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Abstract An electrochemical biosensor based on the immo-
bilization of laccase on magnetic core-shell (Fe3O4–SiO2)
nanoparticles was combined with artificial neural networks
(ANNs) for the determination of catechol concentration in
compost bioremediation of municipal solid waste. The
immobilization matrix provided a good microenvironment
for retaining laccase bioactivity, and the combination with
ANNs offered a good chemometric tool for data analysis in
respect to the dynamic, nonlinear, and uncertain character-
istics of the complex composting system. Catechol concen-
trations in compost samples were determined by using both
the laccase sensor and HPLC for calibration. The detection
range varied from 7.5×10–7 to 4.4×10–4 M, and the
amperometric response current reached 95% of the steady-
state current within about 70 s. The performance of the ANN
model was compared with the linear regression model in
respect to simulation accuracy, adaptability to uncertainty,
etc. All the results showed that the combination of
amperometric enzyme sensor and artificial neural networks

was a rapid, sensitive, and robust method in the quantitative
study of the composting system.

Keywords Catechol . Compost bioremediation . Laccase
sensor . Artificial neural networks . Electrochemical
determination

Introduction

Phenolic compounds exhibit well-known adverse effects on
human health and the environment. Such compounds
mostly originate from various agricultural and industrial
activities, including waste discharge from pulp, dyeing,
petrochemical, and textile industries and the partial degra-
dation of phenoxy contaminants in remediation processes.
The toxicity of phenols generated from bioremediation,
such as composting, can also bring on undesirable
ecological effects and seriously damage removal efficien-
cies [1]. Catechol is a hazardous phenolic compound which
affects the nerve center system of human beings, inhibits
DNA replication, and leads to chromosomal aberration [2].
With the increasing application of composting technology
in disposal of municipal solid waste, catechol is generally a
direct pollutant or a by-product of the aromatic pollutant
biodegradation [3]. Hence, detection of catechol from
compost bioremediation of municipal solid waste is a
critical issue. And with the enhancement of the demand of
environmental quality, there should be a set of rapid and
efficient detection techniques to match the correlative
standard of environment protection.

A variety of organic compounds exist in compost
systems, e.g., aromatic, aliphatic, phenolic, and quinolic
derivatives with varying molecular sizes and properties. It
is a complex and heterogeneous mixture with diversity,
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nonlinearity, and uncertain characteristics [4]. The most
commonly used analytical methods for quantitative study of
the composition of compost systems include spectropho-
tometry, gas chromatography, and high-performance liquid
chromatography (HPLC) based on the absorbance spectra
[5–7], but they are probably subject to interference from
substrate turbidity and UV–Vis-light-absorbing substances
in the compost system. The increase of background
absorbance and partial overlapping of the spectral band of
the interferents with that of the detectable compound leads
to an improper performance of the procedures [8]. Besides,
the pretreatment of the samples is cumbrous and time-
consuming, and the instruments are expensive and ponder-
ous. In an attempt to overcome the deficiencies of
traditional analytical methods, the applications of enzyme
sensors to specialty pollutant detection have increasingly
been reported to exhibit superior sensitivity, stability,
reusability, selectivity, portability, and other obvious advan-
tages. The operation efficiency of compost systems will be
much improved if biosensors are applied to detection of
pollutants in the compost.

In our laboratory, an amperometric laccase sensor was
developed to detect catechol in compost. Laccase is a
multicopper phenol oxidase which can directly oxidize
catechol and utilize dioxygen as an oxidant, reducing it to
water, without H2O2 as cosubstrate or any other cofactors
for its catalysis [9, 10]. In the reaction, catechol (QH2) as
electron donor for the oxidized form of the enzyme, was
mainly converted into quinone and/or free radical product
(Q), and then was reduced on the surface of the electrode at
potentials below 0 V (vs. SCE), which efficiently shuttled
electrons between the laccase redox center and the electrode
surface in a dynamic equilibrium. A series of reactions
could produce a set of correlative response signals which
were transformed into detectable electric current. The
reaction equations of the redox process on the electrode
surface are described as follows:

