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Abstract The implementation of quality systems in
analytical laboratories has now, in general, been
achieved. While this requirement significantly modified
the way that the laboratories were run, it has also im-
proved the quality of the results. The key idea is to use
analytical procedures which produce results that fulfil
the users’ needs and actually help when making deci-
sions. This paper presents the implications of quality
systems on the conception and development of an ana-
lytical procedure. It introduces the concept of the life-
cycle of a method as a model that can be used to
organize the selection, development, validation and
routine application of a method. It underlines the
importance of method validation, and presents a recent
approach based on the accuracy profile to illustrate how
validation must be fully integrated into the basic design
of the method. Thanks to the b-expectation tolerance
interval introduced by Mee (Technometrics (1984)
26(3):251–253), it is possible to unambiguously demon-
strate the fitness for purpose of a new method.
Remembering that it is also a requirement for accredited
laboratories to express the measurement uncertainty, the
authors show that uncertainty can be easily related to
the trueness and precision of the data collected when
building the method accuracy profile.

Keywords Data quality Æ Method validation Æ
b-Expectation tolerance interval Æ Uncertainty

Introduction

The quality of measurements produced by analytical
laboratories during the last decade has significantly im-
proved, and laboratories have been requested to control
their procedures and organisation more effectively. The
quality of an analytical data can be defined at two main
levels:

1. Metrological requirements. The end-users of chemical
data expect that measurements are close to the true
value for the sample submitted to an analysis. This is
known as the ‘‘accuracy’’. The accuracy depends on
the precision and the bias of the method, and there
are several factors which significantly influence the
uncertainty of a measurement. An important goal is
to evaluate this uncertainty and express it in such a
way that end-users are able to adequately use the
result produced by the laboratory.

2. Socio-economic requirements. While metrological
requirements are implicit and cannot be directly
controlled by the end-user, the costs involved in a
measurement can be controlled to some degree. There
is always a strong pressure on laboratories to reduce
costs and propose cost-effective services.

The goal of this paper is to describe two comple-
mentary approaches set up by laboratories: (1) to de-
velop and validate methods fit for a given purpose; (2) to
express the uncertainty in the chemical measurements.
These approaches are not independent, and we will try
to demonstrate how they can be combined. This paper
presents synthetic results, but all of the practical details
required for computation are available in the literature
cited.

Method lifecycle

In order to clearly understand the place of validation, it
is interesting to introduce a concept that underlies the
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recent standard ISO 17025 [1], namely the lifecycle of a
method. The basic idea is that a method of analysis is not
static; it is a dynamic entity that goes through several
dependent steps. Too often a method is described as an
unchangeable and frozen procedure; this is the impres-
sion many manuals or standards give. However, like all
production processes, methods of analysis are created,
they evolve, and they die. Different schemes are proposed
to describe this specific lifecycle but we think that the
most convenient way is summarised in Fig. 1 because it
illustrates that it is a continuous cycle. In this diagram,
the various steps of the cycle appear as grey boxes with
bold letters; the procedures or criteria that will be used,
handled or computed during a given step are placed in
rectangular boxes. The main tools or techniques to be
used during the step are written in italics.

The first step in the method lifecycle is the selection of

the method. In Sect. 5.4.2 of ISO 17025 [1] on method
selection, it is stated that:

The laboratory shall use test and/or calibration
methods, including methods for sampling, which
meet the needs of the client and which are appro-
priate for the tests and/or calibration, it undertakes
preferably those published as international, regional
or national standards.

This statement is clearly consistent with the reasoning of
the new ISO 9000:2000 standards, but it over-simplifies.
For an analyst, method selection can be a difficult pro-
cess. It often means trying to transform a given problem
into chemical measurements. For instance, controlling
air pollution requires the combination of several ana-
lytes, each needing a specific method of analysis, and
meteorological data in order to create a composite index
which can be easily understood by end-users. In any
case, the expertise of the analytical chemist is the basic
tool for selecting the most ‘‘adequate’’ method.

Once the method is selected, it often necessary to
perform several experiments in order to either adapt to
the laboratory conditions or fully develop the method.
The development of the method can be simple when
starting from a standardised method but much more
complex with an original procedure; this step is often
called ‘‘optimisation’’, although this term is vaguely
defined. It is regrettable that analytical chemists do not
use more extensively experimental designs and response
surface methodology to achieve this task. As method
development proceeds, regular reviews should be carried
out to verify that the needs of the client are still being
fulfilled and that the method is still fit for its purpose.
Changing requirements to the development plan should
be approved and authorised.

