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Abstract Near infrared spectroscopy (NIR) has been
used to determine important indicators of the quality of
beers, for example original and real extract and alcohol
content, using a partial least squares (PLS) calibration
approach. A population of 43 samples, obtained com-
mercially in Spain and including different types of beer,
was used. Cluster hierarchical analysis was used to select
calibration and validation data sets. Absorbance sample
spectra, in transmission mode, were obtained in triplicate
by using a 1-mm pathlength quartz flow cell and glass
chromatography vials of 6.5 mm internal diameter. The
two methods of sample introduction were compared
critically, on the basis of spectral reproducibility for
triplicate measurements and after careful selection of the
best spectral pre-processing and the spectral range for
building the PLS model, to obtain the best predictive
capability. For each mode of sample introduction two
calibration sets were assayed, one based on the use of 15
samples and a second extended based on use of 30 sam-
ples, thus leaving 28 and 13 samples, respectively, for
validation. The best results were obtained for 1 mm flow
cell measurements. For this method original zero-order
spectra data in the ranges 2220–2221 and 2250–2350 nm
were chosen. For the real extract, original extract, and
alcohol dx-y and sx-y values of �0.04 and 0.07% w/w,
�0.01 and 0.13% w/w, and �0.01 and 0.1% v/v, respec-
tively, were obtained. The maximum errors in the pre-
diction of any of these three indicators for a new sample
were 2.2, 1.2, and 1.9%, respectively. This method com-
pares favorably with the automatic reference method in
terms of speed, reagent consumed, and waste generated.

Keywords Determination Æ Original and real extract Æ
Alcohol content Æ Beers Æ Hierarchical cluster
analysis Æ PLS

Introduction

Beer is an alcoholic beverage obtained by fermentation,
in the presence of yeast, of cereals germinated in water
[1]. The main components of beers are water, carbohy-
drates and ethanol. These three components are com-
monly used in the brewing industry for quality control
of the final product, based on the determination of real
extract, original extract, and ethanol content. Original
and real extract correspond to the amount of sugars in
the beers before and after the fermentation process,
respectively, and are normally expressed in % w/w.
Ethanol content is a key economic and organoleptic
property affecting both beer classification (in term of
taxes) and taste [1, 2]. It is usually expressed in % v/v.
The real extract is important because it is a measure of
the amount of sugars that did not undergo fermentation
and remains in the beer. This property tells consumers
the sweetness of the product and its energy value as
source of carbohydrates. Determination of the original
extract and the ethanol content together with the real
extract are important for knowing the fermentation
grade of the beer to determination the efficiency factor
based on the fermentation yield.

The official methods of the analytical division of the
European Brewery Convention for the determination of
the aforementioned quantities are based on distillation
of the beer and measurement of the density of the dis-
tillate and the remaining solution after diluting to
standard final volumes [3]. The densities of both solu-
tions are compared with data in semi-empirical tables to
obtain the percentage of extracts and the ethanol con-
tent. These methods involve much sample handling and
are time-consuming and therefore inefficient in terms of
time and cost. There is therefore a need to develop rapid
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alternative methods for routine quality control pro-
grams.

Use of autoanalyzers in the brewing industry reduces
sample handling but involves an analysis time at 30 min
to obtain triplicate values of each quantity. There are
precedents for determination of ethanol in beers by use
of direct FTIR [4] or near infrared spectroscopy
(NIR) measurements [5, 6, 7] at selected wavelengths
using external calibration and based on classical least
square monoparametric treatments. It is, however, clear
that for monitoring the brewing process and for rapid
quality control, simultaneous determination of real and
original extracts and alcohol content are needed and
for that the use of multivariate calibration models is
required.

To the best of our knowledge the papers reported in
Table 1 report the most relevant work performed to
develop alternative methods based on NIR measure-
ments and chemometrics. This table summarizes the
most relevant aspects of the papers indicating the
number of samples used for both calibration and vali-
dation, the type of samples considered, the number of
factors selected for each determination, the best spectral
range selected, and the prediction error found for each.

In addition to these papers, Mendes et al. [8] studied
the determination of ethanol in fuel ethanol and some
beverages based upon NIR-PLS and Raman-PLS. This
work shows that this determination can be achieved
successfully, although assessment of predictive capabil-
ity for beers must be regarded as far from exhaustive
because it was proved for a single sample only. Schropp
et al. [9] evaluated an Anton Paar NIR system for
evaluation of beer quality.

In the study of Maudoux et al. [10], it was reported
that alcohol, real extract, original gravity (original ex-
tract), nitrogen, and polyphenols could be estimated
from the transmission NIR spectra of samples by use of
multiple linear regression and partial least squares (PLS)
analysis by using actual beer samples for calibration.
Papers by Norgaard et al. [11] and Westad and Martens
[12] focus solely on original extract determination.

Despite the few references found for determination of
real and/or original extract and ethanol in beers by NIR
it is clear that this method combines the high sample
throughput achievable by spectroscopic techniques with
the capability of multi-property determination of au-
toanalyzers.

All previously published work on these determina-
tions used rectangular quartz cuvettes of 1 [10], 10 [12],
or 30 mm [11] pathlength, thus requiring a washing step
to avoid cross-contamination. The washing steps slow
down the speed of the analysis and may be avoided by
using individual vials for each sample. These could be
used both to obtain the transmission spectra and as
containers for keeping the samples for the period of time
required by good laboratory practice. To the best of our
knowledge, there is no report on the effect of using
individual glass vials for PLS–NIR determination of
beer quality. T
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This work was therefore devoted to the development
of a method based upon NIR measurements and che-
mometry for evaluation of beer quality. To increase the
range of application of the multivariate model, a heter-
ogeneous sample population was chosen for selecting the
calibration and the validation datasets. The process of
selection of each sample set was carried out using hier-
archical cluster analysis [13], which was based on the
classification of the beers obtained from their NIR spec-
tra. Different stages in the development of a PLS–NIR
method for prediction of ethanol and real and original
extracts are discussed. Analytical figures of merit, based
on net analyte signal calculations [14], were obtained for
the sensitivity and selectivity of the determination of
original and real extracts and the ethanol content in beers.

