
Abstract The simultaneous determination of NH4
+ and

K+ in solution has been attempted using a potentiometric
sensor array and multivariate calibration. The sensors used
are rather non-specific and of all-solid-state type, employ-
ing polymeric (PVC) membranes. The subsequent data
processing is based on the use of a multilayer artificial
neural network (ANN). This approach is given the name
“electronic tongue” because it mimics the sense of taste in
animals. The sensors incorporate, as recognition elements,
neutral carriers belonging to the family of the ionophoric
antibiotics. In this work the ANN type is optimized by study-
ing its topology, the training algorithm, and the transfer
functions. Also, different pretreatments of the starting
data are evaluated. The chosen ANN is formed by 8 input
neurons, 20 neurons in the hidden layer and 2 neurons in
the output layer. The transfer function selected for the hid-
den layer was sigmoidal and linear for the output layer. It
is also recommended to scale the starting data before
training. A correct fit for the test data set is obtained when
it is trained with the Bayesian regularization algorithm. The
viability for the determination of ammonium and potas-
sium ions in synthetic samples was evaluated; cumulative
prediction errors of approximately 1% (relative values) were
obtained. These results were comparable with those ob-
tained with a generalized regression ANN as a reference
algorithm. In a final application, results close to the ex-
pected values were obtained for the two considered ions,
with concentrations between 0 and 40 mmol L–1.
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Introduction

There is a recent trend, derived from the search for spe-
cific, single analyte sensors, to use sensor systems. This is
due to the existence of few almost perfect sensors which
do not suffer from interferences, calibration drifts, noise
effects or irreproducibilities. A first strategy was the use
of automated analytical systems to adapt or solve some of
these non-idealities. Certain introduced stages, such as
sample conditioning, frequent recalibration, sample clean
up or preconcentration, enhanced analytical performance
but with higher cost and complexity. The more novel scheme
is the use of multielement sensor arrays, which can use
sensing devices with less restrictive characteristics. With
this approach, the solution of situations or problems hard
to cope with more classical alternatives, such as the clas-
sification of foods and beverages, can be attempted.

The use of a set of sensors instead of a single, perfectly
selective sensor brings added advantages. Instead of ob-
taining only a single data point, sensor arrays provide mul-
tiple data points per sample, following the trend of obtain-
ing information with higher dimensionality. This richer con-
tent can provide additional chemical information, which in
turn is used to differentiate multiple analytes and to dis-
criminate interfering species. Information content can some-
times be further enhanced using modulation schemes, ob-
taining the so-called higher order sensor systems.

The transducing approaches for sensor arrays cover al-
most all the different sensing principles. Among others,
there have been described arrays of mass sensors, chemo-
resistors, optodes, voltammetric or potentiometric sen-
sors. When the array is used to detect gaseous species, it
is given the name “electronic nose” [1]. When it is used
for liquid samples, the term “electronic tongue” starts to
be used [2]. Both terms have been proposed in reference
to animal senses. This is because these strategies share the
general principle of having only few classes of differenti-
ated receptors but, with cross term responses and overlap-
ping selectivities, they discriminate against a multitude of
species [3].
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In this higher dimension, overlapping measurements have
to be processed with adequate tools in order to extract the
information required. The advantages of a simpler sensing
system, almost without any accessory equipment or main-
tenance, counterbalances more complex mathematical mod-
elling of the responses, and the increased processing power
required to run recognition algorithms on suitable plat-
forms. Hopefully, combination of the multiple responses
of a sensor array with advanced signal processing tech-
niques has been addressed as one of the better ways of im-
proving sensor performance, better than miniaturization
of hardware [4]. This coupling can provide, together with
the goal information (i.e. the analyte concentration), ac-
cessory information (presence of interferences) or diag-
nostic data such as sensor malfunction or process disrup-
tion.

Considering potentiometric sensors, the aforementioned
approach has been historically addressed by application of
different chemometric tools. The first attempt was pro-
vided by Otto and Thomas [5], who employed an eight-
sensor array and their Nicolsky–Eisenmann response model
fitted by multiple linear regression. Beebe and Kowalski
repeated this approach, in this case employing a five-sen-
sor array with non-linear regression methods (Simplex)
[6] or projection pursuit regression [7], a multivariate
chemometrics technique. A further approach was that of
Forster et al. who employed a four-electrode array and
again Simplex non-linear regression [8].

