TICs of a
sample and a reference are overlaid in Fig. 7a, and the
TICs of the sample warped by PTW-8 and the reference
sample are overlaid in Fig. 7b. The warped time difference
is shown in Fig. 7c (positive values mean peaks are shifted
to later time points). It is obvious that the warping
function is non-linear, and that most methods find more
or less the same solution. PTW-2 is very good in the first
half of the chromatogram but cannot follow the transition
at 375 s. The differences between the other methods are
relatively small. XCMS and TracMass compute a warp-
ing function which is too constrained; peak correspon-
dence is much improved but is implied rather than there
being complete overlap of peaks (not shown). It is
definitely not good enough for bi or trilinear modelling.
With COW, PTW-8, and CPM most high-intensity peaks
overlap almost completely. Amsrpm is the only method
that disagrees on the warping function. The chromato-
grams warped by amsrpm look quite good but amsrpm
has been run with suboptimum parameters because the
sampling rate differed between the example data and our
data. We find the method is slow and therefore difficult
to optimise.

Validation of alignment results

Alignment results are inherently difficult to validate. The
best validation is to compare the assignments of a method
to a known ground truth. Because the instruments create
the correspondence problem it is impossible to obtain real
data with known ground truth. The value of using
synthetic data is limited, because of the difficulty in
accurately reproducing all the peak-shift artefacts present
in real data. Still, it may be one of the most illustrative
ways of demonstrating the properties of a synchronisation
method. The second best method is to use spike-in
experiments where the spike-in mixture is analysed
separately and samples are analysed both with and
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without the spike-in mixture [40, 52]. The problem with
spike-in experiments is that the results for the alignment
method become confounded with all other data-processing
steps. Spike-in experiments are ideal for validating an
entire pipeline for biomarker detection. Two public spike-
in datasets are available—one for metabonomics by
Nordström et al. [63] and one for proteomics by Listgarten
et al. [52].

De Souza et al. [30] validate their results on a subset
where the ground truth was manually defined by visual
inspection. It is not a bad approach if the subset is
representative of the whole dataset. Manual alignment
can be as good as any other alignment method in use
today.

Many papers use other indirect methods of validation
that may not be completely relevant in that they are not
based on the number of correct and erroneous assignments
[24, 31, 54, 58, 64, 65].

In proteomics it is not uncommon to perform LC–
MS–MS on some peaks. The results can be used by
the alignment method [55–57] or for checking the
alignment results from aligning only on the LC–MS part
of the data [25].

For NMR (and LC–MS) the samples can be sorted on
the position of a shifting, yet easily assigned, peak. This

can give a very good indication of the ground truth for peak
correspondence, c.f. Fig. 2 and Fig. 5.

If I were hunting for biomarkers today (and not
researching the correspondence problem) (Conclusions)

For NMR the correspondence problem is more difficult
than for chromatography–MS because in NMR changes
in peak order are common whereas in chromatography–
MS they are uncommon. As far as we are aware, there is
only one method that can handle changes in peak order
for 1D data and that is the GFHT method. For
chromatography–MS the competition is harder—many
methods are almost equally good. A combination of non-
linear warping and peak alignment is probably the way
to go.

To identify biomarkers, we recommend that:

& Several methods are used, at least one working on peak
lists and one working on the raw data (warping). Do not
forget to use binning for a preliminary investigation and
to protect against a worst-case scenario.

& The method variables are adjusted for the analytical
platform in question using two or more data sets.
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Fig. 7 Comparison of warping
functions for LC MS data. (a)
Uncorrected sample (black) and
target (red) TICs. (b) Warped
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TICs. (c) Warping functions
computed by different methods
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& With every new dataset the methods are run quick-and-
easy with the pre-adjusted variables.

& Top candidate biomarkers from each method are
checked manually using the raw data.

Future outlook

For NMR we expect the future holds methods competing
with the generalized fuzzy Hough transform by being able
to correctly assign peaks that change order along the ppm
axis.

For chromatography–MS, we believe that more warping
methods that warp both time and mass will appear. The
field seems to progress toward multistage alignment
methods where the warping function is iteratively refined
by steps of warping and reassignment.

Acknowledgements The authors are thankful to AstraZeneca for
financing and for access to metabonomics data from LC–MS and
NMR. Helena Idborg is acknowledged for supplying the data for
Fig. 3.