These studies focused on two different sample-mea-
surement modes, one based on the use of a flow cell and
the second based on the use of glass chromatography
vials. The data obtained from both were critically
compared.

Experimental

A Fourier transform NIR Brucker MPA spectrometer
controlled by Opus for Windows software from Brucker
Optik (Bremen, Germany) and circular cell holder was
used for acquisition of spectra. A 1.00 mm pathlength
(50 lL volume) quartz flow cell from Hellma (Müllheim,
Germany) was mounted on a homemade adaptor. For
vial experiments an MPA heatable vial cell holder
(Bruker) for vials of 8.2 mm o.d. was used. The vial fits
tightly inside the holder and no lateral movement can be
observed (only spinning of the vial is allowed). The vial
temperature was set to 32�C. Room temperature was
monitored using a mercury thermometer with a preci-
sion of ±0.5�C and it did not vary significantly during
acquisition of the spectra of all the samples. For sample
preparation, a magnetic stirrer (IKA, Staufen, Ger-
many) and a thermostatic bath (Grant, Cambridge, UK)
were used. A Gilson Minipuls 2 peristaltic pump (Gil-
son, Villiers-le-Bel, France) was used to fill the flow cell
through Tygon pump tubes and 0.5 mm i.d. Teflon
connection tube.

Samples

A total of 44 beer samples contained in sealed aluminium
canswere obtained commercially in Spain.Duplicate cans
of the same batch were always collected; one was used for
NIRmeasurements and the other was used tomeasure the
properties of interest by reference procedures.

The sample population contained different types of
beer:

1. Normal beers (34 samples): These beers are made
from barley and another cereal (normally the most
abundant in the production area). For these beers,

alcohol content is higher than 3% v/v and the original
extract is lower than 12.5% w/w.

2. 100% malt beers (three samples): for these beers the
unique source of carbohydrates is malt and the beer
does not contain any other cereal.

3. Special brewed beers (two samples): the original ex-
tract in these beers is higher than 12.5% w/w.

4. Alcohol-free beer (one sample): although its name
may lead to confusion, the alcohol content of this
beer is below 0.9–1% v/v. This sample was obtained
from normal beer after undergoing thermal evapo-
ration of most of the alcohol.

5. Beer with soda (two samples): produced as a mix of
normal beer with soda, which is done after the fer-
mentation, just before the canning. This mixture re-
sults in dilution of the beer, changing its flavor and
reducing the extract and alcohol content.

6. Beer with lemon (one sample): similar to the previous
type, but using a lemon-based soda.

7. German beer (one sample): apart from its certificate
of origin and its flavor, its composition is not sig-
nificantly different. It has a higher alcohol and extract
content and a darker color than the normal beers
considered.

Table 2 summarizes, for each sample, the main
characteristics of the beer and reference values obtained
for the density, original extract, real extract, and alcohol
content (expressed both in % v/v and % w/w). Standard
procedures for the Anton Paar autoanalyzer provided
by the manufacturer were followed in analysis of the
samples. The standard deviation of reference concen-
trations (sc) for real and original extract and alcohol was
estimated as 0.05% w/w, 0.05% w/w, and 0.05% v/v,
respectively. Results obtained by use of the autoanalyzer
for sample 16 were unsuccessful; for this sample, there-
fore, analysis is qualitative, not quantitative.

Table 3 shows the correlation for the whole sample
population of the quantities measured in this study.
As expected, a high linear correlation was found be-
tween alcohol content expressed as % w/w and % v/v
—% w/w=0.7852 % v/v, R2=0.9957. There is also a
good correlation between the real extract and the
original extract and between the real extract or origi-
nal extract and the alcohol content. It should also be
noticed that the correlation between the experimentally
obtained data has a similar trend when it was con-
sidered each data set separately or the whole sample
population.

NIR analysis

Samples were placed in the same temperature-controlled
room where the spectrometer was located before per-
forming the analysis. The sample compartment tem-
perature was monitored and it remained stable at
26±1�C during acquisition of NIR spectra using a flow
cell. For measurements made in glass vials the samples
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were placed in a water bath at 32�C and measured under
thermostatted conditions.

Samples were degassed by stirring for 5 min and fil-
tered before filling the measurement cell. In the vial
experiments, one vial for each sample was used.

Triplicate measurements were performed by rotating the
vial. During the acquisition of triplicate spectra using
the flow cell the sample was continuously pumped
through the cell using a peristaltic pump (flow rate @ 1.5
mL min�1) and refilled after each measurement.

For both flow cell and vials sample spectra were
scanned between 800 and 2857 nm, by averaging 25
scans per spectrum with a nominal resolution of 2 cm�1

and using a zero filling factor of 2. The acquisition of
each averaged spectrum required 35 s. The maximum
standard deviation of the response (sR) was estimated to
be 0.0005 a.u.

The background and blank spectra were acquired by
filling the cells with Milli-Q purified water (Millipore,
Bedford, MA, USA) and using the same instrumental
conditions than those employed for samples.