When the development phase is finished, the draft of
the standard operating procedure (SOP) can be written.
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Fig. 1 The lifecycle of a method of analysis
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Method validation is ‘‘... the confirmation by exami-
nation and the provision of objective evidence that the
particular requirements for a specific intended use are
fulfilled’’ [1 in Sect. 5.4.5.1], and validation can only
occur at this moment. It is inadequate to try to merge
development and validation in the same step. It is now
accepted that we can make a distinction between intra-
laboratory (or in-house) and inter-laboratory (or col-
laborative) validation. The first is universal and com-
pulsory, the second is mainly applicable to methods that
will be used by several laboratories or where the results
can be used in economic decisions. For example, in the
pharmaceutical industry, it is useless or impossible to
perform a collaborative study for a new molecule under
development. On the other hand, all methods used for
food safety control must be inter-laboratory validated.
Verification may occur at the end of the validation
procedure, as proposed in the definition.

This clearly means that specific objectives must be
defined before starting any validation; a method must be
fit for a given purpose, as described in the next chapter.
According to this statement, when modifications or new
requirements occur, one must perform a revalidation. It
is difficult to define the exact extent of this revalidation
in respect to the modifications: this appreciation can be
left to the analyst’s know-how.

If the validation proves to be compliant, the next step
in the lifecycle is the use of the method in a routine.
After a certain amount of time, the method may be
abandoned because it is obsolescent, and another life-
cycle begins.

The framework of method validation is now well
defined by several reference texts and can be summarised
by the following statements [1, 2, 3, 4]:

1. Analytical measurements should be made to satisfy
an agreed requirement (a defined objective).

2. Analytical measurements should be made using
methods and equipment that have been tested to
ensure they are fit for purpose.

3. Staff making analytical measurements should be
qualified for and competent at undertaking the task
(and should demonstrate that they can perform the
analysis properly).

4. There should be a regular independent assessment of
the technical performance of a laboratory.

5. Analytical measurements made in one location
should be consistent with those made elsewhere.

6. Organisations making analytical measurements
should have well defined quality control and quality
assurance procedures.

7. Validation is the process of establishing the perfor-
mance characteristics and limitations of a method, as
well as identifying the influences that may change
these characteristics (and to what extent they may
change them).

8. Validation is also the process of verifying that a
method is suitable for its intended purpose (to solve a
particular analytical problem).

Accuracy profiles

Objectives of validation

Members of the SFSTP (Société Française des Sciences
et Techniques Pharmaceutiques) have contributed to the
development of consensus validation procedures since
1992 [5, 6, 7]. More recently Boulanger et al [8, 9]
introduced the concept of accuracy profiles to circum-
vent some of the fundamental drawbacks of validation
procedures currently available. The basic idea behind
this concept is that analysts expect an analytical proce-
dure to return a result X which differs from the unknown
‘‘true value’’ l of the analysed sample less than an
acceptability limit k. This requirement can be expressed
by Eq. 1:

�k\X � l\k, X � lj j\k ð1Þ

The acceptability limit k fully depends on the objectives
of the analytical procedure and is the responsibility of
the analyst. For instance, when expressed in percent, it
can be 1% on bulk materials, 5% on pharmaceutical
specialities, 15% for biological samples, and so on. The
analytical method can be characterised by systematic
error or ‘‘true bias’’ dM and a random error or ‘‘true
precision’’ rM. Both of these figures of merit are un-
known, like the true value of the sample l, but estimates
can be obtained from measurements made during vali-
dation. The reliability of the estimates depends on the
adequacy of the measurements made on known samples,
called validation standards (VS), the experimental de-
sign and the number of replicates. However, obtaining
estimates for bias and precision is not the objective of
the validation per se; it is a necessary step toward eval-
uating the ability of the analytical procedure to satisfy
its objective, although this alone is not a sufficient step,
as we will see. The ultimate objective is to guarantee that
most of measurements the procedure will provide in the
future are accurate enough—close enough to the un-
known true value of the sample assayed.

Figure 2 illustrates Eq. 1 graphically by showing the
distributions of 95% of the measurements given by
four different analytical procedures with different true
bias values dM and precisions rM. The relative accept-
ability limit k is set to be identical (±15%) for all four
methods. This value was chosen since it is required by
the Conference of Washington for bio-analytical pro-
cedures [10, 11]. Figure 2 shows that procedure 3 does
not fulfil the given objective, since its bias is null but its
precision is 20% (expressed as a relative standard
deviation or RSD). Similarly, procedure 4 with a bias
of 7% but with a precision of 12% will also be rejected
because the expected proportion of measurements
outside the limits of acceptability is too great. In con-
trast, procedures 1 and 2 fulfil the objective in the same
figure. They can possibly be declared to be valid pro-
cedures, depending on the maximum risk that is to be
accepted, since the analyst can expect that at least 95%
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(maximum risk 5%) and 80% (maximum risk 20%)
respectively of future measurements will be inside the
acceptability limits. Procedure 1 has a larger bias
(+7%) but a better precision (3%), than procedure 2
(respectively +1 and 10% RSD). The differences be-
tween these two procedures are not relevant here, since
the results obtained in both cases are never too far
from the true values of the sample to quantify, so they
are within the acceptability limits. The quality of each
result sets is therefore the criterion used to evaluate the
validity of a procedure in terms of bias or precision,
since high quality is the objective when providing
accurate results.

