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Abstract The aim of this work was to obtain the correct
classification of a set of two-dimensional polyacrylamide
gel electrophoresis map images using the Zernike moments
as discriminant variables. For each 2D-PAGE image, the
Zernike moments were computed up to a maximum p order
of 100. Partial least squares discriminant analysis with var-
iable selection, based on a backward elimination algorithm,
was applied to the moments calculated in order to select
those that provided the lowest error in cross-validation. The
new method was tested on four datasets: (1) samples be-
longing to neuroblastoma; (2) samples of human lympho-
ma; (3) samples from pancreatic cancer cells (two cell lines
of control and drug-treated cancer cells); (4) samples from
colon cancer cells (total lysates and nuclei treated or
untreated with a histone deacetylase inhibitor). The results
demonstrate that the Zernike moments can be successfully
applied for fast classification purposes. The final aim is to
build models that can be used to achieve rapid diagnosis of
these illnesses.

Keywords Zernike moments . Partial least squares
discriminant analysis . 2D-PAGEmaps . Classification .

Multivariate analysis

Introduction

Since every cell or biological fluid is rich in proteins, an
efficient method for achieving their separation and succes-
sive determination is necessary. This problem was partially
solved by the development of two-dimensional electropho-
retic separation, which is certainly the most widely used
analytical method in proteomics. This technique allows the
efficient separation of the protein content of a particular cell
or biological fluid, producing a two-dimensional image of
the proteins present in the sample under investigation. Two-
dimensional polyacrylamide gel electrophoresis [1, 2] has a
unique capacity to resolve complex mixtures, permitting the
simultaneous analysis of hundreds or even thousands of
proteins. The separation is achieved by two successive
electrophoretic runs: the first (through a pH gradient)
separates the proteins according to their isoelectric points,
while the second (through a porosity gradient) separates
them according to their molecular masses. The result is a
two-dimensional map with spots (proteins) spread all over
the gel surface.

2D-PAGE (from 2-Dimensional PolyAcrylamide Gel
Electrophoresis) maps can therefore be used for both
diagnostic and prognostic purposes: by investigating the
differences between the 2D-PAGE gels of control and
pathological individuals, it is possible to classify the
patients accordingly or even to capture the evolution of
the disease [3–7].

The problem of how best to compare maps belonging to
different individuals thus becomes the fundamental issue in
the application of this technique for diagnostic/prognostic
purposes.

In the field of drug development, especially for cancer,
the 2D-PAGE technique is also widely applied [8, 9]. The
study of two-dimensional maps can provide useful infor-

Anal Bioanal Chem (2008) 391:1163–1173
DOI 10.1007/s00216-008-1856-8

E. Marengo (*) : E. Robotti :M. Bobba :M. Demartini
Department of Environmental and Life Sciences,
University of Eastern Piedmont,
Via Bellini 25/G,
15100 Alessandria, Italy
e-mail: marengoe@tin.it

P. G. Righetti
Department of Chemistry, Materials and Engineering Chemistry
“Giulio Natta”, Polytechnic of Milano,
Via Mancinelli 7,
20131 Milan, Italy



mation about the effectiveness of a drug treatment; that is, it
can be performed to investigate whether the drug has had
the expected effect on the protein contents of the patholog-
ical cells.

Unfortunately, the comparison of different 2D-PAGE
maps is not a trivial process to perform [10, 11]. The main
difficulty that arises during such comparisons is the high
complexity of the specimen, which can result in maps with
thousands of spots; this complexity is also increased by the
complicated sample pretreatment, which is often character-
ized by many purification/extraction steps. These experi-
mental steps may cause the appearance of spurious spots
due to impurities in the final 2-D maps. Moreover, the
differences between the treated and reference samples can
be very small, thus complicating their identification in a
real complex map.

In the classical approach, the comparison is performed
by specific software, such as Melanie III or PD-Quest [12,
13]. In this case, each 2-D slab gel is analyzed by a
densitometer that provides the optical density at each point
on each map. The analysis performed by this software
consists of the following different steps:

– Spot detection: the identification of protein spots in the
gel image.

– Spot revelation: the software reveals the spots inde-
pendently for each map.

– Matching the maps: the 2-D maps are matched to
reveal common features (spots present in all maps) and
those that differ between maps.

This procedure is usually time-consuming and affected
by the particular ability of the operator, which tends to
determine the final quality of the results.