Table 2 General description of the samples used in this study

Sample no. Classification Density
(g mL�1)

Original extract
(% w/w)

Real extract
(% w/w)

Alcohol
(% v/v)

Alcohol
(% w/w)

Data set 1
1 100% malt 1.0067 12.12 4.01 5.34 4.19
2 Special 1.01045 12.95 4.57 5.55 4.35
3 Normal 1.00713 10.32 3.44 4.4 3.52
4 Normal 1.00735 10.6 3.54 4.6 3.62
5 Normal 1.00723 11.35 3.63 5.03 3.95
6 100% malt 1.00753 11.51 3.76 5.06 3.99
7 Normal 1.0073 10.7 3.63 4.62 3.62
8 Special 1.01137 13 4.81 5.43 4.23
9 Normal 1.00777 10.9 3.7 4.76 3.74
10 Normal 1.0072 10.33 3.47 4.47 3.51
11 With soda 1.00644 8.72 2.9 3.71 2.92
12 Normal 1.00703 10.46 3.45 4.53 3.59
13 Normal 1.00719 10.32 3.45 4.47 3.51
14 German type 1.00918 12.47 4.15 5.47 4.29
15 Normal 1.00743 10.49 3.53 4.53 3.56
16 With lime
17 Normal 1.00607 10.41 3.41 4.55 3.57
18 Normal 1.00734 10.78 3.58 4.7 3.69
19 Alcohol free 1.002 4.25 2.17 1.31 2.17
20 With soda 1.00624 9.11 3.02 3.94 3.11
21 Normal 1.00693 10.44 3.43 4.57 3.59
22 Normal 1.00723 10.4 3.5 4.5 3.55
23 Normal 1.00745 10.6 3.57 4.67 3.64
Data set 2
24 Normal 1.00701 10.82 3.52 4.76 3.74
25 Normal 1.0064 10.7 3.4 4.76 3.74
26 100% malt 1.00786 12.07 4.45 5.53 4.34
27 Normal 1.00678 10.47 3.75 4.38 3.44
28 Normal 1.00523 10.84 3.53 4.77 3.75
29 Normal 1.00532 10.54 3.48 4.59 3.61
30 Normal 1.00614 10.52 3.64 4.49 3.53
31 Normal 1.00495 10.67 3.44 4.71 3.71
32 Normal 1.0058 10.77 3.62 4.66 3.66
33 Normal 1.00617 10.34 3.6 4.39 3.44
34 Normal 1.00516 10.7 3.51 4.74 3.73
35 Normal 1.00471 10.57 3.36 4.67 3.66
36 Normal 1.00483 10.69 3.42 4.74 3.72
37 Normal 1.00785 11.09 3.78 4.81 3.78
38 Normal 1.00851 10.51 3.47 4.42 3.47
39 Normal 1.0075 10.89 3.76 4.79 3.76
40 Normal 1.00686 10.73 3.72 4.73 3.72
41 Normal 1.0073 10.64 3.63 4.62 3.63
42 Normal 1.00715 10.81 3.72 4.74 3.72
43 Normal 1.00667 10.87 3.8 4.83 3.8
44 Normal 1.00911 11 3.96 4.62 3.62

Table 3 Correlation between results obtained for the beer samples

Real
extract

Original
extract

Alcohol (v/v) Alcohol (w/w)

Density 0.680 0.545 0.411 0.413
Real extract 1 0.925 0.861 0.856
Original extract 1 0.971 0.968
Alcohol (v/v) 1 0.998

Values are R2 coefficients between selected variables
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Background spectra were scanned at intervals of seven
samples and blank spectra were acquired after mea-
surement of each sample, to ensure cross-contamination
of NIR spectra was minimized by cleaning the flow cell.

For flow-cell measurements, after finishing data
acquisition for each sample, warm water (45–50�C) was
flushed through the cell and the tubing manifold for 20 s
to clean the apparatus by removing any beer residue.
Then, to reduce the cell temperature, water at room
temperature was pumped for another 20 s. Before
measuring the next sample two spectra of the blank were
acquired to assess the success of the cleaning procedure.
For vial measurements, because a different glass vial was
used for each sample, no cleaning stage was necessary.
To assess vial variability, ten vials were filled with the
same sample and the spectrum for each was acquired in
triplicate.

Both sample and blank spectra were collected in
absorbance mode. For vial measurements two analytical
windows were available—the 800–1370 and 1590–1817
nm regions. The other regions were eliminated before
the calculations, because it was observed that spectral
variations in these regions could not be ascribed to
variations in sample composition. For measurements
obtained using the 1-mm flow cell the spectral analytical
windows were wider—800–1850 and 2050–2400 nm.

Data analysis

Spectra obtained from the Opus software were auto-
matically converted from cm�1 to nm and exported in
text format (data spacing 0.098 nm). Data were ana-
lyzed using Matlab 6.0 (The Mathworks, South Natick,
MA, USA). First, internal and laboratory-written
Matlab functions were used for hierarchical cluster
analysis to evaluate the similarity of samples in terms of
their NIR spectra and to assess the number of charac-
teristic subsets into which the available samples could be
divided. Similar criteria to those already published for
milk classification were used [15]. Multivariate calibra-
tion calculations were made with the MVC1 toolbox
[16].

The following figures for the model’s fit to the data
and the predictive power were used throughout the text.
In all cases the scope was to evaluate the average devi-
ation of the model from the actual data.

PRESS is the sum of squares prediction error (qua-
dratic sum term in Eq. 1) for the model, which includes
A factors. The root-mean-square error of calibration
(RMSEC) is a measure of how well the model fits the
calibration data, and is defined as:

RMSEC ¼
Xn

i¼1
Ci � Ĉi
� �2

 !
� ðd.f.Þ�1

" #0:5
ð1Þ

where Ĉi means the values of the predicted data (in our
case extracts and alcohol content) when all samples are
included in the model building and d.f. is the number of

degrees of freedom calculated as the number of cali-
bration samples with known concentration (Ci) minus
A+1, the number of factors kept in the model plus one.

The root-mean-square error of cross-validation
(RMSECV) is a measure of predictive ability of the
model formed on part of a dataset to predict the rest of
the data. The RMSECV is defined as the previous
equation, except that Ĉi are predictions for samples not
included in the model formulation and d.f. is the number
of times in which the cross-validation is repeated (i.e. in
the leave-one-out cross-validation d.f. is equal to the
number of calibration samples).

