
ORIGINAL PAPER

Multivariate feature selection and hierarchical classification
for infrared spectroscopy: serum-based detection of bovine
spongiform encephalopathy

Bjoern H. Menze & Wolfgang Petrich &

Fred A. Hamprecht

Received: 27 October 2006 /Revised: 30 November 2006 /Accepted: 1 December 2006 / Published online: 20 January 2007
# Springer-Verlag 2007

Abstract A hierarchical scheme has been developed for
detection of bovine spongiform encephalopathy (BSE) in
serum on the basis of its infrared spectral signature. In the
first stage, binary subsets between samples originating from
diseased and non-diseased cattle are defined along known
covariates within the data set. Random forests are then used
to select spectral channels on each subset, on the basis of a
multivariate measure of variable importance, the Gini
importance. The selected features are then used to establish
binary discriminations within each subset by means of ridge
regression. In the second stage of the hierarchical procedure
the predictions from all linear classifiers are used as input to
another random forest that provides the final classification.
When applied to an independent, blinded validation set of
160 further spectra (84 BSE-positives, 76 BSE-negatives),

the hierarchical classifier achieves a sensitivity of 92% and
a specificity of 95%. Compared with results from an earlier
study based on the same data, the hierarchical scheme
performs better than linear discriminant analysis with
features selected by genetic optimization and robust linear
discriminant analysis, and performs as well as a neural
network and a support vector machine.
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Introduction

Fourier-transform infrared spectroscopy (FTIR) is important
in biomedical research and applications [1–6]. In addition to
increasing FTIR-imaging activity, in particular for character-
ization of tissues, mid-infrared spectroscopy of biological
fluids has been shown to reveal disease-specific changes in
spectral signature, e.g. for bovine spongiform encephalopa-
thy [7], diabetes mellitus [8], or rheumatoid arthritis [9].

In contrast with other diagnostic tests, in which the
presence or absence of, for example, the characteristic
immunological reaction of a biomarker can easily be
recognized, detection of such a characteristic change in
high-dimensional spectral data remains in the realm of
multivariate data analysis and pattern recognition. Conse-
quently, diagnostic tests which combine the spectroscopy,
e.g. of molecular vibrations, with subsequent multivariate
classification are often referred to as “disease pattern
recognition” or “diagnostic pattern recognition” [8–10].

To ensure the high performance of such a test, the
robustness of this diagnostic decision rule is of crucial
importance. In chemometrics, popular means of removing
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irrelevant variation from the data and regularizing the
classifier in ill-posed learning problems include subset
selection of relevant spectral regions and use of linear models.

In this manuscript a hierarchical design of a classifier is
proposed which combines these two concepts for detection
of evidence of bovine spongiform encephalopathy (BSE) in
infrared spectra of biofilms of bovine serum (Data section).
A hierarchical decision rule is introduced which explicitly
considers covariates in the data set, and which is based on
random forests—a recently proposed ensemble classifier
[11]—and its entropy-related measure of feature impor-
tance, the Gini importance (Classification section). We will
illustrate how this algorithm differs from other feature-
selection strategies and discuss the relevance of our
findings to the given diagnostic task. Finally, we will
compare the performance with results from other chemo-
metric approaches using the same data set (Results and
discussion section). We would like to point out that one
strength of this manuscript is that feature selection and
classification are judged by comparison with other methods
on the basis of an identical data set.

Experiments and data

Six-hundred and forty-one serum samples were acquired
from confirmed BSE-positive (210) or BSE-negative (211)
cattle from the Veterinary Laboratory Agency (VLA),
Weybridge, UK, and from BSE-negative cattle from a
commercial abattoir in southern Germany (220). All BSE-
positive samples originated from cattle in the clinical stage,
i.e. the animals had clinical signs of BSE and were
subsequently shown to be BSE-positive by histopatholog-
ical examination. To the extent to which this information
was available (approx. 1/3 of the samples), all the BSE-
negative samples originated from animals which were
neither suspected to suffer from BSE nor did they originate
from a farm at which a BSE-infection had previously
occurred. With 641 samples originating from 641 cows this
data set is one of the largest ever studied by biomedical
vibrational spectroscopy.