QH2 þ O2!laccase Qþ 2H2O ð1Þ

Qþ 2eþ 2Hþ!QH2 ð2Þ
Despite the improved selectivity and tolerance of the

electrochemical sensor to turbid and selfcolored samples,
the detection procedures are still susceptible to the complex
and heterogeneous organic components containing certain
functional groups (e.g. phenolic OH, carboxyl, etc.) owing
to both the redox and sorption of the interfering matrix
constituents on the electrode surface. As a result, an
unstable baseline and a gradually increasing response
current—instead of a prompt current transition during
sensor analyses—will be observed when it is applied to
large quantities of compost samples. Generally the linear

regression model is the most widely used model for
electrochemical sensor determination, which is inherently
vulnerable to local noise in the detection diagram. The
quantification capability of the linear model will be limited
by the dynamic, nonlinear, and uncertain characteristics of
the complex composting system, and will give erroneous
results if the linear range is exceeded [11, 12]. Artificial
neural networks (ANNs) have been widely applied in data
analysis because they can process very nonlinear and
complex problems even if the data are imprecise and noisy
[13]. Some researchers have successfully coupled ANNs to
sensors as a chemometric tool to analyze target substance in
complex systems, which showed strong nonlinear mapping
and selflearning ability and enhanced the determining
performance of the biosensor [14–17]. Although the
detection of catechol from compost bioremediation is a
single-analyte detection, nonlinear and uncertain problems
also occur in the process as mentioned above, which
restricts the biosensor in practical application. ANNs can
efficiently identify and learn the correlated patterns between
input and output values without an explicit formulation of
the physical relationship of the problem [18].

In this paper, a feedforward backpropagation (BP)
network model based on the connections of catechol
concentrations to response currents was built, and the
performance of the ANN model was studied, and the soft-
determination of catechol in a complex composting system
was realized. This method, coupled with the inherent high
sensitivity, rapidity, robustness, and portability of the
electrochemical sensor technique, enables the development
of fast and inexpensive on-line monitoring systems in
municipal solid waste compost bioremediation.

Experimental

Apparatus and reagents

A CHI660B electrochemistry system (Chenhua Instrument,
Shanghai, China) was used for all cyclic voltammetric and
amperometric measurements. An Agilent 1100 high-
performance liquid chromatograph was used to determine
the concentration of catechol in compost extracts. A Model
PHSJ-3F laboratory pH meter (Leici Instrument, Shanghai,
China), a Sigma 4K15 laboratory centrifuge (Sartorius AG,
Germany), and an FD-1 vacuum freezing dryer (Boyikang
Instrument, Beijing, China) were used in the assay. All the
work was done at room temperature (25 °C) unless
otherwise mentioned. The three-electrode system used in
this work consisted of a magnetic carbon paste electrode
(MCPE, diameter 8 mm) as working electrode of interest, a
saturated calomel electrode (SCE) as reference electrode,
and a Pt foil auxiliary electrode.
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Laccase (EC 1.10.3.2, 23.3 U mg−1) was from Fluka. 3-
Aminopropyltriethoxysilane (APTES), polyethylene glycol
(PEG), tetraethoxysilane (TEOS), and all other chemicals
were of analytical grade and used as received. All solutions
were prepared with doubly distilled water. The synthesis of
Fe3O4 magnetic nanoparticles and the immobilization of
laccase on the surface of nanoparticles were achieved
according to the procedure introduced by Zhang et al. [19].