As the ability of the model to fit the calibration data
is not a direct measurement of its prediction capabilities,
it is mandatory to compare the values predicted for well-
known new samples not used to build the model. This
can be performed by calculating the root-mean-square
error of prediction (RMSEP) when the model is applied
to new data for which the reference values are available.
The RMSEP is calculated exactly as in Eq. (1) except
that the estimates for Ci are based on a previously
developed model in which the sample concentrations of
the validation set are excluded in the model-building
step and the degree of freedom is the number of samples
used for validation.

To validate the NIR methodology against the au-
toanalyzer data found, different quality indicators are
also given. These are the absolute mean difference (dx-y)
between NIR predicted values Ĉi

� �
and reference data

(Ci), the standard deviation of mean differences (sx-y),
the quality coefficient (QC), and the pooled standard
error of prediction for validation samples (sreg) [17]. As
stated by Massart et al., the QC is to be preferred over
correlation coefficient (of Ĉi versus Ci) ‘‘not only because
it gives a better idea of the spread of the data points
around the fitted straight line but also because it gives
some indication on the percentage error to be expected
for the estimated concentration’’.

To build and select PLS models, the following itera-
tive procedure was carried out. To build the best cali-
bration model a selection of the optimum number of
factors which minimize the root-square-of-cross-valida-
tion was based on the criterion of Haaland and Thomas
[18]. To improve the predictive performance of the
regression method, a search for suitable sensors was
considered. In this sense, one subroutine from the
MVC1 toolbox was used to find the minimum PRESS,
as a function of the number of factors, based on a
moving spectral window strategy [16]. Several spectral
windows were tested to evaluate their prediction capa-
bilities for the validation set. Only most significant re-
sults will be shown here.

Cluster analysis

In hierarchical cluster analysis the similarity between
samples is calculated by comparison of their NIR
spectra using the distance concept, calculated using a
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mathematical relationship (i.e. Euclidian norm) of
numerical properties of the samples (i.e. absorbance at
different wavelengths). In successive procedures, each
sample is linked to the closest sample or group of
samples and a characteristic distance is used to describe
this union. This distance between groups of samples can
be evaluated in different ways and is the main difference
among common linkage methods (Ward, complete,
average, etc.). In other words, by this procedure, each
sample is replaced by a group comprising the sample
and its neighboring samples located within the given
similarity distance between NIR spectra. The results are
represented in a dendrogram, which shows at which
normalized or re-scaled distance (i.e. each distance ra-
tioned to the maximum distance, multiplied by a factor)
of a group of samples is differentiated from others, when
it is read from right to left. At the far-left end each
replicate of each sample comprises a group of one
member, i.e. each spectrum is unique. Thus, for a given
rescale distance, a different number of groups are kept.
At this stage we proposed [13] to use the similarity
distance between triplicate spectra from the same sam-
ple as a minimum cut-off criterion. Actually, taking into
account the concepts of limit of detection and quanti-
fication, we chose ten times the average distance be-
tween replicates as cut-off value.

Results and discussion

Beer NIR spectra

Because beers are aqueous solutions, only the NIR
spectral region in which water does not absorb strongly
can be used for analytical purposes. For vial cells there
was strong absorption of the incident light by the com-
ponents of the system, mainly water, in the regions be-
tween 1370 and 1590 nm and between 1817 and
2857 nm, so these regions were ignored in this study.
Because the pathlength of the flow cell is smaller than
that of the vials, a wider spectral window can be used,
i.e. from 800–1850 and from 2050–2400 nm.

Figure 1 shows the spectra of three different types of
beers obtained from the 1 mm pathlength cell. Charac-
teristics of NIR spectra of beers are mainly related to the
absorption of water in this spectral region, with some
features of the other two main constituents, ethanol and
carbohydrates. Because the background signal was ac-
quired using water, the beer spectra shown arise from
absorption of some beer constituents plus reduction of
the amount of water. For the former, positive bands are
observed, whereas for the latter kind of bands, negative
peaks are found.

The main water absorption bands in the NIR spectra
are located at approximately 970, 1200, 1450 and
1930 nm [19, 20]. These correspond to different combi-
nation or overtone bands of the normal vibration modes
of water—symmetric stretching, bending, and asym-
metric stretching modes. The most intense of these

bands (that located at 1930 nm) means that the 1850–
2050 spectral range cannot be useful for measurements
made either in 6.5 mm vial or 1 mm flow cell experi-
ments. Apart from these water bands, in the spectrum of
all the beers a series of bands between 1560–1760 and
2050–2360 was observed. From the bibliography, the
following general assignments can be made [21, 22]. The
1660–1760 nm region is ascribed to the C–H first over-
tone stretch vibration modes (in CH3 and CH2 groups),
whereas the bands located between 2200 and 2400 nm
are the first set of CH combination bands. For the OH,
the first overtone vibration modes occurs between 1520
and 1640 and combination bands between 2050 and
2200 nm, a region in which a broad band is observed.
When comparing the spectrum of a beer without alcohol
and that of a normal beer, it can be observed that the
differences correspond to the bands ascribed to all three
main constituents.

Correction of NIR data

For all vial and flow-cell experiments, when comparing
all NIR spectra collected for all samples a shift of the
baseline was observed, sometimes even within replicates
of the same sample. For vials this problem was more
severe, because we rotated the vial position between
replicate measurements. To preserve signal/noise ratio
we tried to correct the original absorbance spectra
without applying any derivative procedures.

Different ways of evaluating the efficiency of correc-
tion can be used, for example evaluating the root square
error of prediction. In our opinion this efficiency can be
tested before conducting any calibration procedure. In
fact, it was tested by classification of the samples by
hierarchical cluster analysis (HCA, see below). In the
ideal case replicates of the same sample should be
grouped together, so any deviation from this ideal case

Fig. 1 The NIR–FTIR spectra of the main types of beer sample
obtained using a 1 mm pathlength flow cell. a 100% malt beer; b
normal beer, and c beer without alcohol. Spectra were shifted in the
absorbance axis and the wavelength axis was cut from 1870 to
2090 nm for clarity purposes
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can be interpreted in terms that the intra-sample
variance (for triplicates not clustered together) is higher
than the inter-sample variance. Obviously, in such cases
performing the calibration model is precluded.