After thawing, 3 μL of each sample was pipetted on to
each of three disposable silicon sample carriers using a
modified Cobas Integra 400 instrument1 and left to dry, to
reduce the strong infrared absorption of water. On drying,
the serum samples formed homogenous films 6 mm in
diameter and a few micrometers thick. Transmission spectra
were measured using a Matrix HTS/XT spectrometer
(Bruker Optics, Ettlingen, Germany) equipped with a
DLATGS detector. Each spectrum was recorded in the
wavenumber range 500–4000 cm−1, sampled at a resolution

of 4 cm−1 (Fig. 1). Blackman–Harris three-term apodization
was used and a zero-filling factor of 4 was chosen. Finally,
a spectrum was represented by vector of length 3629. The
three absorbance spectra from measurement of each sample
were corrected individually for sample carrier background;
further details are given elsewhere [12]. Subsequently the
spectra were normalized to constant area (L1 normalization)
in the region between 850 and 1500 cm−1 and the mean
spectrum was calculated for each group of three. Final
smoothing and subsampling by “binning” (averaging) over
adjacent channels was subject to hyperparameter tuning on
each binary subset of the data (using a single bin-width
“bw” for the whole spectrum—see below). In contrast with
other procedures in IR data processing, band and high-pass
filters (for example Savitzky–Golay) were not applied.

For teaching2 of the classifier, 126 BSE-positive samples
(from the VLA) and 355 BSE-negative samples (135 from
the VLA, 220 from the German abattoir) were selected.
Most of the teaching data were measured on a system at
Roche Diagnostics, but 60 of the samples were measured
on a second system located at the VLA, Weybridge [12]. A
second, independent, data set, comprising the spectra of
another 160 serum samples (84 positive, 76 negative, as
randomly selected by the study site (the VLA), was
reserved for validation; all of these were acquired and

1 Cobas Integra is a trademark of a member of the Roche group.

Fig. 1 Spectral data as a function of wavenumber; median (line) and
quartiles (dots) of the two classes are indicated. Top: diseased (gray)
and normal (black) groups. Bottom: Groups after channel-wise
removal of the mean and a normalization to unit variance of the
whole data set, as implicitly performed by most chemometric
regression methods

2 If not indicated otherwise, we will adhere to spectroscopists’
terminology in the partitioning of the data set. The classification
model is trained on the training data and its hyperparameters are
adjusted on the test data. This process of training and testing is
summarized as teaching. The final classifier is then validated on an
independent validation set to assess the performance of the classifier.
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measured at the VLA). This validation data set was retained
at Roche Diagnostic until teaching of the classifier was
finalized. The classifier was then applied to the validation
data and the classification results were reported to Roche
Diagnostics, where final comparison with true (post-
mortem) diagnosis of the validation data was conducted.

Classification

For the given data we defined eight binary subproblems,
contrasting BSE-positive and negative samples that varied
in one known covariate only (Fig. 2) such that each split
between diseased and non-diseased specimens also repre-
sented a split over a maximum of one covariate within the
data sets. On each binary subset we optimized preprocess-
ing, feature selection (using Gini importance), and linear
classification individually, and finally induced the decisions
on the subsets in a second decision level (Fig. 3).

Concepts of both feature selection by random forests and
the hierarchical classification scheme are presented first,
followed by details of implementation and tuning procedures.

Feature selection by random forests

Decision trees are a very popular classifier in both biometry
and machine learning, and have also found application in
chemometric tasks (Ref. [13] and references cited therein).
A decision tree splits the feature space recursively until
each split holds training samples of one class only. A
monothetic decision tree thus represents a sequence of
binary decisions on single variables.