Another possible illustration consists of representing
the domain of acceptable analytical procedures—the
acceptability region—characterised by the true bias and
precision, as illustrated in Fig. 3. Inside the triangles,
acceptable procedures are those for which a given
proportion of measurements, for instance 95, 80 or
66%, are likely to fall within the ±15% acceptability
limits. Therefore, it is in these domains that ‘‘valid’’
analytical procedures are located with respect to the
proportion of measurements that the analyst would like
to have within the acceptability limits. The triangles
correspond to proportions of 95, 80 and 66% of
measurements included within the acceptability limits
(the last being a proportion that doesn’t correspond to
any known regulatory requirement). These triangles
were built thanks to Eqs. 6 and 8 (as explained in the

section ‘‘Decision rules and accuracy profiles‘‘) using a
range of values for the true precision variance and b
risk, while the true bias was kept constant and equal to
0. However, it’s important to realise that for a proce-
dure characterised by a null true bias and a true pre-
cision of 15%, about 66% will fall within the
acceptability limits. Indeed, according to the normal
distribution, 66% (2/3) of the observations are expected
to fall within ±1 standard deviation (in this case
±15% since the bias is null). This proportion reaches
95% when the precision is increased to 8% (with null
bias), as apparent from Fig. 3 at the top of the 95%
acceptability region triangle. This proportion of 66% is
nevertheless a direct consequence, as opposed to being
intended, of the rule recommended by the Conference
of Washington for routine quality control [10, 11],
which states that at least four control samples out of
six must fall within the acceptability limits of ±15%
(4-6-15 rule). This rule is equivalent to accepting that
only 2/3 or 66% of measurements are within the
acceptability limits. This illustrates the gap that exists
between requirements in the validation phase and those
required during routine work to guarantee the quality
of the results. This gap is paradoxical, since the goal of
the validation of an analytical procedure is to demon-
strate that the analytical procedure will be able to fulfil
its intended objectives.

For illustrative purposes, the four procedures of
Fig. 2 are inserted into Fig. 3 as a function of their

Procedure 1
RSD%=3%
Bias=7%

Procedure 2
RSD%=10%
Bias=1%

Procedure 3
RSD%=20%
Bias=0%

Procedure 4
RSD%=12%
Bias=7%

1

Procedure 
RSD%=20%
Bias=0%

Fig. 2 Examples of four
procedures with the same
acceptability limits k = ±15%.
Bias is expressed in percentage
of difference from the true
value, and the precision is
expressed as a relative standard
deviation (RSD). Curves
indicate 95% data intervals
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performances. One can observe that procedures 1 and 2
are located inside the acceptability regions that guar-
antee that at least 95 and 80% respectively of their
results will be within the acceptability limits.

Finally, a procedure can be validated if it is very
likely (in other words, there is only limited risk) that the
difference between every measurement X of a sample
and the true value l is inside the acceptability limits that
the analyst has predefined. This can be translated into
Eq. 2:

P ð X � lj j\kÞ>b ð2Þ

where b is the probability that a measurement falls inside
the acceptability limits defined by k (15%, say).

It seems reasonable to claim that the objectives of the
validation are to guarantee that every single measure-
ment that will later be performed routinely will be close
enough to the unknown true value of the sample. Con-
sequently, the objectives of validation are not simply to
obtain estimates of bias and precision; it is also to
evaluate this risk or confidence. In this respect, trueness,
precision, linearity and other validation criteria are no
longer sufficient to make these guarantees. In fact,

adapted decision tools are necessary to give guarantees
that a reasonable proportion of future measurements
will fall inside the acceptability limits.

Decision rules and accuracy profiles

Considering the proposals published on method vali-
dation, the decision rules used in the validation phase
are mostly based on the use of the null hypothesis:

H0 : X � l ¼ dM ¼ 0 ð3Þ

A procedure is therefore declared adequate when the
95% confidence interval of the average bias includes the
value 0. The decision is based on the computation of the
rejection criterion of the Student’s t-test:

Cobs ¼
X � lj j
rM

ð4Þ

An obvious consequence of this is that the smaller the
variance (the better the precision), the less likely the
confidence interval is to contain the 0 bias value, leading
to a rejection of the procedure. On the other hand, the
worse the precision, the more likely the confidence
interval is to contain the 0 bias value and so it is more
likely that the procedure will be declared valid! This
paradoxical situation is illustrated by Fig. 4a, showing
how the four procedures are accepted or rejected. For
instance, procedure 1 presents a reduced bias (+7%)
and a small measurement dispersion (3% RSD) and is
therefore rejected by this rule, while procedure 4, which
has the same bias but is much less precise (12% RSD
instead of 3% RSD), is accepted!
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Fig. 3 The interiors of the triangles of the left graphic represent the
acceptability regions for analytical procedures that give at least 66,
80 and 95% of their measurements within acceptability limits
respectively, as a function of their theoretical true bias (%) and true
precision (RSD %). The performance of an analytical procedure is
represented by a point in this graphic. The expected distributions of
future measurements for the procedures are represented in the
small graphics on the right, corresponding to the four procedures of
Fig. 2. The acceptability limit of [�15%, +15%] is just an example
of a frequent recommendation for bioanalytical procedures. See [9]
for more computational details
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According to the proposal of Mee [12], it is possible
to compute the so-called ‘‘b-expectation tolerance
interval’’. It defines an interval which contains an ex-
pected proportion b of future results. Following a clas-
sical notation in statistics, b represents the second error
type probability—the probability of accepting the null
hypothesis when it is wrong; in this context it corre-
sponds to the error of concluding that the result is
conforming when it is actually not conforming. The ^
symbol is used for the estimate of the statistic. This
tolerance interval obeys the following property:

ElM;rM
P xi � lj j d̂M; r̂M

�
�
�

j kn o

>b ð5Þ

where E is the ‘‘expected value’’ of the result for a given
bias and standard deviation. In this case, the calculation
of the b-expectation tolerance interval involves esti-
mating the bias and the standard deviation of interme-
diate precision of the method, denoted as d̂M; r̂M:
respectively. Developing Eq. 5 as proposed by Mee in
[12], it can be demonstrated that the b-expectation tol-
erance interval is equal to:

d̂M � Qtksr̂M

j k

ð6Þ

where the estimate of the intermediate precision variance
(or reproducibility, depending on the conditions) is:

r̂2
M ¼ r̂2

W þ r̂2
B ð7Þ

In Eq. (7), r̂2
B and r̂2

W are the estimates of the variance
between series and within series respectively. They can
be obtained ideally by maximum likelihood methodol-
ogy [9] or by means of the classical sum of squares
methods, as in [7]. The ‘‘conditions’’ are here defined in a
large sense to indicate standardised experimental con-
ditions or the set-up used to obtain measurements.
Depending on the experimental design and the intent,
or the stage of the validation phase, conditions can be
either be days within a laboratory, or the laboratories
themselves. Depending on the definition given, variance
components analysis will lead to an estimate of the
intermediate or reproducibility variance. These vari-
ances can only be computed if data are collected under
various conditions (or intermediate precision); the
measurements are made when varying at least one factor
such as the laboratory, the day or the operator. The
example of the application proposed in the paper uses
between day and series conditions. In this context p is
the number of series and n the number of replicate
measurements per series.

In Eq. 6, Qt is the b quantile of the Student’s t-dis-
tribution with m degrees of freedom; m is computed
according to the correction method proposed by Satt-
erthwaite [13]; ks an expansion factor that takes into
account the variability of the mean bias as estimated
from the experimental design and, as demonstrated and
derived in Mee [12], is obtained as follows:

ks ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1

pnB2

s

; with B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aþ 1

nAþ 1

r

and A ¼ r̂2
B

r̂2
W

ð8Þ

Figure 4b shows the acceptability regions (in grey) of the
procedures accepted as valid using the b-expectation
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Fig. 4 Graphical illustration of acceptability regions (shaded area)
of analytical procedures, that depend on the statistical decision
rules, for the four procedures of Fig. 2 as illustrated by a dot. a
Acceptability region when the decision is based on the classical null
hypothesis test, H0: Bias = 0, using a t-distribution at 5% with 12
degrees of freedom. b Acceptability region when decision is based
on the b-expectation tolerance limits that should be included within
the acceptability limits. In this example, the acceptability region in
grey is defined for b > 66%, with 12 degrees of freedom and
acceptability limits at [+15%, �15%]
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tolerance intervals. Here, the triangle corresponds to the
set of procedures for which, according to the bias and
precision observed during the validation experiments,
the proportion of measurements inside the acceptability
limits is greater or equal to b, the proportion chosen a
priori (66%, say). This decision rule appears to be more
sensible than the previous one, since all procedures that
have good precisions are accepted, while the procedures
that have large standard deviations are rejected. In
addition, if a procedure has a bias, it must have a small
variance to be accepted. Symmetrically, a procedure
with a high variance with respect to the acceptability
limits has very little chance of being accepted.

An interesting extension of this method consists in
constructing the b-expectation tolerance intervals for the
whole range of expected measurements, as illustrated by
Fig. 5. It produces an easy and visual method called the
accuracy profile of the analytical procedure. The accu-
racy profile is constructed for a given set of concentra-
tion levels C1, C2... For each level it is possible to obtain
estimates of bias and precision and calculate the b-
expectation tolerance limits according to Eq. 5. The
upper and lower tolerance limits are then connected by
straight lines in order to interpolate the behaviour of the
limits between the levels at which measurements have
been made: these are the interpolating lines. In Fig. 5,
for both concentration levels C1 and C4, the tolerance
interval is wider than the acceptance limits. The limits of
quantification are therefore at the intersection between
the interpolating lines and the acceptance limits. It is
possible to then define two experimental limits, which
correspond to lower and upper quantification limits.
Below the lower limit of quantification (LLQ) or above
the upper limit of quantification (ULQ) it is unaccept-
able to say that the procedure accurately quantifies the
analyte. This is in agreement with the definition of the
limits of quantification: the smallest/highest quantity of
the substance to be analysed that can be measured with a
given trueness and precision [4]. In Fig. 5, the grey area
represents the range where the procedure is expected to
quantify at least a proportion b of the samples with a
predefined accuracy. If the analyst wants to take no
more than a 5% risk, he will be able, at the end of the
validation, to expect that at least 95 out of 100 future

measurements will fall within the acceptability limits,
which are fixed according to the requirements of the field
(pharmaceutical, environment, food analysis, and so
on).