Our previous experience with mid-infrared analysis of
milk and oil samples [13, 15] showed that good results
were achieved when the average absorbance in a fairly
flat region was subtracted from each spectrum before
data treatment for correcting additive artefacts. In the
NIR region, however, there is no flat region in the
spectrum useful for correction of the whole spectrum.
For example, for flow cell data, if the region between 800
and 900 nm is used, for many triplicates significant
variations in the 2000–2400 nm region were observed.
Therefore, it was decided to use two different wave-
lengths for zeroing the region after and before the main
water absorption band (�1850–2050 nm):

1. the average absorbance between 1060 and 1065 nm,
for the bands from 800 to 1850 nm, and

2. the average absorbance between 2220 and 2222 nm,
for the bands from 2050 to 2400 nm.

When using vials, subtraction of the baseline in a
given region did not provide a good correction results.
Therefore, other well-known algorithms were tested, for
example multiplicative scatter correction (MSC) and
standard normal variate (SNV), either considering to-
gether or separately the two spectral windows found for
these cells. In all the cases unsuccessful results were
obtained. Therefore, derivative spectra were tested.
Good signal-to-noise derivative spectra were obtained
by fitting a third-degree polynomial function to a 5 nm
moving window (51 data points). Figure 2 shows the
derivative spectra for selected samples. It is apparent
there are many non-informative regions in the first-order
derivative spectra (Figure 2A). When checking the rep-
licate spectra for each sample, it is possible to see that in
region 1 (800–1350 nm) the variability between 1160 and
1175 and between 980 and 1020 are much higher than at
other wavelengths. The absorption bands in these re-
gions are related to water and are highly temperature-
dependent, so this may be explained by small thermal
differences among triplicates. The signal-to-noise ratio
for the spectral range between 1600 and 1800 (region 2)
is better than that found for region 1, and is even better
when only the region 1640–1760 nm is considered.

When regions 1 and 2 were studied in more depth,
some high variability sub-regions were detected. Con-
sequently, a wavelength-elimination algorithm was
developed to calculate, at each wavelength, the pooled
variance of triplicate analysis and to compare this with
the variance between samples (similar to ANOVA) [17].
Only those wavelengths in which the inter-sample vari-
ance is significantly higher than the intra-sample vari-
ance were kept. For region 1 the intra samples variability
is still of the order of the inter-sample variability, espe-
cially for normal beers, resulting in poor classification of
samples. In contrast, successful results were obtained for

region 2 after applying this algorithm. Good classifica-
tion of samples and triplicates were obtained, as will be
discussed below. Therefore, only region 2 will be used
for processing vial experiments; this is shown in Fig. 2B.

Fig. 2 Derivative NIR spectra of main types of beer sample. A and
B were calculated from vial experiments, for C flow cell data were
used. a, b, and c describe the type of beer as indicated in the
footnote of Fig. 1

1555



For comparison purposes only, the derivative spectra
for all samples were also calculated for data obtained
using the flow cell. Figure 2C shows the derivative
spectra in the region not accessible by use of vial
experiments.

Clustering of beer samples from their NIR spectra

A clustering method was used before PLS data treat-
ment to evaluate possible classes among samples con-
sidered in this study and to enable us to select properly
a representative calibration set, thus improving the
prediction of unknown samples. Furthermore, differ-
ences among sample composition can be used to eval-
uate the classification of samples based on their NIR
spectra.

In previous work the calibration set for different
complex groups of samples has been successfully se-
lected by the use of hierarchical cluster analysis [13, 15].
In this work this strategy was followed using the best
combination of distance measurement and linkage
methods previously found, that is, Euclidian distance
and Ward linkage. To calculate the spectral distance the
scores of the most significant principal component (PC)
were used. The PC was selected after application of
principal component analysis (PCA) to the corrected
flow cell zero-order absorbance data in the region from
2220 to 2370 nm. By use of only one factor 99.9% of the
variance in the X-block (spectral data) was explained.
Figure 3 shows the dendrographic classification of
samples obtained using zero-order spectra obtained
using the flow cell (Fig. 3A) and those found by any
first-order derivative spectra obtained with the vials
(Fig. 3B) and flow cell (Fig. 3C).

In all cases the three replicates of each sample were
grouped together. Next, it is interesting to elucidate if
the agglomeration level has a clear interpretation. The
main clusters formed (from right to left) are directly
correlated with the mean intensity of the NIR spectra of
the samples in these groups. Thus, samples with high
absorbance levels are grouped together. As an increase
in the absorbance is mainly related to an increase in the
total amount of carbohydrates, alcohol, and proteins,
clusters are basically related with the similar content of
these analytes between the samples. Table 4 shows, for
clusters obtained using zero-order spectra from the flow
cell measurements, the mean and the standard deviation
for each analyte in each cluster.

Basically, clustering criteria seem to be based first on
the original extract and second on the alcohol content,
which separates samples into two main groups. This
classification can distinguish (1) the beer sample with
very low original extract and without alcohol (sample
19) from the rest. In the second group, another clear
distinction can be made: (2a) the beer with lime (sample
16) and the beers with lemonade (samples 11 and 20) and
(2b) the German type beer (sample 14), together with the
100% malt beers (samples 2 and 8). The other samples

(clusters 6–10) are normal beers with different alcohol
and extract content. The agglomeration in these clusters
seems to follow the alcohol content of the samples, with
a content around 5.0% v/v for cluster 8, around 4.7% v/v
for clusters 9 and 10, and around 4.5% v/v for clusters 6
and 7. The separation between clusters 6 and 7, and

Fig. 3 Dendrographic classification of samples using the Euclidean
distance after PCA analysis of NIR spectra. A Flow cell data, 2 PC
obtained in the zero order spectral range 2224–2350 nm (one point
baseline established at 2220–2221 nm), B vial data, 2 PC obtained
from first order spectra, C flow cell, 2 PC obtained from first order
spectra
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between 9 and 10, cannot be explained by the available
data, and could indicate high similarity between samples
classified in a same cluster.