The pooled predictions of a large number of classifiers,
trained on slightly different subsets of the teaching data,
often outperform the decision of a single classification
algorithm optimally tuned on the full data set. This is the
idea behind ensemble classifiers. “Bootstrapping”, random
sampling with replacement of the teaching data, is one way
of generating such slightly differing training sets. “Random
forest” is a recently proposed ensemble classifier that relies
on decision trees trained on such subsets [11, 14]. In
addition to bootstrapping, random forests also use another
source of randomization to increase the “diversity” of the

classifier ensemble: “random splits” [11] are used in the
training of each single decision tree, restricting the search
for the optimum split to a random subset of all features or
spectral channels.

Random forests are a popular multivariate classifier
which is benevolent to train, i.e. which yields results close
to the optimum without extensive tuning of its parameters,
and for which the classification performance is comparable
with that of other algorithms, for example support vector
machines, neural networks, or boosting trees, on several
data sets [15]. Superior behavior on micro-array data, often
resembling spectral data in sample size and feature
dimensionality, has been reported [16–18]. This superior
classification performance was not observed for our data
set, however, and the initial training of a random forest on
the binary subproblems of the hierarchical classification
procedure serves a different purpose—it reveals informa-
tion about the relevance of the spectral channels.

During training, the next split at the node of a decision
tree (and thus the next feature) is chosen to minimize a cost
function which rates the purity of the two subgroups arising
from the split. Popular choices are the decrease in
misclassification or, alternatively, in the Gini impurity, an
empirical entropy criterion [19]. Both favor splits that
separate the two classes completely—or at least result in
one pure subgroup—and assign maximum costs, if a
possible split cannot unmix the two classes at all (Fig. 4).
Gini impurity and (cross-) entropy can be expressed
formally in the two-class case as:

Gini
X

i¼0;1
pi 1� pið Þ

Entropy
X

i¼0;1
�pi log pið Þ

with proportions p0 and p1 of samples from class 0 and
class 1 within a separated subgroup.

Fig. 2 Scheme for the identifi-
cation of binary subgroups. A
classifier is trained to discrimi-
nate between pairs of “posi-
tives” and “negatives” which
also differ by a maximum of
one covariate (similarity in
covariates is expressed by
symbol or color)

Fig. 3 Architecture of the hierarchical classifier. For prediction a
series of binary classification procedures is applied to each spectrum
as a first step. The single classifiers of each subgroup (from left to
right) are individually optimized in respect of preprocessing, feature
extraction, and classification. To induce the final decision about the
state of disease, a nonlinear classifier is applied to the binary output of
all classifiers of the first level
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Recording the discriminative value of any variable
chosen for a split during the classification process by the
decrease in Gini impurity, and accumulating this quantity
over all splits in all trees in the forest, leads to the Gini
importance [11], a measure indicating which spectral
channels were important at any stage during the teaching
of the multivariate classifier. The Gini importance differs
from the standard Gini gain, because it does not report the
conditional importance of a feature at a certain node in the
decision tree, but the contribution of a variable to all binary
splits in all trees of the forest.

In practical terms, to obtain the Gini importance for a
particular classification problem, a random forest is trained,
and returns a vector which assigns an importance to each
channel of the spectrum. This importance vector often
resembles a spectrum itself (Fig. 5) and can be inspected
and checked for plausibility. More importantly, it enables
ranking of the spectral channels in a feature selection. In
our hierarchical classification scheme (Fig. 3), the Gini
importance is used to obtain an explicit feature selection on
each binary subset in a wrapper approach together with a
subsequent linear classification, e.g. by a (discriminative)
partial least-squares regression or principal-component
regression.

So, rather than using random forests as a classifier, we
advocate the use of its feature importance to “upgrade”
standard chemometric learners by feature selection accord-
ing to the Gini importance measure.

Design of the hierarchical classifier

When a classifier is learned and its parameters are
optimized on the training data, statistical learning often
assumes independent and identically distributed samples.
Experimental data do not, unfortunately, necessarily justify
these ideal assumptions. Variations in the data and changes
of the spectral pattern do not always correlate with the state
of disease only. For the particular case under investigation,
covariates such as breed of cattle or instrumental system-to-
system variation also often result in notable changes of the
spectrum.