A convenient approach is the use of artificial neural
networks (ANNs), as demonstrated by Bos and Van der
Linden in their seminal work [9]. There they were first to
demonstrate the use of ion-selective electrodes (ISEs)
modelled with ANNs. These algorithms, which generate
“black-box” models, have shown special abilities to de-
scribe non-linear responses obtained with sensors of dif-
ferent families. First, these tools create models from a large
amount of departing information, the training set, which
must be carefully obtained [10]. This extra information is
because of the absence of a thermodynamic or physical
model, in this case, the Nicolsky–Eisenmann equation.

Besides, two further considerations are mandatory in
order to obtain the appropriate model. These are the net-
work topology, the parameters defining its structure, and
the training strategy, or the way used by the network to
learn from the initial information. The correct topology
defines an optimum number of hidden layers, the number
of neurons in each layer and the transference function.
Usually, networks with three layers of neurons are used:
an input layer, an unique hidden layer, and the output
layer. The number of neurons in the input layer equals the
number of sensors in the array, and the number of neurons
in the output layers equals the number of information
channels needed, normally the number of chemical spe-
cies determined. To optimise the network, the adjusted
factor is then the number of neurons in the intermediate
layer, normally selected by trial and error.

Together with the topology of the ANN, another point
is the selection of the training strategy to yield convergence
with a proper modelling ability and a demanded level of

accuracy and precision for a given data set. In fact, two in-
dependent data set are used at least, a training set and an
(external) test set [11]. Each set contains two kinds of in-
terrelated information. The former includes the responses
of the sensor array (patterns), and the latter corresponds to
the sought information (targets), in our case the concen-
tration values of the analytes. This training set must be
large enough and contain sufficient variability to yield a
proper modelling of the response. In order to ensure the
quality of the final results, some external check is used.
For this purpose, the second set of data, the test set, is
needed. This external check consists in verification of the
success in representing the values of the test set. Occa-
sionally, some configurations of ANN present overfitting,
which is detected by a high degree of fit for the training
set, but with the test set showing excessive deviation from
expected values [12, 13]. This condition can be checked
along the training process using a third data set, the vali-
dation set, which ends the learning process. In the present
work one of our goals has been to explore ANN configu-
rations with adequate topologies and training strategy for
correct modelling of the responses of the sensor array
with minimum overfit.

The coupling of ISE arrays with ANNs is a relatively
new trend with few antecedents, specially when restricted
to the quantification of species. Apart from the first pro-
posal [9], only few groups, like that of Vlasov [14] or the
collaborations of Massart and Fabry [15] have made sig-
nificant contributions to this emerging topic. All these
contributions employ feedforward networks furnished
with back-propagation training algorithm.

Sensor arrays have shown a flexible design approach for
development of measuring systems that can be adapted to
different applications. Instead of pursuing perfectly ideal,
specific sensors or costly sensor systems, the alternative
can be the use of sets of several simpler, less-ideal sensors
but supporting them with the use of artificial intelligence
[16]. Among the cases described are special applications
with arrays of potentiometric sensors and chemometric tools
different from ANNs. As an example, there is the work of
Toko, with an electronic tongue, employing PCA, adapted
to qualification and classification of different beverages,
for example beer, or the determination of water quality
[17]. There are also the contributions of Vlasov, like the
monitoring of a plant of bottled mineral water [18], or the
classification of clinical or food samples [19]. Few appli-
cations have shown the quantification ability of the pro-
posed approach. Some of these are the simultaneous de-
termination of species in mineral water or wine [20], soft
drinks and beers [21].

In this contribution, a sensor array of potentiometric
sensors, or electronic tongue, is devised for determination
of ammonium and potassium ions by direct measurement,
with minimal sample pretreatment. In a classical approach
this determination can be stated as non-practical, due to
the known interference of common alkaline ions with the
response of the ammonium sensors. With the electronic
tongue approach an electrode array of eight potentiomet-
ric sensors, including an ammonium sensor, different ele-
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ments sensitive to alkaline ions and non-selective or generic
elements, is trained using ANNs for the determination of
ammonium and potassium in water. Different mathemati-
cal pretreatment strategies and neural network procedures
have been tested, and a better performance algorithm has
been proposed for the final model.