Here, the classification of 2D-PAGE maps was performed
in a completely different way: by decomposing the map
images in terms of Zernike moments and applying multivar-
iate tools usually adopted in image analysis problems. The
moments calculated are then coupled to multivariate classi-
fication techniques; here we use partial least squares
discriminant analysis (PLS–DA). The procedure proposed
here allows us to bypass all of the steps listed previously, in
particular the critical action of aligning the maps, which is
not necessary here since Zernike moments are invariant with
respect to map translations.

The Zernike moments of the map images were calculated
using software written in Visual Basic and developed in-
house, and then PLS–DA [14–18] together with variable
selection procedures [14–18] were applied to classify the
samples considered. This procedure was applied to four
different datasets (six cases were studied overall) to check
the general validity of the procedure.

Theory

Moment functions have a broad spectrum of application in
image analysis, such as for invariant pattern recognition,
object classification, pose estimation, image coding and
reconstruction. A set of moments computed from a digital
image generally represents global characteristics of the im-
age shape and provides a lot of information about the
different types of geometrical features of the image. The
ability of image moments to represent features has been
widely exploited in object identification techniques in
several areas of computer vision and robotics [19–25].
Geometric moments were the first to be applied to images,
as they are computationally very simple. As research into
image processing has progressed, many new types of
moment functions have been recently introduced, each with
its own advantages for specific applications.

In this paper, complex Zernike moments have been
implemented as feature descriptors for 2D-PAGE map
classification. Zernike moments were first introduced by
Teague [26] based on orthogonal functions called Zernike
polynomials [27]. Though computationally very complex,
compared to geometric and Legendre moments [28–30],
Zernike moments have been shown to provide superior
feature representation and low noise sensitivity [31, 32].
Moreover, the orthogonal basis for Zernike moments means
that a value of zero can be attained for the redundancy
measure in a set of moment functions, such that these
orthogonal moments correspond to independent character-
istics of the image. In other words, moments with orthogo-
nal basis functions can be used to represent the image with
a set of mutually independent descriptors, yielding a mini-
mum amount of information redundancy. Therefore, or-
thogonal moments are more robust than nonorthogonal
moments in the presence of image noise.

For the specific application we are interested in, two of
the various important features of Zernike moments,
invariance to rotation and translations of the image, are
particularly relevant.

Zernike moments

Zernike moments are based on orthogonal Zernike poly-
nomials defined using the polar coordinates inside a unit
circle. The two-dimensional Zernike moments of order p
with repetition q for an image intensity function f r; ϑð Þ are
defined as:

Zpq ¼ pþ 1

:

Z 2:

ϑ¼0

Z 1

r¼0
V*pq r;ϑð Þf r;ϑð Þr dr dϑ; rj j � 1;
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where the Zernike polynomials of order p with repetition q,
Vpq r;ϑð Þ, are defined as:

Vpq r;ϑð Þ ¼ Rpq rð Þeiqϑ;
and the real-value radial polynomial, Rpq rð Þ, is given as
follows:

Rpq rð Þ ¼
Xp� qj jð Þ=2

k¼0

�1ð Þk p� kð Þ!
k! pþ qj jð Þ=2� kð Þ! p� qj jð Þ=2� kð Þ!r

p�2k ;

0 � qj j � p and p� qj j is even
Since Zernike moments are defined in terms of polar

coordinates r;ϑð Þ with rj j � 1, their computation requires a
linear transformation of the image coordinates (i, j) (with i,
j=0,1,2,...,N−1) to a suitable domain x; yð Þ 2 R2 inside a unit
circle. In this way we can express the discrete approximation
of the continuous integral of the moments as:

Zpq ¼ 2 pþ 1ð Þ
p N � 1ð Þ2

XN�1

i¼0

XN�1

j¼0

Rpq rij
� �

e�iqϑij f i; jð Þ

where the general image coordinate transformation to the
interior of the unit circle is given by:

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2j

q
; ϑij ¼ tan�1 yi

xi

� �
; where

xi ¼
ffiffi
2

p
N�1 i� 1ffiffi

2
p ; yj ¼

ffiffi
2

p
N�1 j� 1ffiffi

2
p

The image intensity function f (i, j) can be reconstructed
from a finite number n of Zernike moments, using the
following equation:

f r;ϑð Þ ¼ Pn
p¼0

P
q
ZpqVpq r;ϑð Þ; defined for : qj j � p

and p� qj j ¼ even

Zernike moments were calculated here by exploiting the
so-called Q-recursive method, developed by Mukundan,
Raveendran and Chong [33], which allows them to be
calculated in a reduced computational time.