Procedures

The preparation of MCPE and the HPLC and amperometric
measurements of catechol concentration in compost extract
were carried out as described in our previous work. The
mixture of paraffin (400 mg) and graphite powder (500 mg)
was stuffed into a polytetrafluoroethylene tube (aperture 8 mm)
to fabricate an electrode. A caky magnet (diameter 8 mm and
thickness 1.5 mm) was embedded at a depth of 8 mm from the
electrode surface. After pretreatment, the magnetic laccase–
Fe3O4 nanoparticles were firmly magnetically attached to the
MCPE surface by magnetic forces. The structure of the
MCPE is shown in Fig. 1.

The determination of catechol in compost extracts was
carried out by HPLC and then the laccase sensor. The
eluent in the HPLC method consisted of an isocratic
mixture of water, acetonitrile, and acetic acid (88:10:2) at
a flow rate of 0.7 mL min−1, and the concentration of
catechol was detected by an ultraviolet spectrophotometer
at 280 nm [20]. The cyclic voltammetry was performed
between −0.6 and + 0.6 V vs. SCE at 100 mV s−1. The
optimized amperometric monitoring system conditions, i.e.,
which afforded the highest sensitivity of the enzyme sensor,
were electrolyte comprising 30 mL 67 mM phosphate
buffer (pH 5.5) containing catechol and the oxidation peak
potential of –0.232 V (vs. SCE).

Application in compost extracts

The amperometric determination of the catechol concentra-
tion was applied in compost bioremediation. The compost-
ing process has been introduced previously. The
components of compost were soil, straw, scraps, and bran,
and the water ratio was 51%. The soil was collected from
100-cm depth underground from an unfrequented hillside

of Yuelu Mountain (Changsha, China), from which large
organic scraps were removed. Aerobic compost was then
managed for 40 days under the conditions of 30 °C
temperature and 0.033 m3 h−1 ventilation. A 10-g compost
sample was placed in a flask and 200 mL water was added.
The suspension was agitated on a mechanical vibrator at
200 rpm for 2 h. The supernatant was centrifuged at
10,000 rpm for 5 min, and then filtered to get the filtrate as
the compost extract. The dosage of catechol into each
compost extract was controlled [21].

Artificial neural networks

Matlab 7.0 (Mathworks, Natick, MA), and in particular its
Neural Network Toolbox, was employed to develop the
ANN models. The measured data of compost samples with
catechol and corresponding amperometric responses of
laccase sensor were analyzed using a feedforward BP
network model. The data were divided into three subsets,
one for training, one for testing, and the other for model
validation. A series of 29 compost extract samples was used
to train the network. Other ten extract samples were taken
to be the external test set to estimate the modeling
performances. And another eight extract samples validated
the ANN model application. The training set is used for
adjusting the connection weights, while the testing set is
used for the determination of network geometry and model
parameters. Finally, the validation set is used for testing the
optimality and generalization ability of the model devel-
oped [22, 23]. For the precision of the ANN modeling
research, the extract samples containing a maximum or a
minimum catechol concentration were included in the
training set, avoiding the need for extrapolation when
checking the model with the external test.

Results and discussion

Characterization of artificial neural network

In the experiment, under the optimum conditions, the
continuous curve of current versus time was obtained
corresponding to the catechol concentration. Instead of
direct response current as the only independent variable in
linear regression, the time profile of the amperometric
signal, which was relative to response current, current
stabilizing time, and some other current change character-
istics, was adopted in the ANN modeling. Besides response
current, current stabilizing time could also act as an
identification factor of the analytical environment in the
electrochemical sensor determination. The change of the
stabilizing time exhibited some available information
according to different concentrations and analytes. TheFig. 1 Structure of the magnetic carbon paste electrode
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time profile of the amperometric signal could represent all
characters and relations between the sensor response and the
analyte concentration in the complex system, which formed
an intact and scientific structure to perform a nonlinear
modeling for catechol determination. Figure 2 shows the
ANN architecture. It was built with input neurons taken
from data points of each amperometric curve within 120 s
before the detection current reached steady state. The
concentration of catechol is the target for ANN modeling.
Since a relevant report [24] stated that ANNs with single
hidden layer mapping structure could resolve the nonlinear
problem in electrochemical signal analysis, networks with
more than one hidden layer were not considered.