The use of the accuracy profile as a single decision
tool allows the objectives of the procedure to be brought
into line with those of the validation, and also allows us
to visually grasp the ability of the procedure to fit its
purpose.

It is also important to recall that there is no global
consensus among the various standardised documents
(ISO, ICH, AFNOR, SANCO, FDA, Washington
conference,...) for the definition of the criteria to be
tested during the validation step. For example, the lin-
earity criterion can appear or not and its interpretation
can be different from one document to another. This is
also the case for the accuracy that can be merged with
the trueness, as in the ICH Q2A document.

We consider it preferable to establish validation cri-
teria, as much as possible, in the same matrix as that
routinely sampled. Each analytical procedure should be
validated for each type of matrix [14]. Nevertheless, the
definition of a matrix is the responsibility of the analyst.
Moreover, each modification of a previously validated
method automatically involves a revalidation, the extent
of which depends on the modifications done and their
potential influence on the specific validation criteria.

Using the accuracy profile: an example

In the validation phase, all results obtained must be
reported. At the end of the validation phase and before
the routine stage, the analytical procedure must be
completely described in the form of a standardised
operational procedure (SOP).

It is mandatory to prepare calibration standards (CS)
using the same procedure that will be applied rou-
tinely—the same operation mode, the same number of
concentration levels (calibration points), and the same
number of replicates by level [9].

The VS should be prepared independently in the
matrix, if applicable [9, 14]. When reference materials
(certified or internal) are available, they represent one of
the most interesting ways to have the VS; however it is
also possible to use spiked samples. Each VS is prepared
and fully analysed as an unknown sample. Independence
is critical to a good estimation of the between-series
variance. In practice, the effects of ‘‘day’’ and/or
‘‘operator’’ are most often used as different conditions
for experiments. It is not necessary to have consecutive
days. Any rejected data must be documented.

According to the harmonised procedure recently
published by SFSTP [9], several experimental designs are
available. Table 1 presents some of these experimental
designs: they all consist of a set of CS and VS; additional
spiked calibration standards (SS) can also be added. It is
noticeable that the total number of experiments may
vary; this is due to regulatory constraints. For instance,

Range

C1

LLQ ULQ

Bias (%) 

+λ 

Concentration

−λ
C2 C3 C4

Fig. 5 Illustration of an accuracy profile based on four levels of
VS, used as a decision tool to characterise method performances.
LLQ is the lower limit of quantification, ULQ is the upper limit of
quantification
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the minimal number of VS required can be set to 6, or
the number of concentration levels for these VS can vary
from 3 to 5 in order to be compliant with the ICH or
FDA requirements.

The example presented here consisted of validating a
method of determining the sotalol in plasma by HPLC
using atenolol as an internal standard [6, 15]. Sotalol
concentrations are expressed in ng/ml, and instrumental
response as the ratio between the peak areas of sotalol
and atenolol. All of the data are shown in Table 2. The
calibration experimental design is 3·5·2 and consisted
of preparing duplicate standard solutions at five con-
centration levels ranging from 25 to about 1,000 ng/ml.
This was replicated three times over three days (or three
conditions). The VS were prepared in the matrix, and
consisted of three days with three concentration levels,
each replicated three times: a 3·3·3 experimental design.
Therefore, the same experimental design for calibration
and validation is not necessary.

Once all data were collected, they were processed
according to the following procedure:

1. The ‘‘best-adapted’’ response function was obtained
using the calibration standards, relating the response
and the concentration. Several mathematical models
can be fitted, and the best was selected at the end of
the procedure, according to its accuracy profile (in
other words, the model that gives the most accurate
results over the range). Mathematical transforma-
tions, such as logarithmic or square root, can also be
applied. Finally, weighted regression algorithms can
also be used if the response variance obviously varies
as a function of the concentration. In this example,
accurate results were obtained when fitting a weighed
linear regression model with 1/X2 as weight, a clas-
sical and convenient model.

2. An inverse prediction equation was used to predict
the actual concentrations of the VS. These data are

reported in Table 3 as predicted values and relative
bias, using the theoretical concentration introduced
in each VS as a reference value. The precision data
corresponding to the weighed linear model are re-
ported in Table 4. These data were used to compute
the accuracy profile.