As a consequence, differentiation between inter-class
and intra-class variation becomes difficult for standard
models which implicitly assume homogenous distributions
of the two classes, e.g. as in linear discriminant analysis.
Effects of covariates and external factors on the data and
their characteristic changes of the spectra can be considered
explicitly, however. If information about these confounding
factors is available both during teaching and validation, and
these factors can be used as input features to the classifier, a
multilayered or stacked classification rule [20] can be
designed to evaluate the combined information from spectra
and factors appropriately (examples are given elsewhere
[21, 22]). If information on covariates is available only
during teaching, this information can still be leveraged in
the design of the classifier. A mixture discriminant analysis
(MDA) [19], for example, provides means of extending
linear discriminant analysis to a nonlinear classifier. By

Fig. 5 Importance measures on binary subset of the training data.
Top: univariate tests for group differences, probabilities from T-test
(black) and Wilcoxon–Mann–Whitney test (gray). Shown is the
negative logarithm of the p-value—low entries indicate irrelevance,
high values report high importance. Middle: random forest Gini
importance (arbitrary units). Bottom: direct comparison of ranked
Gini importance (black) and ranked T-score (gray). Horizontal dotted
lines indicate optimum threshold on the Gini importance

Fig. 4 Cost functions for an optimum split within a decision tree:
Gini importance (circles), entropy (triangles), and classification error
(boxes) as a function of the proportion of samples p from one of the
two classes. Pure subsets which (after the splitting) contain one class
only (p1=0 and p0=1) are assigned minimum costs and are favored,
whereas splits which result in an evenly mixed situation (p1=p0=0.5)
are assigned the highest costs and, consequently, are avoided. As
visible from the graph, the Gini importance is an approximation to the
entropy which can be calculated without recourse to the computation-
ally expensive logarithm (Ref. [19], p. 271)
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introducing additional Gaussian probability distributions in
the feature space, MDA enables one to explicitly model
subgroups which are distinguished by different levels of the
(discrete) external factors. The final decision is induced
from the assessed probabilities, so—in a two-level archi-
tecture—the MDA is often also referred to as a “hierarchi-
cal mixture of experts” [19].

In the approach presented here, a similar hierarchical
strategy is pursued. Instead of modeling probability
distributions of subgroups, however, the decision bound-
aries between positive and negative (diseased and non-
diseased) samples of the subgroups are taught directly
(Fig. 2). In the feature space, this procedure generates
several decision planes which partition the space into
several high-dimensional regions. Samples within a certain
region are coded by a specific binary sequence, according
to the outcome of all binary classifiers of this first step. A
second classifier, assigning a class label to each of these
volumes, is trained on these binary codes and provides a
final decision about the state of the disease. Two-layer-
perceptrons are based on similar concepts. In the hierarchi-
cal rule presented here the binary decisions of the first level
are, nevertheless, explicitly adapted to interclass differences
of subgroups defined by the covariates and, in the second
level, a nonlinear classifier is employed (Fig. 3) to ensure
separability of nonlinear problems in a two-level design
also. To this end, we used a method which is particularly
suited to inducing decisions on categorical and binary data,
namely binary decision trees. Considering the high vari-
ability of single-decision trees, we have also preferred to
use the random forests ensemble at this stage. Thus we
have obtained an approximation to the posterior probability,
rather than the dichotomous decision of the single decision
tree, as the final decision of our hierarchical classifier.

Overall, compared with the generative MDA and the
discriminative perceptron, both of which enable sound
optimization of the classification algorithm in a global
manner, the hierarchical approach presented here is a mere
ad-hoc rule. The hierarchical design, however, enables the
tuning of all three steps of the data processing—prepro-
cessing, feature selection, and classification—individually
and explicit consideration of knowledge about the covar-
iates in the data.

Implementation and training

The origin of the samples and the two instrumental systems
in England and Germany were regarded as covariates
within the data set. The subgroups comprised between 40
and 421 samples, with a median of 130.5.