To compare the different data treatment, the cluster
analysis was repeated on the derivative spectra obtained
using both vial and flow cell. For vials the region be-
tween 1640 and 1760 nm, before elimination of non-
informative wavelengths, was used. By use of three
factors 99.5% of the variance in the X-block (spectral
data) was explained. Figure 3B shows the dendro-
graphic classification of samples obtained using the glass
vials. For flow cell data, when the same region is used
plus the region from 2220 to 2360 nm, the dendrogram
shown in Fig. 3C was obtained. It is apparent that for
most samples their neighbouring samples are the same
in both figures. When Figs. 3B and 3C are compared
with the dendrogram in Fig. 3A it can be seen that
discrimination among samples was better for the latter.
Nevertheless, sample agglomeration in all three figures
is closely similar and could be useful for calibration set
selection.

Selection of the calibration set

Determination of the number and the nature of samples
to be used for calibration is always a critical factor in
multivariate analysis and in this study it was based on

the results from hierarchical cluster analysis. The cali-
bration and validation datasets were selected using the
dendrogram in Fig. 3A (without sample 16). Selection
was based on the following criteria:

(i). At least one sample from each cluster was selected
for calibration.

(ii). If the cluster comprised more than one sample, the
number of samples selected for calibration was
approximately the root square of the total number
of samples included in the cluster. The remaining
samples were assigned to the validation data set.
So, the number of samples assigned to the valida-
tion was equal to or higher than the number used
for calibration.

(iii). Samples within a given cluster were selected ran-
domly.

By following these rules calibration and a validation
sets comprising 15 and 28 samples, respectively, were
established.

To evaluate the representativeness of the aforemen-
tioned calibration set, an extended calibration model
was also used. This extended calibration set included the
samples of all individual clusters but now the root
square of samples from clusters with more than one
was reserved for validation and the rest included in the
calibration set. Therefore, in this case there were more
calibration samples than validation samples (30 and 13,

Table 4 Characteristics of the samples grouped using clusters depicted in Fig. 3A

Cluster
index

Number
of samples

Density
(g mL�1)

Real extract
(% w/w)

Original
extract
(% w/w)

Alcohol
(% v/v)

Samples

Mean s Mean s Mean s Mean s

1 1 1.000 – 2.17 – 4.25 – 1.31 – 19
2 1 – – – – – – 2.8 – 16
3 2 1.006 0.000 2.96 0.07 8.92 0.21 3.83 0.13 11, 20
4 2 1.007 0.001 4.23 0.24 12.10 0.03 5.44 0.10 1, 26
5 3 1.010 0.001 4.51 0.29 12.81 0.25 5.48 0.05 2, 8, 14
6 5 1.007 0.001 3.59 0.11 10.43 0.09 4.43 0.04 10, 27, 30, 33, 38
7 8 1.007 0.001 3.50 0.18 10.51 0.21 4.55 0.08 3, 12, 13, 17, 21, 29, 35, 44
8 2 1.007 0.000 3.70 0.07 11.43 0.09 5.05 0.02 5, 6
9 10 1.007 0.001 3.59 0.11 10.74 0.18 4.70 0.09 4, 18, 22, 23, 24, 25, 28, 37, 40, 42
10 10 1.006 0.001 3.60 0.12 10.73 0.12 4.70 0.09 7, 9, 15, 31, 32, 34, 36, 39, 41, 43

s standard deviation

Table 5 Descriptive statistics of calibration and datasets employed in this study for NIR characterization of beers

Data set Number of samples Density (g mL�1) Real extract (%
w/w)

Original extract
(% w/w)

Alcohol (% v/v)

Mean s Mean s Mean s Mean s

Cal 1 15 1.006 0.002 3.51 0.51 10.41 1.88 4.50 0.95
Val 1 28 1.007 0.001 3.66 0.34 10.79 0.71 4.69 0.34
Cal 2 30 1.007 0.002 3.58 0.40 10.56 1.37 4.59 0.70
Val 2 13 1.007 0.002 3.67 0.41 10.87 0.92 4.71 0.40

Cal 1 and Val 1 are the calibration and validation sets obtained by
maximizing the number of samples in the validation set. Cal 2 and
Val 2 are those obtained in the extended calibration set. For details

see the text. Sample number 16 was not included in validation data
sets, because no reference data were obtained
s standard deviation
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respectively). Table 5 summarizes the descriptive
statistics (mean and standard deviation) of the calibra-
tion and validation sets in the single (cal 1 and val 1) and
the extended (cal 2 and val 2) models, considering each
quality characteristic to be determined. It is apparent
that the calibration data set selected can always be re-
garded as representative.

Some attempts were made to obtain calibration
models for density, but prediction results were poor.
There are two reasons for this:

1. the small range of this property (for all samples
density is between 1.007 and 1.011 g mL�1), and

2. the range of errors predicted for triplicates, which
was 0.002–0.003 g mL�1 .

No additional comment on this property will there-
fore be made in this study.

Determination of real extract, original extract,
and ethanol using flow cell

Different models were built using calibration sets 1 and 2
and compared in terms of RMSECV and RMSEP val-
ues for the validation data sets. It should be noticed that
in the second case the prediction errors are not signifi-
cantly different from those obtained with a reduced
number of samples employed for calibration, indicating
that the selection strategy used avoids the extensive ef-
fort normally required in multivariate calibration. It
can, in fact, be seen that the number of samples used as
calibration set 1 is far below that used in other published
work (Table 1), although it may be pointed out that no
outliers (either in calibration or validation) were de-
tected in any of the models presented.

When correlating absorbance data obtained from
flow cell measurements the best PLS models were always
built using the 2250–2360 nm range only. All models

built using the other spectral regions (in combination or
not with the aforementioned region) yield models with
low predictive capability. The performance of the
models built in the 2250–2360 nm spectral region in-
creased by approximately 2–3% when the baseline was
based in the 2220–2221 nm wavelength range.