3. Thereafter, for each concentration level, trueness and
precision were estimated and used to compute the
accuracy profile according to Eqs. 6, 7 and 8. For
each regression model, the limits of the b-expectation

Table 1 Some examples of possible experimental designs giving the number of calibrations and VS to be prepared [9]

Types of standards Presence of matrix Concentration levels Protocols

V1 V2 V3 V4 V5

Calibration standards No Low 2 2
Mid 2 (2)b 2 (2)b

High (2)a 2 (2)a 2
Spiked calibration standards Yes Low 2 2

Mid 2 (2)b (2)b

High (2)a 2 2
Additional (2)c

Validation standards Yes Low 3 3 3 3 3
Mid 3 3 3 3 3
High 3 3 3 3 3

Minimum number of series 3 3 3 3 3
Total number of experiments (minimum) 33 45 39 63 45

aSelection of a concentration level higher than the target concen-
tration in order to calibrate (for instance, 120% of target concen-
tration)
bPossible suppression of the mid concentration level for calibration,
depending on the regression model considered, to express the re-

sponse function. In this case, there are 39 experiments for protocols
V2 (without matrix) and V5 (within matrix). There are 51 experi-
ments for protocol V4
cAddition of a concentration level for a more complex response
function such as a four-parameter logistic regression model

Table 2 Experimental data used to illustrate how to calculate the
accuracy profile

Level Theoretical
concentration

Condition 1 Condition 2 Condition 3

Calibration standards
1 25.35 0.0485 0.0358 0.0449
1 25.35 0.0448 0.0402 0.0415
2 48.24 0.0959 0.1025 0.0987
2 48.24 0.0870 0.0993 0.0892
3 223.85 0.5589 0.5371 0.5095
3 223.85 0.5667 0.5066 0.5756
4 437.82 1.1041 0.9963 1.1725
4 437.82 1.0961 1.0568 1.1772
5 964.83 2.3960 2.2877 2.4528
5 964.83 2.3861 2.2500 2.3147
Validation standards
1 25.35 0.0440 0.0370 0.0440
1 25.35 0.0490 0.0420 0.0460
1 25.35 0.0480 0.0460 0.0500
2 437.82 0.9870 0.9720 1.0390
2 437.82 1.0140 1.0320 1.1130
2 437.82 1.0290 1.0340 1.1420
3 838.65 2.0220 1.9250 2.1270
3 838.65 1.9900 2.0280 2.2130
3 838.65 2.0940 2.0130 2.2700

All results are expressed in ng/l for concentrations and dimen-
sionless peak area ratios for analytical responses. Here, conditions
are different days that experiments were performed on in a labo-
ratory
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tolerance intervals were calculated and are illustrated
in Fig. 6. These profiles are the visual decision tools
that allow the analyst to evaluate the ability of each
procedure. For this determination, the acceptability
limits were set to 20%, as illustrated in the figures.
This value was used because the method is a bioan-
alytical technique [10, 11].

4. The acceptable accuracy profiles were selected. In this
example they correspond to the weighed linear model
on the original data, the linear model after square
root transformation, and the linear model after log
transformation, as illustrated in Figs. 6b, e and f
respectively. In the present method, the weighed lin-
ear model on the original data was selected simply
because it’s commonly accepted and used in analyti-
cal chemistry. Several selection rules can be proposed
to achieve this selection: the most intuitive is to cal-
culate the limits of quantification as illustrated in
Fig. 5. If none of the accuracy profiles falls within the
acceptability limits, the analyst can either restrict the
application range of the method or extend the
acceptability limits. Various techniques, such as
residual plots, and the lack-of-fit test, are available to
identify the source of the problem(s).

Therefore, we can validate this method for an
acceptability of ± 20%, an application range of [25.35,
838.7] ng/ml, and a weighed linear regression model.

Measurement uncertainty

Expressing the measurement uncertainty is now a well
known problem for most analytical chemists who want

to be accredited according to the ISO 17025 standard.
The famous guide published by EURACHEM [16] has
been intensively downloaded since it was made available
in April 2000 on several websites. This success can be
related to the fact that it presented several practical
examples of the basic principles of traditional metrology
as applied to chemical tests. Actually, two thirds of the
document is devoted to examples. The strategy proposed
in the ISO Guide for the Expression of the Uncertainty
of Measurement (GUM) (type A and type B evaluation
of uncertainty) are presented and illustrated in many
examples which show how different uncertainty contri-
butions can be combined. However, the general feeling
that the reader can get from this document is that the
most applicable procedure may be to identify uncer-
tainty sources by a cause-and-effect diagram (sometimes
known as the Ishikawa or fishbone diagram) and then
combine them. This is likely to be the most convenient
procedure for an in-house determination of uncertainty
but, in a case where the mathematical formula used to
express the measurement result does not exhaustively
describe the complete analytical procedure, it can be a
reducing procedure. Often many important sources of
uncertainty are not taken into account, such as sam-
pling, sample handling, or environmental sources, be-
cause they are difficult to estimate.

