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Abstract Copy toner samples were analyzed using reflec-
tion-absorption infrared microscopy (R-A IR). The group-
ing of copy toners into distinguishable classes achieved by
visual comparison and computer-assisted spectral match-
ing was compared to that achieved by multivariate discrim-
inant analysis. For a data set containing spectra of 430 copy
toners, 90% (388/430) of the spectra were initially correct-
ly grouped into the classifications previously established
by spectral matching. Three groups of samples that did not
classify well contained too few samples to allow reliable
classification. Samples from two other pairs of groups were
similar and often misclassified. Closer examination of spec-
tra from these groups revealed discriminating features that
could be used in separate discriminant analyses to improve
classification. For one pair of groups, the classification ac-
curacy improved to 91% (81/89) and 97% (28/29), for the
two groups, respectively. The other pair of groups were
completely distinguishable from one another. With these
additional tests, multivariate discriminant analysis cor-
rectly classified 96% of the 430 R-A IR toner spectra into
the toner groups found previously by spectral matching.
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Introduction

The use of office and personal photocopying machines
has increased dramatically over the last 20 years. As a re-
sult, photocopying documents has become simple, fast, and
inexpensive. A major disadvantage of photocopy machines
is that they are now more accessible for illegal activities
such as counterfeiting, fraud, false documents, anonymous
letters, confidential materials, and acts of terrorism [1, 2,
3]. Identification of the source of photocopied documents
is not an easy task for forensic examiners since chemical
and physical characteristics are very similar and numer-
ous manufacturers of photocopy instruments and toner
cartridges exist. The ability to match the chemical finger-
prints of questioned toner samples to standards could be a
valuable tool in questioned document investigations.
Toner analysis methods that are useful in forensic in-
vestigations must be rapidly performed and possess a
known degree of accuracy. Totty [4] reviewed analytical
techniques that have been used to characterize toners: vi-
sual examination, optical microscopy, scanning electron
microscopy (SEM), magnetic viewers, infrared spectro-
scopy (IR), pyrolysis gas chromatography and/or mass
spectrometry (Py-GC, Py-GC/MS, Py-MS), and differen-
tial scanning calorimetry (DSC). Early work by Kemp
and Totty [5] found that 79 toners from various models of
photocopier machines could be separated into 10 groups
based on their IR spectra. Williams [6] identified numer-
ous resins and the pigment Prussian blue based on charac-
teristic IR absorptions. The possibilities of toner analysis
and classification by IR spectroscopy and by diffuse re-
flection infrared Fourier transform spectroscopy (DRIFTS)
have been described by other researchers [7, 8, 9, 10,
11, 12, 13, 14]. Merrill et al. [15] conducted a compara-
tive study of three microscope-based IR techniques and
DRIFTS for the analysis of toner samples. Reflection ab-
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sorption infrared spectroscopy (R-A IR) performed best
overall, in terms of low cost, rapid speed of analysis, non-
destructiveness, and quality of spectra. Bartick and Mer-
rill [16] also began development of an R-A IR spectral
database for copy toners. More recently, toner samples ex-
tracted from photocopies with carbon tetrachloride have
been analyzed by FT-IR to identify chemical constituents.
[17] DRIFTS, SEM, and Py-GC have also been compared
for differentiating photocopier toners [18].

Hundreds of copiers and printers are available from dif-
ferent manufacturers, varying in model, engine, and toner
used. Comparison of a large number of spectra is tedious
even when computer-assisted spectral matching is em-
ployed, and the accuracy of the classification results may
not be quantifiable. Multivariate statistical methods offer
a potential solution to these problems. As noted in a 1996
review on chemometrics, “[t]here were only a few papers
that focused on the application of pattern recognition tech-
niques to forensics, which is surprising in view of the po-
tential impact that multivariate methods can have on this
field” [19]. Paper samples have been differentiated on the
basis of multivariate statistical analysis of their elemental
compositions [20, 21]. Andrasko [13] has also applied
two simple measures, the Euclidean distances between
spectra and a similarity index, to differentiate black ink
and color toner samples by reflection FTIR.

Merrill and Bartick [22] have previously compared
prominent features and used computer-assisted spectral
matching to divide 807 R-A IR spectra of toners into 98
subgroups based on the presence, absence, and ratios of
peaks in 40 different spectral regions. Group assignments
were summarized using a flowchart with nodes represent-
ing yes/no decisions with regard to presence, absence, or
ratios of spectral peaks at specified wavenumber loca-
tions. The groups at the end point of branches represented
clusters of similar copy toner spectra for which further
discrimination was judged not possible. Linear discrimi-
nant analysis (LDA, also known as canonical variates
analysis or CVA) is a multivariate statistical method that
facilitates the objective evaluation of the classification of
objects (in this case, spectra) into groups. We have previ-
ously applied LDA to R-A IR spectra from a subgroup of
60 toners having a poly(styrene-co-acrylate) base compo-
nent [23]. The objective of the present paper is to evaluate
whether groupings of R-A IR spectra of photocopy and
printer toners for a larger subset of 430 toner samples can
be reliably discriminated by statistical pattern recognition.