In this method, Rpq rð Þ (with p=q−4) is calculated by:

Rpðq�4Þ rð Þ ¼ H1Rpp rð Þ þ H2 þ H3

r2

� �
Rpðq�2Þ rð Þ

where:

Rpp ¼ r p

Rp q�2ð Þ rð Þ ¼ pRpp rð Þ � p� 1ð ÞR p�2ð Þ p�2ð Þ rð Þ

H1 ¼ q q� 1ð Þ
2

� qH2 þ H3 pþ qþ 2ð Þ p� qð Þ
8

H2 ¼ H3 pþ qð Þ p� qþ 2ð Þ
4 q� 1ð Þ þ q� 2ð Þ

H3 ¼ �4 q� 2ð Þ q� 3ð Þ
pþ q� 2ð Þ p� qþ 4ð Þ

Partial least squares discriminant analysis (PLS–DA)

Partial least squares (PLS) [14–18] is a multivariate regres-
sion method that allows the relationship between one or
more dependent variables (Y) and a group of descriptors (X)
to be established. The X and Y variables are modeled
simultaneously to find the latent variables (LVs) in X that
will predict the latent variables in Y. These latent variables
(also called the PLS components) are similar to the principal
components calculated from principal component analysis
[14-18]: they are extracted such that each successive latent
variable accounts for the largest possible amount of variation
that is not accounted for by the previous variables (they are
orthogonal to each other), in both the descriptor space (X)
and the response space (Y). The LVs are computed
hierarchically so that the last LVs are mostly responsible
for random variations and experimental error.

The optimal number of LVs (i.e., a model that uses the
information in X to predict the response Y while avoiding
overfitting) is determined by the residual variance in
prediction. Here, leave-one-out cross-validation is applied
to evaluate the predictive ability and to select the optimal
number of latent variables in the final model.

In the case where a large number of descriptors (X
variables) are present or a large experimental error is
expected, it can be quite difficult to obtain a final model
with a suitable predictive ability. In these cases, some
techniques for variable selection can be exploited. Here,
two subsequent strategies were applied: an initial simplifi-
cation of the model achieved by eliminating groups of
nonsignificant X variables up to a maximum of 200
variables, based on the minimum error obtained in cross-
validation; and a second phase where variables were
eliminated one at a time to provide a final model with an
overall minimum error in cross-validation.

PLS was created to model continuous responses, but it
can also be applied for classification purposes by establish-
ing an appropriate Y that is related to the membership of
each sample to a class. When only two classes are present
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(for example control and treated samples), a binary Y
variable is added to the dataset, which is coded so that −1 is
attributed to one class (control samples) and +1 to the other
one (treated samples). When more than two classes are
present, the Y matrix contains one column for each class,
and the sample is coded to +1 for the column corresponding
to the class it belongs to, and −1 for the other classes.

The regression is then carried out between the X-block
variables (Zernike moments) and the Y variables just
established. This process of classification is called PLS
discriminant analysis (PLS–DA).

Model evaluation

The coefficient of multiple determination, R2, for PLS was
calculated as:

R2 ¼ 1�
Pn
i¼1

ŷi � yi
� �2

Pn
i¼1

yi � yð Þ2

where the two sums run on the samples used for calibration
(R2), or for validation (R2

cv); ŷi is the predicted value of the
response for the i-th experiment; yi is the experimental
predicted value for the response for the i-th experiment; y
is the average response of the samples used for calibration
(R2), or for validation (R2

cv).
The root mean square error (RMSE) is calculated as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ŷi � yi
� �2

n

vuuut

where the sum runs on the samples used for calibration
(RMSEC), and for validation (RMSECV).

In this case, the best model complexity in terms of both
the number of X variables present and the number of latent
variables in the model was selected by the minimum value
of RMSECV (leave-one-out procedure).

Experimental

Datasets

The procedure was applied to six groups of 2D-PAGE maps
belonging to four different pathologies: human lymphoma,
neuroblastoma, human colon cancer, human pancreatic
cancer. For lymphoma and neuroblastoma, the comparison
involved:

– Lymphoma: Four samples from the GRANTA519 cell
line of human lymphoma (control) and four samples
from the MAVER-1 cell line

– Neuroblastoma: Four samples from control adrenal
mouse glands (control) and four samples from adrenal
mouse glands affected by neuroblastoma.