As clearly identified by Ranson [17] in a recent
communication, the traditional cause-and-effect dia-
gram with its five ‘‘bones’’ can be related to some
important chapters of the ISO 17025 standard, as sum-
marised in Fig. 7. Therefore, it is clear that most of the
examples presented in the EURACHEM guide deal
mainly with the influence of the method (Sect. 5.4: Test
and calibration methods and method validation) or the

Table 3 Inverse predicted concentration of VS, expressed as ng/l, and relative the bias, expressed as a percentage

Level Theoretical
concentration

Inverse predicted concentration Relative bias

Condition 1 Condition 2 Condition 3 Condition 1 (%) Condition 2 (%) Condition 3 (%)

1 25.35 25.302 24.275 26.302 �0.19 �4.24 3.76
1 25.35 27.290 26.342 27.082 7.65 3.91 6.83
1 25.35 26.892 27.996 28.641 6.08 10.44 12.98
2 437.82 400.233 410.824 414.251 �8.59 �6.17 �5.38
2 437.82 410.968 435.629 443.104 �6.13 �0.50 1.21
2 437.82 416.931 436.456 454.411 �4.77 �0.31 3.79
3 838.65 811.742 804.815 838.461 �3.21 �4.03 �0.02
3 838.65 799.019 847.397 871.992 �4.73 1.04 3.98
3 838.65 840.369 841.196 894.216 0.20 0.30 6.63

Here, conditions are different days on which the experiments were performed in the laboratory

Table 4 Precision data calculated from data of Table 3, expressed in ng/l

Level Mean recovered
concentration

Repeatability standard
deviation r̂W

Intermediate precision
standard deviation r̂M

Relative
repeatability RSDr (%)

Relative intermediate
precision RSDR (%)

1 26.68 1.327 1.327 5.236 5.236
2 424.75 15.41 18.94 3.520 4.327
3 838.80 24.26 33.03 2.893 3.939

Here, the conditions are different days on which the experiments were performed in a laboratory
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equipment (Sect. 5.5: Equipment) and consequently
underestimate the uncertainty [18].

Therefore, there is still a lot of debate among ana-
lysts about whether sources of uncertainty that are not
taken into account may have a strong influence. The
goal at stake is not insignificant, because it is clear that

Fig. 6 Illustrations of different accuracy profiles obtained if the
same calibration and validation data (from Table 2) but different
calibration models (expressed as the relative bias of the method vs.
the recovered concentration) are used. Range 25–1,000 ng/ml.
Computational details are available in [9]. a Quadratic regression.
b Weighted linear regression (weights: 1/v2). c Linear regression.
d Linear regression through 0. e Linear regression after square-root
transform. f Linear regression after log transform
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it is tempting for some laboratories to use uncertainty
as a commercial argument: the smaller the uncertainty,
the better the measurement (or the laboratory).
Therefore it is necessary to give an unambiguous re-
sponse to this question in order to avoid any flaw in
the use of uncertainty. The adoption of this new con-
cept can be a great opportunity for analytical labora-
tories because it gives a real meaning to chemical
measurements. This advantage has already been dem-
onstrated for many other industrial activities using
different kinds of measurements to physical–chemical,
such as weight in packaging, or length for lathe-worked
devices.

Considering the problems raised by the expression
of uncertainty and the need to have realistic values,
new proposals have been made. They consist of using
experimental data obtained from precision studies. A
recent draft of guide ISO/DTS 21748 [19] suggests
using repeatability, reproducibility and trueness esti-
mates to estimate measurement uncertainty. Consider-
ing the data collected by the analysts when developing
an accuracy profile, it seems sensible to also use these
data to estimate uncertainty. Depending on the way the
experimental design is envisaged—several conditions
within a laboratory, or several laboratories—the accu-
racy profile corresponds to either an intra-laboratory
validation or an inter-laboratory validation (reproduc-
ibility). The guide only refers to interlaboratory preci-
sion data. Intra-laboratory validation can also precisely
reflect the actual capability of the method when applied
by a given laboratory. When choosing between the
intra-laboratory and inter-laboratory approaches it is
important to note that the goal of the validation pro-
cess must be to reflect the way an analytical procedure
will be used in the future. If an analytical procedure is
only intended to be used within a laboratory, then the
only conditions that will be changed in the experi-
mental design are within the laboratory of interest such
as days, runs, operators or batches. The estimated total
variance, or intermediate precision r̂2

M; will be the sum
of the between-condition variance and the within-con-
dition variance or repeatability r̂2

W: On the other hand,
if an analytical procedure is intended for use by many

laboratories, then the important conditions to vary in
the experimental design are the between-laboratory
conditions. In such a design, the between-condition
(runs, days, batches) variances are by default integrated
into, or more precisely not differentiated from, the
within-laboratory variance (the repeatability). With
such a design, the total variance, called the ‘‘repro-
ducibility’’, will be the sum of the between-laboratory
variance and the within-laboratory variance (repeat-
ability). To summarise, the only difference between the
interlaboratory and the intralaboratory studies is the
way the experiments are designed, and the definition
that is given to the ‘‘condition’’ when estimating the
‘‘between-condition’’ variance components or uncer-
tainties.