The normalization of original data was recognized to
improve the network performance for confidentiality and
generalization of the neural network model [25]. In this
work, the input values of both the training and the test
subsets were normalized by

x0 ¼ 0:1þ 0:8� x� xmin

xmax � xmin
ð3Þ

where x0 is the normalized value for input variable, x is the
original value, and xmin and xmax are the minimal and
maximal original values of primitive data, respectively.
After simulation of the networks, the estimated results were
reconverted by inverse function of Eq. (3) to be compared
with the target values.

Network optimization

The network performance was quantified by calculating the
root mean square of errors (RMSE) between the expected
and predicted catechol concentrations:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1
yi � tið Þ2

3 � n� 1

v

u

u

u

t ð4Þ

where yi and ti are respectively the predicted and the
expected concentration values by the ANN, and n is the
number of the test samples which equals to 10 in this work.

Feedforward backpropagation with random initial
weights and biases was used to train the networks to avoid
selecting fixed conditions which might favor one particular
network design. Variability will occur due to random initial
values in the networks with exactly the same program [26] ;
hence, each ANN program was run more than seven times
to get the average RMSEs for the external test set to result
in a true measure of performance.

At first, the hidden neuron numbers and combinations of
tan-sigmoidal (Tansig), log-sigmoidal (Logsig), pure-lineal
(Purelin), and sat-lineal (Satlins) transfer functions were
evaluated. The calculated RMSEs were plotted against
different hidden neuron numbers and combinations of transfer
functions in hidden and output layers synchronously. The
lowest RMSE value was obtained with 15 hidden neurons and
Satlins–Purelin as transfer function as shown in Fig. 3.

The effects of different optimization algorithms on the
model performance were then evaluated as shown in Fig. 4.
The ANN models with trainbfg, trainbr, traingd, and
traincgb as optimization algorithms, respectively, could
not meet the performance goal when the minimum gradient
was reached in the training process. The ANN models by
traingdm and traingdx got lower RMSE values sometimes,
but were not steady with the increasing of training time. So
trainlm was selected as the optimal algorithm to obtain the
lowest RMSE value, steady result, and short training time.
Considering that the complexity of the model was
increased, and the training time was prolonged remarkably
with no obvious decrease of RMSE when the input neuron
number was increased in our experiment, the input neuron
number of 12 was selected with adequate accuracy of
simulation. The final optimization results of the ANN
model are shown in Table 1.

Performance of the best ANN

In order to obtain accurate catechol concentrations from
ANN models, triplicate calculation results of the optimized
network were selected and averaged with RMSEs most
close to 8.6549 µM for catechol concentration. The

Fig. 2 Example of the ANN architecture used to interpret ampero-
metric responses
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concentrations of catechol from compost extract in the
experiment varied between 7.5×10–7 and 4.4×10–4 M. As
shown in Fig. 5, it is obvious that the predictions by the
optimized ANN model are in good agreement with
measured results with low error levels. The linear regres-
sion shows a nice fit of data in the training set with
remarkably high correlation coefficients of nearly 1, and in
the test set, the linear regression yielded high correlation

coefficients (R2>0.999). These results confirm the excellent
prediction ability of the ANN model used in this study.

Comparison of prediction results between regression model
and ANN model in composting system

Through simple mathematical analysis of the data detected
by the biosensor, a linear regression was obtained with a
linear range of 7.5×10–7–2.75×10–4 M. The equation of the
linear regression model is:

y ¼ 0:1563� 0:0030ð Þxþ 1:0618� 0:3730ð Þ ð5Þ
where x is catechol concentration (µM) and y is the
response current value (µA). The correlation coefficient
(R2) of the linear regression is 0.9945.