Experimental

Samples of dry photocopier and printer toners on paper were col-
lected by the FBI Laboratory from verified sources that include
original manufacturers. The R-A IR data set used in this study
(430 spectra classified into 27 groups) is a subset of the complete
library of 807 toner samples categorized into 98 groups previously
described [22]. The entire set of 807 samples was not available at
the time of this study. Toners were transferred from documents to
reflective media (heavy duty aluminum foil affixed to standard
glass slides with double-sided tape) using a temperature-regulated
soldering iron set at 288 °C [15, 22, 24]. The soldering iron was

equipped with a screwdriver tip that had been ground off, leaving
a flattened round head with a 4.8-mm diameter. Although other
materials provide a suitable reflective surface for the reflection-ab-
sorption technique, aluminum foil is readily available, inexpen-
sive, and permits the sample to be stored for further studies. The
sample preparation is simple, fast, and essentially nondestructive.
The document is still legible after transferring the toner sample and
only minimal destruction is visible microscopically.

Samples were analyzed by R-A IR using a Spectra-Tech IR-
Plan microscope with a medium-band MCT detector (Shelton,
CT). The instrument collected 256 scans at 4-cm™! resolution over
the 650—4,000 cm™! range for a total of 1,039 data points per spec-
trum.

Data analysis

Data was preprocessed and analyzed using OMNIC v. 3.0 (Nicolet
Analytical Instruments, Madison, WI), Microsoft Excel (Microsoft
Corporation, Redmond, WA), and programs written in MatLab
(The MathWorks, Inc., Natick, MA).

The baselines of all R-A IR spectra were manually adjusted us-
ing the OMNIC software to remove background dispersion effects
caused by carbon black in the samples [22]. Baseline adjusted
spectra were then arranged in a matrix, X, whose nrows represent
different spectra and mcolumns represent spectral frequencies
(wavenumbers):
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The element x; of this matrix is the absorbance intensity at wave-
number j of spectrum i. Each spectrum (row) was then normalized
to unit length by dividing each spectral intensity by the square root
of the sum of the squares of all spectral intensities in that spectrum.
Normalization removes systematic variation associated with size
or amount effects in the spectra. After normalization, a typical pre-
processing step is to autoscale the absorbances at each wavenum-
ber by subtracting the mean spectral intensity for wavenumber j,
and dividing by the standard deviation of spectral intensity for
wavenumber j. Autoscaling produces a column autoscaled matrix
with elements,
Xij — ,%,'

Zij = (2)

N

(1)

Xnj

having a mean of zero and a standard deviation of one for each fea-
ture (wavenumber). In Eq. (2), x;; represents the intensity for wave-
number j in the ith spectrum, X; is the mean intensity for wave-
number j, and s; is the standard deviation of intensity for wave-
number j. This common data transformation removes inadvertent
weighting caused by variations in the magnitude of intensity at dif-
ferent spectral frequencies [25]. In autoscaling the present data, the
median was used instead of the mean in the numerator of Eq. (2);
the median was also employed in place of the mean in calculations
of the standard deviation. Error introduced by outliers is caused by
a distortion of the location of the center of the data; the use of the
median in these calculations may provide a more robust estimate
of the true center of the data [26, 27].

After median autoscaling, the data was further preprocessed us-
ing principal component analysis (PCA) [28, 29] via singular value
decomposition (SVD) [30] to project the spectra, initially consist-
ing of intensities at 1,039 wavenumbers, into a space of reduced di-
mensionality. SVD decomposes the data matrix into the product of
three matrices:

anp = Unxkskxkv/kx]) (3)

where the matrix X refers to the data matrix after any preprocess-
ing. PCA creates linear combinations of the original spectral vari-
ables, called eigenvectors or principal components (PCs), which
successively account for increasing amounts of variation in the



data. The matrix S contains the square roots of the eigenvalues of
X (the singular values), ordered largest to smallest from top left to
bottom right along the diagonal; the square of these values define
the proportional variance explained by each PC. The columns of
the matrix V contain the weights of the original variables (the load-
ings) necessary to form the principal component scores (U X S). If
the first few PCs are found to explain a substantial proportion of
the variation in the data, the projection of points representing the
samples in a two- or three-dimensional plot may be informative
concerning their similarity. For each analysis, a number of PCs
was retained for discriminant analysis to capture an adequately
large fraction of variance in the data.