According to the recommendations of the ISO/DTS
21748 guide [19], a basic model for the uncertainty in a
measurand Y associated with observations can be
(notations are those used in this standard):

uðY Þ2 ¼ s2R þ uðd̂Þ2 þ
X

c2i uðxiÞ2 ð9Þ

where sR is the reproducibility standard deviation, uðd̂Þ
is the uncertainty associated with the bias d of the
method, and

P
c2i uðxiÞ2 is the sum of all of the effects

due to other deviations. This equation can be simplified
if only a statistical estimation approach is used.

uðY Þ2 ¼ s2R þ uðd̂Þ2 ð10Þ

According to the same guide [19], the bias uncertainty
can be estimated as:

uðd̂Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2R 1� cþ c
n

� �

p

s

ð11Þ

where n is the number of replicates (within-condition),
p the number of varied conditions (the number of lab-
oratories when reproducibility is the objective) and c ¼
s2r
�

s2R
: sr

2 is an estimate of the repeatability (within-con-

dition) variance, and s2R ¼ s2r þ s2B is the estimate of the
reproducibility conditions (the sum of the repeatability
and the between-condition variance sB

2 components).
Starting from Eq. 6, it is possible to write that the

variance used to estimate the b-expectation tolerance
interval is equal to:

r̂2
Tol ¼ k2s r̂

2
M ð12Þ

We can develop this equation using Eqs. 7 and 8 yield-
ing:

r̂2
Tol ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
pnB2

q

r̂M

h i2

¼ r̂2
M þ 1

pnB2

� �

r̂2
M

r̂2
Tol ¼ r̂2

M þ
1þ

ns2
B

s2
W

� 	

s2Bþs2Wð Þ

np 1þ
s2
B

s2
W

� 	

r̂2
Tol ¼ r̂2

M þ
ns2

B
þs2

W

np

ð13Þ
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Fig. 7 Relationship between the cause-and-effect diagram and
chapters from the ISO 17025 standard (from [17])
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From the classic theory of ANOVA models for ran-
dom effects, we know that ns2B þ s2W

� ��

np is an estimator
of the uncertainty (variance) of the overall mean (or
bias) d̂M when a nested design (with p conditions for
experiments and n replicates within each condition) is
envisaged as it is here. Equation 13 then can be simpli-
fied as follows:

r2
Tol ¼ r2

M þ r2
d̂M

ð14Þ

where r̂2
d̂M

is the estimated uncertainty (variance) of the

estimated bias d̂M: So Eq. 14 clearly shows that the
variance used for computing the b-expectation tolerance
interval is equal to the sum of the total variance of the
method plus the variance of the bias. Therefore, as long
as the ‘‘between-conditions’’ are the same (laboratories
or days), it is clear that Eqs. 14 and 10 account for the
same sources of uncertainty: the estimated total variance
plus the estimated variance of the bias, meaning that it is
then possible to use the standard deviation of the
b-expectation tolerance interval as an estimate of the
standard uncertainty in the measurements.

This was calculated for each concentration level and
reported in Table 5. The relative expanded uncertainty
ranges from 11.0 to 8.7% over the whole application
domain of the technique.

Conclusion

The lack of generalisation between different validation
protocols has led analysts to work out a harmonised
approach. However, although the first initiatives widely
contributed to improvements in analytical validations,
they have resulted in problems regarding the conclusions
of the tests carried out and, consequently, any decisions
made based on the validity of the analytical procedures.

The procedure based on the construction of an
accuracy profile proposes to examine the objectives of
the analytical validation, to review some validation cri-
teria, and to propose a visual tool that distinguishes the
diagnosis rules and the decision rules. The latter are
based on the use of the accuracy profile and the concept
of total error. At the same time, this approach allows us
to simplify the validation approach of an analytical
procedure and to control the risk associated with its use.

The common objective is to rationalise the decision-
making, to improve the basis for and the documentation
of the choices carried out, and therefore improve quality
over the long term. This procedure proposes a sufficient
but realistic number of experiments. The gain in quality
is not obtained by increasing the total cost of the vali-
dation process.

On the other hand, a practical and direct way of using
the data collected during the validation step to estimate
the uncertainty in the measurements can be deduced.
This is an interesting and important issue to tackle while
the development of easy and simple rules is still the
subject of much debate. Being able to provide a good
estimate for the measurement uncertainty represents a
crucial goal for the coming year. While ISO 17025 [1]
makes ‘‘customer satisfaction’’ central to laboratory
activity, uncertainty is presented as the key to this sat-
isfaction. Therefore, it is important to have a common
experimental procedure that provides critical informa-
tion on the validity of the method and uncertainty esti-
mates without any extra effort (or additional
experiments).
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