The other two cases under investigation were more
complex:

– Colon cancer exposed to a histone deacetylase (HDAC)
inhibitor. Nuclei and total cell lysates were investigated
from colon cancer cell line HCT116. The nuclei dataset
comprised six control (diseased) and five samples
treated with a HDAC inhibitor. The lysates dataset
instead comprised five control and five HDAC inhibitor-
treated samples.

– Pancreatic cancer. Two human pancreatic cancer cell
lines were investigated: the PACA44 and T3M4 cell
lines, both treated or untreated with trichostatin A. For
the PACA 44 cell line, four control and four drug-
treated samples were investigated, while for the T3M4
cell line the dataset consisted of five control and five
drug-treated samples.

The experimental protocols followed in order to obtain
the several 2D-PAGE maps used in this study are not
reported here since they are described elsewhere [10, 34,
35] and represent standard practice in proteomics.

Software

PLS–DAwith variable selection was performed by PARVUS
(M. Forina, University of Genova, Italy, http://www.parvus.
unige.it/). Zernike moments were computed by software
developed in-house in Visual Basic (Microsoft Visual
Studio 6.0). Data pretreatment and graphical representations
were performed by Visual Basic, Parvus and Microsoft
Excel 2003.

Results and discussion

Image pretreatment

Each map was automatically digitalized to provide a grid
of 100×100 pixels, where each pixel contained the gray-
scale intensity at the corresponding position in the image.
These values therefore ranged from 0 (black) to 255
(white).

Each image map was then pretreated to eliminate the
contribution from the background to the signal. This
correction exploits two threshold values that must be fixed:
the value of the first derivative of each image (the slope),
indicating the presence of an actual spot rather than noise,
and the value of the pixel (the cut), indicating the threshold
value corresponding to the background.
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For each image, the first derivative is calculated as
difference between the values of two adjacent pixels
(calculations are performed row-wise). Each image is then
corrected for the background by considering the first
derivative and the value of each pixel simultaneously: if
the first derivative is less than the slope and the pixel is
larger than the cut, the value of the pixel is set to 255
(white). Good results can be obtained with cut values of
100–150 and slope values ranging from 10 to 20. Figure 1
shows an example of a sample corrected using cut=100 and
slope=15. All of the maps were treated using these two
values for cut and slope.

Zernike moment calculation and dataset preparation

For each image, Zernike moments were calculated with a
maximum p order of 100. This procedure provides a total of
2601 moments. The algorithm allows the separate calcula-
tion of the real and imaginary parts of the moments,
providing a total of 5202 descriptors for each image: 2601
corresponding to the real parts of the moments and 2601 to
the imaginary parts. Since the X matrix can only contain
real numbers, only the coefficient of the imaginary part of
the Zernike moment was considered (i.e., the numerical
coefficient multiplying the i character). For example, the
complex number (−5.34 − 0.0478i) can be separated into
two parts: −5.34 is the real part and −0.0478 is the
imaginary part.

The samples in the four different datasets were coded as
follows:

– Lymphoma dataset: GRANTA519 cell line (CTR1-4)
and MAVER-1 cell line (MAV1-4)

– Neuroblastoma dataset: adrenal mouse glands (CTR1-
4) and adrenal mouse glands affected by neuroblastoma
(ILL1-4);

– Colon cancer dataset: nuclei from colon cancer cells
(CTR1-6) and nuclei from colon cancer cells treated by a
HDAC inhibitor (NHD1-5); lysates from colon cancer
cells (CTR1-5) and lysates from colon cancer cells
treated with the inhibitor (LHD1-5)

– Pancreatic cancer dataset: Control (PACA1-4) and drug-
treated (PTSA1-4) PACA 44 cell line; control (T3M41-
5) and drug-treated (TTSA1-5) T3M4 cell line.

PLS–DA

Each dataset was autoscaled before performing PLS–DA.
PLS–DA was applied, as specified in the “Theory” section,
with variable selection, exploiting a backward elimination
algorithm. This procedure enables only the most relevant
moments—those that allow the correct classification of the
samples (minimum RMSECV)—to be identified.

Due to the large number of variables present (5202), the
backward elimination procedure was applied in two
consecutive steps:

– A first selection was made where groups of nonsignif-
icant variables were eliminated, providing a final

Table 1 Variance (%) explained by the first LV for the X and Y
variables for each case study

LV1

% Expl. Var. X % Expl. Var. Y

Lymphoma 88.90 99.90
Neuroblastoma 74.65 99.68
Pancreas: PACA cell line 94.20 99.43
Pancreas: T3M4 cell line 79.77 99.35
Colon cancer: Lysates 94.58 99.22
Colon cancer: Nuclei 65.16 96.66

a b

Fig. 1 Example of map pre-
treatment: sample CTR1 from
the Lymphoma dataset before
(a) and after (b) background
correction with cut=100 and
slope=15
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Fig. 2 Score plots of the first two LVs for the four datasets
investigated: Lymphoma (a); Neuroblastoma (b); Pancreas (PACA
cell line: c; T3M4 cell line: d); Colon cancer (Lysates: e; Nuclei: f).