After preprocessing and data compression using PCA, linear
discriminant analysis was used to construct axes which best sepa-
rate the groups by maximizing the ratio of their between- to with-
in-group variances [31, 32, 33]. Discriminant analysis is well suit-
ed for the analysis of grouped data and has a long history of use in
analytical chemistry [20, 34, 35, 36, 37, 38]. The implementation
of LDA is based upon three matrices,

T=(X-X) (x-X) “
W= (X, - X)) (X, - X)) &)
B=(X,-%) (X -%) ©)

representing the total, within-groups, and between-groups sums of
squares and products matrices, respectively. The matrix X repre-
sents the mean of X, while j designates a group of samples. The
canonical variates (CVs) are defined by the eigenvectors of the
matrix W-'B, with the proportion of variance accounted for each
CV proportional to the eigenvalues. As with PCA, if a sufficiently
large proportion of the variability associated with the first few
CVs, a projection of the data points (the spectra) in the two- or
three-dimensional space of the CVs permits the researcher to visu-
alize clustering and similarity of the data. The clustering of similar
samples can be assessed by comparison to the distances between
samples (spectra) judged different from one another.

Group definitions followed the groups experimentally estab-
lished from the R-A IR spectra by visual comparison and com-
puter-assisted spectral matching [22]. Jackknife cross validation
was used to estimate the predictive ability of the LDA model by
removing each sample from the data set in turn and recomputing
discriminant functions based on the remaining samples [39, 40].
Estimates of the classification error for each sample are obtained
without using that sample to calculate the discriminant model. This
“leave-one-out” method is useful when a separate test set of data is
unavailable, because it provides a way to estimate the classifica-
tion error rate from the available data. The similarity between the
jackknifed sample and the mean vectors for each group, calculated
by scaling each vector to unit length and multiplying them to-
gether, was used to assign group membership.

Elliptical confidence regions around the spectra of toner groups
were calculated as follows. Each ellipse represents distances which
are statistically equidistant from the group mean for a predeter-
mined level of probability. Confidence regions were calculated by
transforming each group to a principal component representation.
A confidence circle based on Hotelling’s 77 statistic (the multi-
variate generalization of Student’s fstatistic) was calculated and
then transformed back into the original variables, forming an el-
lipse [41]. Note that even if the original two variables are already
PCs, the method calculates new PCs for each group separately.
Hence, the confidence region may take the form of an ellipse, not
a circle, when plotted on the original spectral variables.

Univariate Fisher ratios [31, 32, 37] were used as an indicator
of which spectral features (wavenumbers) were individually most
discriminating for separation of any specified groups. Fisher ratios,
calculated as the ratio of between- to within-group variability for
selected spectral wavelengths, range from zero (a nondiscriminat-
ing feature) to an unbounded upper value. Larger Fisher ratios in-
dicate more discriminating features.
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Results and discussion

Representative spectra of toners from this data set have
been previously shown by Merrill and Bartick [22]. R-A
IR microspectroscopy enables discrimination of toners by
their organic and polymeric components. Although an ex-
perienced analyst becomes expert at recognizing distin-
guishing features in these complex IR spectra, the pattern
recognition task is subjective and becomes quite difficult
and time-consuming when numerous samples are com-
pared. Pattern recognition techniques such as principal
component analysis and multivariate discriminant analy-
sis offer approaches to handling this complexity and to as-
sess the statistical validity of differences observed be-
tween different samples.

PCA was applied as a dimensionality reduction tech-
nique to the data set of 430R-A IR toner samples span-
ning 27 assigned groups. The wavenumber regions 2,200—
2,750 and 3,201-3,998 cm™! were deleted from the spec-
tral data prior to PCA, because no peaks were located in
these regions. The first three PCs comprised 51.13% of
the variation, PCs 1-28 comprised 95.18% of the varia-
tion, and PCs 1-139 comprised 99.95% of the variation.
The first 139 PCs were used as inputs for LDA, reducing
the number of variables from the original 1,039 wave-
numbers while preserving the majority of the variation in
the data. Fig. 1 shows projections into the plane of the first
two PCs for the entire R-A IR data set. While the plot is
crowded, some clustering by R-A IR groups is revealed.
In the preceding paper, R-A IR spectra were categorized
into groups using five flowcharts. In Fig. 1, the greatest
separation is between spectra from groups appearing in
charts 1-3 (left side of the lower plot) compared to spec-
tra from groups appearing in charts 4-5 (right side).
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Fig.1 The projection of all 430R-A IR toner spectra into the
space of the first two PCs: (upper) samples labeled by their group
numbers; (lower) samples labeled by chart designation from the
grouping assigned by visual comparison and computer-assisted
spectral matching [22]
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Fig.2 The projection of all 430R-A IR toner spectra into the
space of the first three canonical variates, labeled by their group
numbers. Three CVs explain 63.51% of the total dispersion. R-A
IR toner groups 12, 56, 59, 70, 75, 78, and 81 are well separated on
these axes