Experimental

Chemicals

The ion-selective poly(vinyl chloride) (PVC) membranes were
prepared with high molecular weight PVC (Fluka). Plasticizers used
were bis(1-butylpentyl) adipate (BPA), dioctyl sebacate (DOS),
and dibutyl sebacate (DBS), all obtained from Fluka. Ionophores
employed in the formulation of the potentiometric membranes
were from the same family of ionophoric antibiotics, nonactin
(ammonium ionophore I, from Fluka), valinomycin (potassium
ionophore III, from Fluka), monensin (sodium salt, from Acros),
and lasalocide (Fluka). A classical crown ether, dibenzo[18]
crown-6 was also used as neutral carrier.

Materials used for the preparation of the inner solid contact
were the epoxy resin components Araldite M and HR hardener
(both from Ciba-Geigy) and graphite powder (100 µm, BDH) as
the conducting filler.

Imidazole (Fluka), and the salts NH4Cl and KCl (both reagent
grade, from Merck) were used as background electrolyte and cali-
bration species, respectively. All solutions were prepared with de-

ionized and highly purified water (16–18 MΩ resistivity, Milli-Q,
Millipore).

Apparatus

Potentiometric measurements were performed with the aid of a
laboratory-constructed data-acquisition system. It consisted of eight
input channels implemented with following circuits employing op-
erational amplifiers (TL071, Texas Instruments) which adapt the
impedances for each sensor. Measurements were unipolar, with the
reference electrode connected to ground. Each channel was noise-
shielded with its signal guard. The outputs of each amplifier were fil-
tered using a passive low-pass filter (centred at 2 Hz frequency) and
connected to an A/D conversion card (Advantech PC-Lab 813, Tai-
wan) installed into a 486 Personal computer running at 66 MHz.
The readings were done employing custom designed software pro-
grammed with QuickBASIC 4.5 (Microsoft).

Sensor array

The sensors used in our system were PVC-membrane all-solid-state
ion-selective electrodes (ISEs), which employ an internal ohmic
contact made from a conductive composite. Figure 1 depicts schemat-
ically the construction procedure of one of these sensors. These are
the habitual configuration used in our laboratories [22, 23]. The
sensor was formed by filling a plastic cylinder (8 mm i.d.) having an
electrical contact with an homogeneous mixture of 35.7% Araldite
M, 14.3% HR hardener, and 50% graphite powder, and cured for 
6 h at 50 °C. Next, a 0.5 mm depth cavity is formed on the top of
the constructed body. Finally, this is filled with a PVC potentio-
metric membrane cocktail and let dry. As outlined in Fig. 1, mem-
branes are formed by solvent casting of a mixture further diluted
with tetrahydrofuran (1 mL per each 20 mg PVC). Once formed,
membranes were conditioned in a 0.1 mol L–1 solution of its pri-
mary ion for 24 h. Table 1 summarises the formulation of the dif-
ferent membranes, using ionophoric antibiotics or the lipophylic
crown-ether [24, 25, 26, 27, 28, 29] as the electroactive compo-
nents. The sensor array comprised duplicated sensors for ammo-
nium, potassium, and sodium, plus two generic membrane formu-
lations for alkali ions, one employing the crown ether and the other
the antibiotic lasalocide.

No particular studies of limits of detection (LD) of the sensor
array were performed. This was due to the complexity of the case
where different ions can be simultaneously present. From individ-
ual calibrations and the observation of raw data measurements in
mixed solutions estimated values for NH4

+ and K+ ions were 0.002
and 0.001 mmol L–1 respectively, determined according to IUPAC
[30].

Calibration and measurement procedure

Measurements were done with solutions with a defined back-
ground and pH, 0.010 mol L–1 imidazole buffer of pH 6.60, aimed
at improving the characteristics of response for a low level detec-
tion of ammonium ion. Preliminary studies with this sensor array
and the considered ions, performed with 0.01 mol L–1 imidazole,
0.01 mol L–1 TRIS, and water as background media showed the first
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Fig. 1 Schematic diagram of the fabrication process of the PVC-
membrane all-solid-state potentiometric sensors, based on the
graphite-epoxy composite

Table 1 Formulation of the
ion selective membranes em-
ployed in the construction of
the potentiometric sensor array

Sensor PVC Plasticizer, (%) Ionophore, (%) Ref.
(%)

NH4
+ 33 Bis(1-butylpentyl) adipate (BPA) (66) Nonactin (1) [24]

K+ 30 Dioctyl sebacate (DOS) (66) Valinomycin (3) [25]
Na+ 27 Dibutyl sebacate (DBS) (70) Monensin (3) [26–28]
Generic 1 29 DOS (67) Dibenzo[18]crown-6 (4) [29]
Generic 2 27 DBS (70) Lasalocide (3) [24]



to be the best choice, specially because of the slightly improved re-
sponse to ammonium at low concentration levels. As reference
electrode, a double junction Ag/AgCl electrode (Orion 90-02-00)
with the imidazole background solution in its outer chamber was
used.