Table 6 shows the calibration and validation results
obtained for the three properties analyzed using the
optimized models. For real extract determination the
optimum PLS method was based on four extracted
factors in the spectral range 2249–2303 nm. For original
extract the same number of factors was obtained in the
optimized model, but the spectral region was shifted to
high wavelength numbers (2259–2348 nm).

Figure 4 shows the net sensitivity vector associated to
the PLS method for real and original extract determi-
nation. It is apparent there is no direct match between
both vectors, and thus, despite the correlation observed
between reference data for these two properties
(Table 3), both extracts are not associated to the same
NIR spectral feature.

For ethanol determination the optimum spectral
range was between 2298 and 2337 nm, requiring three
factors to build the PLS model. So, as can be observed,
the optimum spectral range for original extract shares a
region with the real extract model and other part with
the ethanol model, which seems closely coherent.

Table 6 lists the figures of merit obtained under all
the aforementioned conditions. The reproducibility of
the determination, established from the mean standard
deviation of each triplicate, and the standard error of
prediction (that includes the uncertainty from the model
[23, 24], considering the standard deviation of the ref-
erence concentration (sc) and the standard deviation of
the response (sR)) were 0.05 and 0.01% w/w, 0.07 and
0.01% w/w, and 0.02 and 0.01% w/w, for real extract,
original extract, and ethanol, respectively. It is apparent
that these values are similar to those found using the

Table 6 Predictive capabilities of PLS–NIR for real and original extract and ethanol content using flow-cell measurements

Data set Real extract Original extract Alcohol

Cal/Val 1 Cal/Val 2 Cal/Val 1 Cal/Val 2 Cal/Val 1 Cal/Val 2

Factors 4 4 4 4 3 3
Spectral range 2249–2303 2259–2348 2298–2337
RMSECVa 0.13 0.13 0.18 0.16 0.10 0.08
RMSEPa 0.12 0.09 0.14 0.14 0.08 0.10
RRMSEP 3.4% 2.5% 1.3% 1.3% 1.6% 2.1%
d(x�y)a �0.03 �0.05 �0.04 0.01 0.00 �0.01
s(x�y)a 0.10 0.07 0.13 0.13 0.07 0.10
QC 3.0% 2.2% 1.3% 1.2% 1.6% 1.9%
strip
a 0.05 0.05 0.07 0.06 0.02 0.02
sreg
a 0.01 0.01 0.01 0.01 0.01 0.01
Selectivity 3.5% 3.5% 8.6% 8.4% 19.5% 22.5%
Sensitivity 1.1E-02 1.1E-02 9.3E-03 9.2E-03 2.4E-02 2.8E-02

Cal/Val 1 and Cal/Val 2 are mean calibration and validation results
obtained using the simplest calibration set (1) and the extended
calibration set (2). RRMSEP is the RMSEP divided by the mean
value of the original and real extract, or the alcohol content. The
quality coefficient (QC) is the maximum percentage error expected

for new determinations. strip and sreg are the standard deviation of
triplicates and the standard error of prediction, respectively.
Baseline was zero based in the range 2220–2221 nm
aValues given in % w/w for real and original extract and % v/v for
ethanol. For additional details see the text
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autoanalyzer method. It can also be seen from Table 6
that there is no significant difference between the figures
of merit obtained for the simplest model and those ob-
tained for the extended calibration set. The prediction of
the validation samples in set 2 is always of similar
quality to that for validation data set 1. This similarity
was obtained for all the optimized models obtained from
zero-order absorbance data found using the flow cell
and the first-order derivative data obtained using the
vial and the flow cell. Therefore, in further comparison,
only references to Cal/Val 2 will be made.

As can be seen from the dx-y, sx-y, and QC values
found for the PLS model, there is no significant differ-
ence between results provided by the proposed PLS–
NIR method and those provided by the reference
method. The maximum percentage error to be expected
for new determinations (QC) of real extract, original
extract, and ethanol are 2.2, 1.2, and 1.9%, respectively.

Sensitivity and selectivity data were obtained from
the net analyte signal [14] and show that selectivity and
sensitivity for ethanol determination (22% and 0.028 (%
v/v)�1) were higher than for the other two properties.
The selectivity for real extract is the lowest (3.5%)
whereas sensitivity for this (0.011 (% w/w)�1) is slightly
higher than for original extract (0.009 (% w/w)�1).

Beer analysis using glass vials

A similar procedure to that described above for building
calibration–prediction models was followed for
determination of real extract, original extract, and eth-
anol in beers based on measurements made on samples
in glass chromatography vials. It must be pointed out
that only the region below 1850 nm is available because
of use of a 6.5-mm pathlength and that first-order
derivative spectral data were used. For comparison
purposes, derivative spectra were also calculated for
data obtained using the flow cell. In this case the opti-
mum model was also obtained in the 2250–2360 nm
spectral region, but only model characteristics in the
same spectral region available for vials will be shown
here. The most relevant improvements achievable in the
2250–2360 nm range will be mentioned at the end of this
section.