LDA of the entire data set produced 26 canonical vari-
ate axes. Such a large and complicated data set would be
expected to require a large number of CVs to discriminate
between groups. Projection of the spectra into the space of
the first three CVs (Fig. 2) explains just 63.51% of the dis-
persion in the data, supporting this reasoning. However, a
number of R-A IR groups are well separated by projec-
tions on only the first three CVs. Table 1 summarizes the
classification accuracy for jackknifed cross validation of
classification by LDA using all 26 CVs. The results were
quite good: 90.23% (388/430) of the toners were correctly
identified into the predetermined groups. Groups 6 and 8
had poor correct classification percentages, but contained
only a few samples. It is necessary to increase the number
of toners in these groups before better conclusions can be
drawn concerning their classification.

Two other similar pairs of R-A IR groups were difficult
to classify, and, in fact, were most often misclassified as
the other group: groups42 and 49, and groups 64 and 67.
These four groups, however, did have enough samples to
make further investigation worthwhile. Visual inspection
of the mean spectra for groups 42 and 49 shows that the
two groups differ only in two small regions: group 42 pos-
sesses small peaks at 1,115 and 1,270 cm™!, whereas the
peaks present in group 49 do not. Univariate Fisher ratios
based on these two groups show that the two peaks are,
indeed, the most important spectral features separating
these two groups. The groups’ mean spectra and univari-
ate Fisher ratios are shown in Fig. 3. Fig. 4 is an expanded
view of Fig. 3. The presence of a peak at 1,268—1,272 cm™!
is a distinguishing characteristic between the groups. The
univariate Fisher ratios indicate that the 1,095-1,115 cm™
is also important for separating the two groups.

To assess the ability of the 1,115 and 1,270 cm™! peaks
to differentiate samples from groups 42 and 49, we select-
ed wavenumber regions with univariate Fisher ratios ex-
ceeding 0.15 (1,097-1,115 and 1,261-1,277 cm™") for fur-
ther analysis. When PCA was used to compress the data,
a bi-plot (Fig.5) of the projections of the spectra on the

Table1 Linear discriminant analysis results from classifying the
full R-A IR data set into groups previously enumerated [22]. Classi-
fication accuracies were calculated using jackknifed cross validation

Group  Correct Total Percentage Incorrectly Chosen
Samples
4 7 7 100.00 -
6 4 6 66.67 4,47
8 4 5 80.00 6
12 9 9 100.00 -
13 12 12 100.00 -
16 4 4 100.00 -
17 46 49 93.88 13x2,16
21 8 8 100.00 -
33 4 4 100.00 -
37 29 32 90.63 42x2,46
39 20 20 100.00 -
40 5 5 100.00 -
41 7 7 100.00 -
42 79 89 88.76 33,41x3,49%x4,78,81
46 5 5 100.00 -
47 43 43 100.00 -
49 21 29 72.41 37,41,42x4,46,75
56 4 4 100.00 -
59 7 7 100.00 -
64 9 16 56.25 67x7
67 12 20 60.00 64x8
69 7 7 100.00 -
70 6 6 100.00 -
72 16 16 100.00 -
75 8 8 100.00 -
78 6 6 100.00 -
81 6 6 100.00 -
Total 388 430 90.23
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Fig.3 Mean spectra and univariate Fisher ratios for groups 42 and
49. Note the small peaks centered at 1,115 and 1,270 cm~! which
have high univariate Fisher ratios, indicative of their importance
for discriminating between the two groups
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Fig.4 Expanded view of the mean spectra and univariate Fisher
ratios for groups 42 and 49
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Fig.5 Projection of spectra from groups 42 and 49 into the space
of the first two PCs using the 1,097-1,115 and 1,261-1,277 cm™!
spectral ranges. The ellipses represent 95% confidence bounds on
samples from each group