Practically, when biosensor with linear data analysis is
applied to determine the real samples, the concentration
of analyte often exceeds the linear detection range of
biosensor, which will affect the accuracy of determina-
tion. Therefore, for the sake of obtaining a more
applicable and convenient detection method, the combi-
nation of ANN with biosensor technology turns out to be
a good analytical tool. The ANN, owing to its strong
prediction ability for situations not included in the
training process, can enlarge the determining limit, and
then make the determination and the result analysis quick
[24]. In this study, the linear range of the linear model for
catechol determination was only 7.5×10–7–2.75×10–4 M,
while the catechol concentrations directly analyzed by the
ANN model varied between 7.5×10–7 and 4.4×10–4 M,
which far exceeded the determining range of other catechol
sensors, too [27–28]. The ANN and linear regression
models established here were applied to the eight external
compost extract samples. Figure 6 shows the correlation
between experimental and predicted values of the regres-
sion and ANN models. The prediction results by the ANN
model were more precise than the linear regression, and the
prediction result by linear regression was far from accurate

Fig. 3 Obtained RMSEs in catechol concentration prediction for
different transfer function combinations and neuron numbers in the
hidden layer with input neuron number of 12 and Levenberg–
Marquardt backpropagation (trainlm) as optimization algorithm.
Numbers 1–5 represent the transfer function combinations Tansig–
Purelin, Logsig–Satlins, Satlins–Purelin, Logsig–Purelin, and Tansig–
Satlins, respectively

Fig. 4 Obtained RMSEs in catechol concentration prediction for
different optimization algorithms with 12 input neurons, hidden
neuron number of 15, and transfer function combination of Satlins–
Purelin

Table 1 Optimal results of ANN architecture and training parameters

Architecture/parameter Value

Input neuron number 12
Hidden neuron number 15
Transfer function in the
hidden layer

Satlins

Output neuron number 1
Transfer function in the
output layer

Purelin

Optimization algorithm Levenberg–Marquardt
backpropagation (trainlm)

RMSE for catechol
concentration (μM)

8.6549
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at high levels of catechol beyond the linear range, while the
fitting degree of experimental and predicted value using
the ANN model was satisfactory. So ANN was superior to
the linear regression especially for the determination of
high levels of catechol in the compost system. Furthermore,
due to the black-box approach that depends only on the
observed values, ANN can easily resolve the complicated
properties in the compost system. The results showed that
the correlation coefficient, adaptability to uncertainty, etc.,
obtained after combining the biosensor with ANNs were
superior to direct determination of the catechol concentra-
tion by the biosensor in the compost system. Obviously,
combined with the ANN model, the direct detection range
for catechol in the compost system of the biosensor was
widened, which would enhance the performance of the
detection system in further applications in real compost
extract sample determination.

Conclusions

In view of the harm that catechol can cause to human health
and the environment, it is practically significant to detect
catechol in environmental samples. Composting systems
possess complex, dynamic, nonlinear, and uncertain prop-
erties which cause difficulty in realizing accurate pollutant
detection by common methods. The ANN model is a so-
called black box as it does not need any model structure
specification, and holds the strong learning capability and
adaptability. A BP–ANN model was established for data
analysis in the sensor detection system as a chemometric
tool to determine the catechol concentration in compost
systems more effectively. All the results showed that the
combination of amperometric enzyme sensor and artificial
neural networks was a rapid, sensitive, and robust method
in the quantitative study of composting systems. The direct
detection range for catechol of the biosensor was extended
to 7.5×10–7–4.4×10–4 M, which was superior to the direct
determination by the biosensor with linear data analysis. In
future work, this biosensor combined with ANN model
could be a good analytical tool for further application in
monitoring real contaminated compost and other complex
environments which are relevant to human life and health.
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Fig. 6 Comparison between results by HPLC method and laccase
sensor for catechol in compost samples using linear model and the
optimized ANN model

Fig. 5 Modeling performance achieved for the optimized ANN with
29 samples from the training set (a) and ten samples from the external
test set (b)
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