For each binary subproblem, a number of factors in
preprocessing, feature selection and classification were
tested and optimized individually, in a global tuning

procedure. The performance was assessed by tenfold
cross-validation of the classification error using the teach-
ing set only. The following factors (bw, Psel, Clmeth) were
considered: in preprocessing, binning was tested from one
to ten channels (bw=1, 3, 5, 10) to obtain downsampled
and smoothed feature vectors. In the feature selection,
random forests learned on all binary subsets (using the
implementation of Ref. [23] with the values: mtry=60,
nodesize=1, 3000 trees). Data sets were defined which
comprised the top 5%, 10%, and 15% of the input features,
ranked according to the Gini importance obtained (resulting
in a test set comprising between 19 and 544 spectral
features Psel, depending on the preceding binning). For
classification, partial least-squares (PLS), principal-compo-
nent regression (PCR), ridge regression (also termed
penalized or robust discriminant analysis), and standard
linear discriminant analysis (LDA) were tested
(Clmeth=PLS, PCR, ridge, LDA). For these classifiers, the
optimum split parameter was adapted according to the least
fit error on the training set and the respective hyper-
parameters (PLS and PCA dimensionality λ=1...12, ridge
penalty λ=2−5...5 [19]) were tuned by additional internal
tenfold crossvalidation.

After the optimum parametrization was found in the first
level, all binary classifiers were trained on their respective
subsets and their binary predictions on the rest of the data
set were recorded. Predictions for the samples of the subsets
themselves were determined by tenfold cross-validation.
The outcome of this procedure was a set of binary vectors
of length eight as compact representations for each
spectrum of the teaching data. A nonlinear classifier was
trained on these vectors (random forest, initial experiments
with bagging trees yielded similar results) and optimized
according to the out-of-bag classification error.

All computing was performed using the programming
language R [24] and libraries which are freely available
from cran.r-project.org, in particular the randomForest
package [23]. On a standard PC training of the random
forest was performed within seconds. Tuning of all
8*4*3*4 combinations of the predefined factor levels was
performed in hours. When the design of the hierarchical
classifier was fixed, the training was done in minutes and
final classification of the blinded validation data was
performed (nearly) instantaneously.

Results and discussion

Feature selection

To compare the Gini importance with standard measures,
univariate statistical tests were also applied to the data of
the binary subproblems (Fig. 5). Differences between the
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model-based T-test and a nonparametric Wilcoxon–Mann–
Whitney test are hardly noticeable (a representative
example is given in Fig. 5, top). Spectral channels with an
obvious separation between diseased and non-diseased
channels (Fig. 1, bottom) usually also score high in
multivariate Gini importance. Differences become easily
visible, however, when ranking the spectral channels
according to multivariate Gini importance and p-values of
the univariate tests (Fig. 5, bottom). Regions which had a
complete overlap between the two classes (Fig. 1, bottom),
and therefore no importance at all according to the
univariate tests, were often considered to be highly relevant
by the multivariate measure (compare Figs. 1 and 5: e.g.
1300 cm−1, 3000 cm−1), indicating higher-order dependen-
cies between variables. Conversely, regions for which there
were only slight drifts in the baseline were assigned modest
to high importance by the rank-ordered univariate mea-
sures, although known to be irrelevant biochemically
(Fig. 5, 1800–2700 cm−1). Compared with the selection of
the multivariate classifiers from Ref. [12], as obtained on
the same data set, similarities between the optimum
selections from the Gini importance and the earlier results
could be observed (Fig. 6, bottom).

All linear classifiers in the first level of the hierarchical
rule differed in the effect of the covariates on their
respective subproblem. All were optimized to separate
diseased and non-diseased samples, however. So, inspect-
ing the regions that were chosen by most (≥50%) of the
binary subgroup classifiers should primarily reveal disease-
specific differences (Fig. 6). Highly relevant regions are
found around 1030 cm−1, which is known to be a charac-
teristic absorption of carbohydrates, and at 2955 cm−1,

i.e. the asymmetric C−H stretch vibration of −CH3 in fatty
acids, in agreement with earlier studies [3, 6, 12, 25]. Other
major contributions can be found at 1120, 1280, 1310,
1350, 1460, 1500, 1560, and 1720 cm−1 (Fig. 6).