References

1. Listgarten J, Emili A (2005) Mol Cell Prot 4:419–434
2. Vandenbogaert M, Li-Thiao-Te S, Kaltenbach HM, Zhang

RX, Aittokallio T, Schwikowski B (2008) Proteomics 8:650–
672

3. Nicholson JK, Wilson ID (1989) Prog Nucl Magn Reson
Spectrosc 21:449–501

4. Brindle JT, Antti H, Holmes E, Tranter G, Nicholson JK, Bethell
HWL, Clarke S, Schofield PM, McKilligin E, Mosedale DE,
Grainger DJ (2002) Nat Med 8:1439–1445

5. Shockcor JP, Holmes E (2002) Curr Top Med Chem 2:35–51
6. Wishart DS, Lewis MJ, Morrissey JA, Flegel MD, Jeroncic K,

Xiong Y, Cheng D, Eisner R, Gautam B, Tzur D, Sawhney S,
Bamforth F, Greiner R, Li L (2008) J Chromatogr B 871:164–
173

7. Dixon SJ, Brereton RG, Soini HA, Novotny MV, Penn DJ (2006)
J Chemom 20:325–340

8. Yan S-K, Wei B-J, Lin Z-Y, Yang Y, Zhou Z-T, Zhang W-D
(2008) Oral Oncol 44:477–483

9. Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Nat Rev
Drug Discov 1:153–161

10. Fan TWM, Lane AN (2008) Prog Nucl Magn Reson Spectrosc
52:69–117

11. Idborg H (2007) Analysis of metabolites in complex biological
samples using LC/MS and multivariate data analysis. PhD Thesis,
Stockholm University, Stockholm

12. Idborg-Björkman H, Edlund PO, Kvalheim OM, Schuppe-
Koistinen I, Jacobsson SP (2003) Anal Chem 75:4784–4792

13. Jonsson P, Johansson AI, Gullberg J, Trygg JAJ, Grung B,
Marklund S, Sjostrom M, Antti H, Moritz T (2005) Anal Chem
77:5635–5642

14. Åberg KM, Torgrip RJO, Kolmert J, Schuppe-Koistinen I,
Lindberg J (2008) J Chromatogr A 1192:139–146

15. Miller AJ (1990) Subset selection in regression. Chapman and
Hall, London

16. Sun J, Schnackenberg LK, Holland RD, Schmitt TC, Cantor GH,
Dragan YP, Beger RD (2008) J Chromatogr B 871:328–340

17. De Meyer T, Sinnaeve D, Van Gasse B, Tsiporkova E, Rietzschel
ER, De Buyzere ML, Gillebert TC, Bekaert S, Martins JC, Van
Criekinge W (2008) Anal Chem 80:3783–3790

18. Anderson PE, Reo NV, DelRaso NJ, Doom TE, Raymer ML
(2008) Metabolomics 4:261–272

19. Davis RA, Charlton AJ, Godward J, Jones SA, Harrison M,
Wilson JC (2007) Chemom Intell Lab Syst 85:144–154

20. Danielsson R, Backstrom D, Ullsten S (2006) Chemom Intell Lab
Syst 84:33–39

21. Jonsson P, Bruce SJ, Moritz T, Trygg J, Sjostrom M, Plumb R,
Granger J, Maibaum E, Nicholson JK, Holmes E, Antti H (2005)
Analyst 130:701–707

22. Csenki L, Alm E, Torgrip RJO, Aberg KM, Nord LI, Schuppe-
Koistinen I, Lindberg J (2007) Anal Bioanal Chem 389:875–
885

23. Forshed J, Schuppe-Koistinen I, Jacobsson SP (2003) Anal Chim
Acta 487:189–199

24. Torgrip RJO, Aberg M, Karlberg B, Jacobsson SP (2003) J
Chemom 17:573–582

25. Prince JT, Marcotte EM (2006) Anal Chem 78:6140–6152
26. Prakash A, Mallick P, Whiteaker J, Zhang HD, Paulovich A, Flory

M, Lee H, Aebersold R, Schwikowski B (2006) Mol Cell Prot
5:423–432

27. Luedemann A, Strassburg K, Erban A, Kopka J (2008) Bio-
informatics 24:732–737

28. Duran AL, Yang J, Wang LJ, Sumner LW (2003) Bioinformatics
19:2283–2293

29. Tibshirani R, Hastie T, Narasimhan B, Soltys S, Shi GY, Koong
A, Le QT (2004) Bioinformatics 20:3034–3044

30. De Souza DP, Saunders EC, McConville MJ, Likic VA (2006)
Bioinformatics 22:1391–1396

31. de Groot JCW, Fiers M, van Ham R, America AHP (2008)
Proteomics 8:32–36

32. Lange E, Gropl C, Schulz-Trieglaff O, Leinenbach A, Huber C,
Reinert K (2007) Bioinformatics 23:I273–I281

33. Eilers PHC (2004) Anal Chem 76:404–411
34. Tomasi G, van den Berg F, Andersson C (2004) J Chemom

18:231–241
35. Palmblad M, Mills DJ, Bindschedler LV, Cramer R (2007) J Am

Soc Mass Spectrom 18:1835–1843
36. Walczak B, Wu W (2005) Chemom Intell Lab Syst 77:173–