Control samples are represented as circles; samples belonging to the
second class are represented as squares
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Fig. 3 Loading plots of the first two LVs for the four datasets investigated: Lymphoma (a); Neuroblastoma (b); Pancreas (PACA cell line: c; T3M4
cell line: d); Colon cancer (Lysates: e; Nuclei: f). Zernike moments are represented by numbers
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dataset containing a maximum of 200 moments, based
on finding the smallest error in cross-validation

– A second refinement was performed by eliminating the
variables one at a time in order to select the actual
number of moments that provide the smallest error in
cross-validation.

Table 1 reports the amount of variance explained by the
first LV for each case study for both X and Y variables. The
first LV was considered the significant one for all of the cases
under investigation (leave-one-out cross-validation). The first
LV in fact explains more than 99% of the total amount of
information contained in the Y variable; the only exception is
the Nuclei dataset, for which it explains about 96%. The use
of one LV in each classification model allows the correct
classification of all of the samples in each dataset with a final
NER% (non-error rate) of 100%.

Figures 2 and 3 report scores and loadings plots,
respectively, for all of the investigated datasets. The control
sample class is plotted as circles and the other class as

squares in the score plots. For all cases, the control samples
are located at large negative values along the first LV, while
the other class is located at large positive scores. This
behavior confirms the ability of the first LV to separate the
samples in the two classes present for each dataset.

The analysis of the corresponding loading plots allows the
identification of the Zernike moments responsible for the
differences between the classes of samples. In each loading
plot, eachmoment is represented by a number from 1 to 5202.
Moments located at large negative values along LV1 show
large positive values for control samples and large negative
ones for the other class; the moments located at large
positive values along LV1 show the opposite behavior: large
negative values for control samples and large positive ones
for the other class in each dataset. The loading plots report
only the moments found to be significant by the backward
elimination procedure applied to each dataset.

Table 2 reports the R2 and RMSE values obtained during
fitting and cross-validation for all of the datasets investi-
gated. The R2 values show that the models provide very

Table 3 Zernike moments considered to be significant for the six cases under investigation; real and imaginary parts are reported separately

Lymphoma Neuroblastoma Pancreas: PACA cell line Pancreas: T3M4 cell line Colon cancer: Lysates Colon cancer: Nuclei

Real Imaginary Real Imaginary Real Imaginary Real Imaginary Real Imaginary Real Imaginary

p67q45R p87q3I p93q57R p100q14I p65q61R p28q14I p100q70R p100q56I p27q3R p28q4I p91q43R p92q68I
P58q4R p82q48I p85q29R p100q8I p61q57R p18q14I p98q94R p92q38I p26q0R p15q3I p89q41R p91q19I
p43q29R p32q6I p82q30R p99q13I p57q53R p14q10I p98q78R p89q83I p10q4I p87q41R p91q17I
p39q3R p50q16R p98q14I p53q49R p10q6I p95q41R p77q27I p78q16R p88q64I

p48q26R p94q28I p34q12R p8q6I p94q90R p62q20I p77q3R p54q30I
p42q36R p65q11I p32q12R p94q74R p68q10R p53q25I
p19q3R p64q24I p25q11R p94q62R p66q10R p47q23I
p12q2R p45q17I p22q12R p94q58R p59q39R p46q22I

p42q2I p15q5R p92q46R p53q41R p46q14I
p40q16I p14q8R p90q86R p32q10R p45q23I
p36q12I p13q11R p90q70R p29q21R p44q14I
p7q5I p13q5R p90q42R p10q2R p37q11I

p10q8R p86q66R p27q9I
p9q7R p70q54R p24q12I
p8q4R p66q30R p23q15I
p6q4R p66q26R p23q13I
p5q3R p62q26R p22q12I
p3q3R p32q32R p20q12I
p0q0R p28q28R p18q12I

p11q5I

Table 2 R2 and RMSE values
calculated for fitting (R2,
RMSEC) and cross-validation
(R2