Classifier

Ridge regression yielded the best results for most of the
binary classification subproblems during teaching of the
classifiers. On average it performed 1–2% better than PLS,
PCR, and LDA (usually in this order). The comparably
poor performance of LDA, i.e. the unregularized version of
the ridge in a binary classification, indicates that even after
binning and random forest selection, the data were still
highly correlated. To keep the architecture of the hierarchi-
cal classifier as simple as possible, ridge regression was
fixed for all binary class separations in the first level.

Parameters for binning and feature selection were chosen
individually for each subproblem, comprising 5–10%
percent of the features after a binning by five or ten
channels. The high level of binning reflects the impact of
apodization and zero-filling, spectrometer resolution, and,
in particular, the typical linewidths of the spectral signa-
tures of ∼10 cm−1. This reduced the dimensionality of the
classification problem by up to two orders of magnitude for
all subproblems (19 to 106 features, median 69), compared
with 3629 data points in each original spectrum.

The final training yielded a sensitivity of 92% and a
specificity of 96% within the training set (out-of-bag error
of the random forest in the second level).

Validation

After having applied the classifier to the pristine validation
data set, unblinding revealed that 77 of 84 serum samples
originating from BSE-positive cattle and 72 of 76 samples
originating from BSE-negative cattle were identified cor-
rectly. Numerically, these numbers correspond to sensitivity
of 92% and specificity of 95%. A slight improvement can
be found compared with two of the four individual

Fig. 6 Spectral regions chosen by the different classification
strategies, along the frequency axis. Top: Histogram (frequency, see
bar on the right) of channel selection by random forest importance on
one of the eight subproblems (RF). Bottom: selection of classifiers
from Ref. [12], linear discriminant analysis (LDA), robust discriminant
analysis (R-LDA), support vector machines (SVM), artificial neural
networks (ANN)

Table 1 Sensitivity and specificity of classifiers from Ref. [12] and
from random forest-based hierarchical rule (RF), when applied to the
independent validation set (84 BSE-positive, 76 BSE-negative)

Method Sensitivity (%) Specificity (%)

LDA 82 93
R-LDA 80 88
SVM 88 99
ANN 93 93
meta classifier 93 96
RF 92 95
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classifiers in Ref. [12], i.e. linear discriminant analysis with
features selected by genetic optimization and robust linear
discriminant analysis (Table 1). Results are comparable
with or slightly better than those from the neural network or
the support vector machine. Preliminary results from a
subsequent test of all five classifiers on a larger data set
(220 BSE-positive samples, 194 BSE-negatives) confirm
this tendency of the random forest-based classifier.

On this data set the hierarchical classifier performs
nearly as well as the meta classifier from Ref. [12] which
combines the decisions of all four classifiers (Table 1).
When extending the meta rule by the decisions of the
classifier presented in this manuscript, the diagnostic
pattern recognition approach achieved specificity of
93.4% and sensitivity of 96.4%. Comparing these numbers
with the results presented in Ref. [12] we find an increase
in sensitivity at the expense of a decrease in specificity. Of
course, this desirable exchange of sensitivity and specificity
depends on the particular choice of the decision rule and we
had stringently followed the rule set up in Ref. [12] to
enable unbiased comparison.

Conclusions

A hierarchical classification architecture is presented as part
of serum-based diagnostic pattern-recognition testing for
BSE. The classification process is separated in decisions on
subproblems arising from the effect of covariates on the
data. In a first step, all procedures in data processing—
preprocessing, feature selection, linear classification—are
optimized individually for each subproblem. In a second
step, a nonlinear classifier induces the final decision from
the outcome of these sub-classifiers. Compared with other
established chemometric classification methods, this ap-
proach performed comparably or better on the given data.

The use of the random forest Gini importance as a
measure of the contribution of each variable to a multivar-
iate classification process enables feature ranking which is
rapid and computationally efficient compared with other
global optimization schemes. Beside its value in diagnostic
interpretation of the importance of certain spectral regions,
the methods readily allow for an additional regularization of
any standard chemometric regression method by a multi-
variate feature selection.
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