180
37. van Nederkassel AM, Daszykowski M, Eilers PHC, Heyden YV

(2006) J Chromatogr A 1118:199–210
38. Kassidas A, MacGregor JF, Taylor PA (1998) Aiche J 44:864–

875
39. Nielsen NPV, Carstensen JM, Smedsgaard J (1998) J Chromatogr

A 805(1–2):17–35
40. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006)

Anal Chem 78:779–787
41. Kirchner M, Saussen B, Steen H, Steen JAJ, Hamprecht FA

(2007) J Stat Soft 18:4
42. Dynamic programming. http://en.wikipedia.org/wiki/Dyna-

mic_programming (Accessed 26 Sept 2008)
43. Baran R, Kochi H, Saito N, Suematsu M, Soga T, Nishioka T,

Robert M, Tomita M (2006) BMC Bioinformatics 7:530
44. Christin C, Smilde AK, Hoefsloot HCJ, Suits F, Bischoff R,

Horvatovich PL (2008) Anal Chem 80:7012–7021
45. Sadygov RG, Maroto FM, Huhmer AFR (2006) Anal Chem

78:8207–8217
46. Suits F, Lepre J, Du PC, Bischoff R, Horvatovich P (2008) Anal

Chem 80:3095–3104

The correspondence problem for metabonomics datasets 161

http://en.wikipedia.org/wiki/Dynamic_programming
http://en.wikipedia.org/wiki/Dynamic_programming


47. Lee GC, Woodruff DL (2004) Anal Chim Acta 513:413–416
48. Yao WF, Yin XY, Hu YZ (2007) J Chromatogr A 1160:254–

262
49. Fraga CG, Prazen BJ, Synovec RE (2001) Anal Chem 73:5833–

5840
50. Pierce KM, Wood LF, Wright BW, Synovec RE (2005) Anal

Chem 77:7735–7743
51. Listgarten J (2006) Analysis of sibling time series data: alignment

and difference detection. University of Toronto, Toronto
52. Listgarten J, Neal RM, Roweis ST, Wong P, Emili A (2007)

Bioinformatics 23:E198–E204
53. Bellew M, Coram M, Fitzgibbon M, Igra M, Randolph T, Wang P,

May D, Eng J, Fang RH, Lin CW, Chen JZ, Goodlett D,
Whiteaker J, Paulovich A, McIntosh M (2006) Bioinformatics
22:1902–1909

54. Vorst O, de Vos CHR, Lommen A, Staps RV, Visser RGF, Bino
RJ, Hall RD (2005) Metabolomics 1:169–180

55. Fischer B, Grossmann J, Roth V, Gruissem W, Baginsky S,
Buhmann JM (2006) Bioinformatics 22:E132–E140

56. Fischer B, Roth V, Buhmann JM (2007) BMC Bioinformatics 8
(Suppl 10):S4

57. Jaffe JD, Mani DR, Leptos KC, Church GM, Gillette MA, Carr
SA (2006) Mol Cell Prot 5:1927–1941

58. Åberg KM, Torgrip RJO, Jacobsson SP (2004) J Chemom
18:465–473

59. Sauve AC, Speed TP (2004) Normalization, baseline correction
and alignment of high-throughput mass spectrometry data. Proc
Gensips

60. Toppo S, Roveri A, Vitale MP, Zaccarin M, Serain E,
Apostolidis E, Gion M, Maiorino M, Ursini F (2008) Proteomics
8:250–253

61. Johnson KJ, Wright BW, Jarman KH, Synovec RE (2003) J
Chromatogr A 996:141–155

62. Chui H (2001) Non-rigid point matching: algorithms, extensions
and applications. PhD Thesis, Yale University, New Haven

63. Nordström A, O’Maille G, Qin C, Siuzdak G (2006) Anal Chem
78:3289–3295

64. Skov T, van den Berg F, Tomasi G, Bro R (2006) J Chemom
20:484–497

65. Wu W, Daszykowski M, Walczak B, Sweatman BC, Connor SC,
Haseldeo JN, Crowther DJ, Gill RW, Lutz MW (2006) J Chem Inf
Model 46:863–875

162 K.M. Åberg et al.


	The correspondence problem for metabonomics datasets
	Abstract
	Introduction
	What is correspondence?
	What is metabonomics?
	Metabonomics data and its properties
	1D 1H NMR
	LC–MS and GC–MS (full-scan MS)
	Sources of peak shift

	The correspondence problem and methods for alignment
	Ambiguous correspondence
	Information that can help (use of supporting information)
	Methods for solving the correspondence problem
	Binning
	Nearest-neighbour clustering
	Warping


	Validation of alignment results
	If I were hunting for biomarkers today (and not researching the correspondence problem) (Conclusions)
	Future outlook
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