Regarding prediction capabilities, Table 7 summa-
rizes different characteristics of the optimum PLS model
built for all the properties using the extended calibration
set (figures for calibration/validation set 1 are always
similar). It should be also said that in calibration and
validation outliers were detected. For determination of
real extract the optimum PLS method based on
derivative spectra was found for four extracted factors in
the spectral range 1662–1684 nm. For original extract,
the same number of factors and nearly the same spectral

Table 7 Prediction capabilities of PLS–NIR for real and original extract and ethanol content using first order derivative spectra obtained
from glass vials and from flow-cell measurements

Dataset Real extract Original extract Alcohol

Vial Flow cell Vial Flow cell Vial Flow cell

Factors 4 4 1
Spectral range 1662–1684 1667–1686 1677–1742
RMSECVa 0.25 0.14 0.30 0.22 0.10 0.07
RMSEPa 0.15 0.14 0.28 0.22 0.08 0.09
RRMSEP 4.1% 3.7% 2.6% 2.0% 1.7% 2.2%
d(x� y)a �0.01 �0.03 �0.02 0.00 �0.02 �0.02
s(x� y)a 0.12 0.11 0.27 0.15 0.27 0.14
QC 3.3% 2.9% 2.5% 1.4% 1.8% 2.3%
strip
a 0.11 0.10 0.14 0.19 0.01 0.02
sreg
a 0.06 0.16 0.06 0.21 0.01 0.03
Selectivity 6.2% 7.5% 17.5% 13.0% 100% 100%
Sensitivity 8.8E-04 1.4E-04 8.4E-04 8.3E-05 1.2E-02 1.9E-03

Data correspond to the extended calibration set using derived
spectral data obtained using vials and flow cell. The RRMSEP is
the RMSEP divided by the mean value of the original and real
extract, or the alcohol content. The quality coefficient (QC) is the
maximum percentage error to be expected for new determinations.

strip and sreg are the standard deviation of triplicates and the
standard error of prediction, respectively. Baseline was zero based
on the 2220–2221 nm interval
aValues given in % w/w for real and original extract and % v/v for
ethanol. For additional details see the text

Fig. 4 Net analyte sensitivity (sk
*) vector for a real and b original

extract for the optimized model using flow cell measurements
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region (1667–1686 nm) were obtained in the optimized
model. Analysis of net sensitivity vector (data not
shown) associated for each PLS method provided evi-
dence that the spectral features correlated with these two
properties are not exactly the same. For ethanol deter-
mination, on the other hand, the optimum spectral range
was between 1677 and 1742 nm, requiring only one
factor for building the PLS model.

Table 7 also includes the figures of merit obtained
under all the aforementioned conditions. Prediction
capabilities using vials for real and original extract are
worse than those presented in Table 6, by a factor of 1.5–
2, whereas nearly the same performance was obtained for
determination of ethanol. As is also apparent, there is no
significant difference between characteristic values ob-
tained for vials compared with those obtained when using
the flow cell, for the model built in the same spectral
range. This may be explained by the best transparency of
the flow cell based on its low optical path length, which
offers most possibilities of selecting an appropriate
spectral range; also, flow cell measurements reduce the
signal-to-noise ratio (see, for example, Fig. 2). This latter
fact is evident when comparing the sensitivity obtained
for each property when using vials and flow cell—it al-
ways drops by nearly one order of magnitude for the flow
cell, whereas the selectivity remains fairly constant. For
the vial, the reproducibility of the determination, estab-
lished from themean standard deviation of each triplicate
and the standard error of prediction, were 0.11 and 0.06,
0.14 and 0.06, and 0.01 and 0.01% w/w, for real extract,
original extract, and ethanol, respectively, which are
higher than those presented in Table 6. The maximum
percentage error to be expected for new determinations of
real extract, original extract, and ethanol were 3.3, 2.5
and 1.8%, respectively, which are worse than those found
for the best spectral range using the flow cell and also
worse than those obtained under the same conditions for
the flow cell data, except for ethanol determination,
which does not depend on the measurement.

For use of derivative spectra obtained from the flow
cell and the predictive performance in the optimised
spectral range (which is in the region between 2250 and
2350 nm) the following trends were observed (data not
shown) in comparison with the data in Table 6. First,
sensitivity increases between four and seven times. The
RRMSEP values are 3.3, 1.4, and 2% for real extract,
original extract, and ethanol, respectively. Thus, the
performance for ethanol was not significantly different;
this may be because the selectivity in this region de-
creases sharply (it is approx. 30%) and the noise in this
region is higher than in the 1650–1750 nm region.

The reproducibility of vials was analyzed using ten
different vials filled with the same sample. Acquisition of
spectra for each vial was performed in triplicate. The
intra-vial pooled standard deviation for original extract,
real extract and ethanol were 0.18% w/w, 0.20% w/w,
and 0.03% v/v, respectively. The inter-vial standard
deviations were 0.12% w/w, 0.19% w/w, and 0.02% v/v,
respectively. It can thus be concluded that the loss of

performance observed in this study for determination of
beer extracts using glass vials for NIR spectra acquisi-
tion is because of lack of transparency of the 8.2 mm
o.d. vials in the region from 2249 to 2348 nm and not to
the variability of the vials.

Conclusions

Hierarchical cluster analysis, performed after PC anal-
ysis of NIR absorbance spectra, has been proved to be
an excellent means of selecting representative samples
for calibration in PLS–NIR determination of real and
original extracts and alcohol content of beers.

From comparison of the two sample-introduction
methods employed in this study it can be concluded that
use of the 1-mm flow cell enables the use of the 2249–
2348 nm region, which results in high sensitivity and
excellent predictive performance, especially for extracts
determination and using zero-order NIR absorbance
spectra. However, the use of 6.5 mm glass vials improves
the speed of sample analysis, by avoiding the need for
cleaning of the measurement cell, and improves the
selectivity of determination of beer properties when first-
order derivative NIR spectra in the region from 1662 to
1742 nm were employed; under these conditions pre-
dictive performance was similar to that obtained by
using the flow cell for ethanol determination and slightly
worse than when using flow-cell measurements for real
and original extract determination.

Compared with previously published work on che-
mometric NIR analysis of beer samples, the method
developed provides RMSEP values of 0.12, 0.14, and
0.08% for real, original extract and ethanol, respec-
tively, which are better than the prediction error ob-
tained by Norgaard et al. [11] and by Westad and
Martens [12] for original extract (0.18 and 0.17% w/w),
respectively, and clearly better than the coefficient of
validation errors reported by Maudoux et al. [10] for all
the properties studied, which varied between 5.94 and
6.19%. In all this work NIR measurements were made
using quartz cells of different path length and using
spectral ranges different from those selected by us.
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