first two PCs (99.94% of the total variation) showed that
the 95% confidence ellipses overlap. However, using the
first 17 normalized PCs (99.99% of the total variation) as
inputs for LDA, the jackknifed classification results for
groups42 and 49 improved considerably. The previous
correct classification percentages were 88.76% (79/89)
and 72.41% (21/29) for group42 and group49, respec-
tively, based on the classification model created using all
430 samples. Use of only the two specific spectral regions
improved the correct percentages to 91.01% (81/89) and
96.55% (28/29), for groups42 and 49, respectively. The
group 42 copy toners have a poly(styrene:acrylate) base
component and were classified in a single group because
previous visual analysis could not distinguish them [22].
However, linear discriminant analysis applied to R-A IR
spectra was able to discriminate toners from several group
42 toners including AB Dick, Brother, Copystar, Okidata,
Newgen, and Texas Instruments [23].
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Fig.6 Mean spectra and univariate Fisher ratios for groups 64 and
67. Note the small peak centered at 2,850 cm™! which has a high
univariate Fisher ratio, indicative of its importance for discriminat-
ing between the two groups

0.04 T T T T
Group 54
0.02 -
- ——/H/h
pat |
= L L n n
o 1]
_E 2EDD 2820 2840 20850 2880 2800
§ 004 . T . .
<L Group 67
0.02 ’—/—./’_N
0 . . . .
2300 2829 2840 2850 2380 2500
05 T T T T
o Fisher Ratios
@
o
a it .
2500 2829 2640 2850 2880 2900

Wavenumbers (cm)

Fig.7 Expanded view of the mean spectra and univariate Fisher
ratios for groups 64 and 67

We performed a similar analysis to investigate discrim-
ination between the other problematic groups: 64 and 67.
The 2850-2852 cm! range has been used to distinguish
between samples in these two toner groups [22]. The
LDA model for the entire data set misclassified over half
the samples in each of these two groups as belonging to
the other group. Fig. 6 shows the mean spectra and uni-
variate Fisher ratios for the two groups. An expanded view
of the group 64 and 67 samples is shown in Fig. 7. When
the 2,841-2,860 cm! spectral region was used as the sole
input for PCA, the differences between the groups were
highlighted and discrimination between the two groups
was possible. A bi-plot (Fig. 8) of the spectra projected on
the first two PCs (99.94% of the total variation) shows
that the 95% confidence ellipses do not overlap; groups 64
and 67 are totally separable when just the 2,841-2,860 cm™!
range is used.
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Fig.8 Projection of spectra from groups 64 and 67 into the space
of the first two PCs using the 2,841-2,860 cm™' spectral range. The
ellipses represent 95% confidence bounds on samples from each

group

Despite the difficulties in separating the two very sim-
ilar pairs of groups, the overall LDA classification results
for the R-A IR data are excellent. When all groups were
considered, a 90.23% (388/430) correct classification rate
was achieved. When more specific analyses highlighting
the importance of smaller spectral regions were performed
on groups 64, 67, 42, and 49, the overall percentage of
correctly classified toners rose to 95.81% (412/430).

Conclusions

We have demonstrated the successful application of mul-
tivariate statistical methods to the differentiation of photo-
copy and printer toners using reflection-absorption infra-
red spectroscopy. Discriminating among different types
and manufacturer’s brands of toner by visual examination
of these relatively complex IR spectra can be time-con-
suming and subjective. Additionally, the forensic analyst
may not be able to fully utilize the fine structure of the
pattern due to its complexity. Multivariate pattern recog-
nition methods can take into account the entire spectrum
and thus potentially have more information to use for dis-
crimination, but are also sensitive to minor but discrimi-
nating spectral features.

The focus of this work is development of statistical-
based strategies for data handling offering improvements
in method validation and ease of interpretation. Multivari-
ate techniques provide a greater ability to discriminate be-
tween groups in large sample sets compared to visual an-
alysis. Interpretation time can be reduced because the ap-
proach has the potential to be automated. The examples
discussed illustrate the potential for computer-assisted
data interpretation of forensic analytical data to provide
decisive forensic identification of questioned samples. For
each set of data, a visually interpretable map displaying

the quantitative similarity of the IR spectra of forensic
samples can be created. In this work, linear discriminant
analysis, combined with some further tests based on spe-
cific spectral regions, was able to correctly classify 95.81%
of the 430 R-A IR toner spectra into the groups previously
established by visual comparison and computer-assisted
spectral matching. This work has demonstrated the statis-
tical validity of the groups of toner spectra assigned by
previous work at the FBI Laboratory [22]. Further work in
our laboratories involves comparisons of the discrimina-
tion achieved by R-A IR to that achieved using copy toner
elemental compositions determined by scanning electron
with X-ray dispersive analysis (SEM-EDX) and organic
polymer composition analyzed by Py-GC/MS [42].
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