cv, RMSECV) for all of the
datasets investigated

R2 R2
cv RMSEC RMSECV

Lymphoma 0.9990 0.9980 0.0367 0.0508
Neuroblastoma 0.9968 0.9951 0.0653 0.0846
Pancreas: PACA cell line 0.9943 0.9894 0.0875 0.1045
Pancreas: T3M4 cell line 0.9935 0.9890 0.0904 0.1093
Colon cancer: Lysates 0.9922 0.9891 0.0965 0.1046
Colon cancer: Nuclei 0.9666 0.9471 0.2012 0.2331
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Fig. 4 Calculated and predictedYvalues vs. reference Yvalues for the four
datasets investigated: Lymphoma (a); Neuroblastoma (b); Pancreas (PACA
cell line: c; T3M4 cell line: d); Colon cancer (Lysates: e; Nuclei: f).

Calculated values are represented as circles, while predicted values are
shown as squares. Solid regression lines correspond to calculated values,
while dotted regression lines correspond to predicted values
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good performances in terms of both fitting and validation.
The worst results were obtained for the Nuclei dataset,
which still however presents R2 and R2

cv values of above
0.94. The good abilities of the derived classification models
to describe the information provided (fitting) and to predict
new values (validation) are also demonstrated by the RMSE
values calculated: the fitting errors (RMSEC) are almost all
below 0.1 (the only exception is for the Nuclei dataset),
while validation errors (RMSECV) are almost all below
0.11 (again, the only exception is for the Nuclei dataset).

These conclusions are also confirmed by Fig. 4, which
reports, for each case study, the calculated and predicted Y
values vs. the actual Y values. In all cases there is good
agreement between the actual and the calculated or
predicted values. Since in this case PLS is used as a
classification tool, the most important information provided
by these diagrams is represented by the variations in the
calculated and predicted values along the Y axis: the
positions of both the fitted and the validated values at
negative values for control samples and at positive ones for
the other class in each dataset prove that the models derived
here provide 100% NER%. This is also true for the nuclei
dataset, even if the variations along the Y axis appear to be
the largest in this case.

Table 3 reports the number of significant moments
selected for each dataset; for each case studied, the real
and imaginary parts of the moments are reported separately.
Moments are represented by an alphanumeric string
reporting the values of the orders p and q followed by R
if the moment represents the real part or by I if it represents
the imaginary part. The number of significant moments
(ranging from five for the Lysates dataset to 32 for the
Nuclei dataset) shows the importance of the selection
procedure, which eliminates information present in the
maps that is not directly related to the classification of the
samples (i.e., redundant information). The analysis of the p,
q orders found to be significant then shows that the
significant moments do not show recursive p, q values; in
other words, for the different cases studied, different
moments are significant. This is logical, since different
classes of maps will show differences in different areas of
the maps themselves. Unfortunately, it is not a trivial task to
directly identify the features in each group of images that
determine the differences between the two classes investi-
gated: this is due to the particular nature of Zernike
moments (and other image moment functions), which
capture global independent aspects of each image.

Conclusions

A new method for the fast comparison of proteomic 2-D
maps is presented here. The method exploits Zernike

moment functions coupled to classification tools. Zernike
moments were calculated for four different datasets (six
case studies in total) of varying complexity, all character-
ized by the presence of two classes: control samples and
diseased or treated samples.

The procedure developed proved to be a successful tool for
extracting the global information present in the maps obtained
from 2-D gel electrophoresis: PLS–DA provided the correct
classification of all of the samples for all of the cases
investigated. The application of backward elimination proce-
dures enabled the most parsimonious set of moments that
provided the best cross-validation results to be identified. For
the cases investigated, final numbers of moments ranging
from 5 to 32 were found to be significant for classification.

The method proposed could be applied in principle to
perform rapid comparisons of 2-D proteomic maps;
increasing the number of samples in each class could also
lead to its use in diagnostic applications.

It is, however, important to point out that Zernike
moments extract general independent aspects of an image,
and so they do not easily and directly provide information
about the differences that exist between the classes of maps
investigated. At the moment, the reconstruction of the
images based on the significant moments selected enables
large areas of the image containing the most relevant
differences to be identified. For all the cases studied, these
areas contain relevant information (i.e., actual spots). This
initial information is important, since we can state that
Zernike moments classify the images based on the spots
rather than differences in the background or image artefacts.
However, this information is not sufficient if the purpose of
the diagnostic (a role ably fulfilled by the proposed
procedure) is connected to the identification of differences
(functional proteomics). Work is in progress in our lab to
solve this problem and thus to also make Zernike moments
useful from this point of view.
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