In order to generate the primary information for the modelling
of the system, different mixtures were sequentially prepared by ac-
cumulated additions of several standard solutions of increasing
concentration of the different considered ions. These microvolume
additions were performed with the aid of variable-volume micro-
pipettes (Finnpipette, Labsystems). Each of these points, with a def-
inite value for the concentration of ammonium and potassium was
acquired and entered in to the neural network. The standard solu-
tions employed were NH4Cl and KCl, alone or combined, with con-
centration values, of one ion or both, of 10–4 mol L–1, 10–3 mol L–1,
10–2 mol L–1, 10–1 mol L–1 and 1 mol L–1. The most concentrated so-
lution was prepared by direct weighting of the salt, and the rest
were prepared by sequential dilution. The total number of points
generated as primary information was 174, obtained during 2 work
days in the laboratory, and having variable concentrations of the
two considered ions between 0.001 and 50 mmol L–1. The mea-
surements were performed once the potential values stabilised, c.a.
30 s after addition of the solutions.

Software

The training and evaluation of the different ANNs tested in this
work was done using the software package Matlab 6.0 (Math
Works)

For the modelling of the response of the sensor array, three dif-
ferent types of ANN were used, aimed at universal description of
non-linear systems with reduced overfitting.

Feedforward backpropagation ANN with Levenberg–Marquardt
training algorithm (LM)

This type of ANN is widely used with sensor arrays. It is derived
from the algorithm of gradient descent [31], from which it is a
clear improvement [32].

Feedforward backpropagation ANN with Bayesian regularization
training algorithm (BR)

This variant applies statistical methods to detect neurons causing
overfitting, thus being subsequently pruned [33]. With this strat-
egy, the training procedure can be assimilated to the search and in-
ference of the components of the network with a greater probabil-
ity to form the best model [34].

Generalized regression ANN (GR)

This ANN implements the so-called Nadaraya–Watson kernel re-
gression, as initially proposed by Specht [35]. It presents a network
model that achieves an interpolated output function based on a fi-
nite number of inputs, applying a smoothing parameter, α, to each
input/output pair from the training set. It has the drawback that it
employs a large number of neurons in the hidden layer, as many as
the number of patterns in the training set. This ANN-GR will be
hardly usable for the electronic tongue model, because it is not
compatible with the external test assessment. Nevertheless, this
network was used as a reference point to compare the performance
of the LM and BR networks. As mentioned above, in the learning
stage of this ANN-GR, the complete set of experimental points
(training+test) was used.

Results and discussion

Topology

A significant problem arises in the selection of the ANN
topology, since it is not possible to predict a correct con-
figuration in advance. A trial and error process is needed
where the training strategies, the dimension of the hidden
layer and the transference functions used in the hidden
and output layers are varied in order to find the proper
combination. In our case, one of the factors, the transfer-
ence function at the input layer was fixed to a linear type,
as normally recommended in feedforward ANNs [13].

For the selected application, we initially fixed as con-
stant the following parameters for the remaining experi-
ments:

– eight neurons for the input layer, one for each potentio-
metric sensor;

– two neurons for the output layer, one for each concen-
tration value, NH4

+ and K+; and
– considering a highly non-linear behaviour for our re-

sponse model, a fixed non-linear sigma-shaped trans-
ference function was used for the hidden layer, specifi-
cally, the tansig function [31].

In order to obtain an initial estimate for the number of neu-
rons in the hidden layer, ten neurons were arbitrarily used,
and a light training process was started for five iterations
(epochs) only. This pseudo-training process was performed
with the purpose of determining the trend shown by the
global error of the model, whether it was systematically
improved or not.

The global modelling error was calculated in this work
as the sum of squared errors, SSE, defined as:

where N is the number of samples, and xi and ai the ex-
pected and obtained concentration values, respectively,
from the modelling of the ANN. Next, the number of neu-
rons in the hidden layer was incremented by five, light
training was again performed, and this sequence was iter-
ated until we did not obtain any clear improvement in the
SSE. Thus, the former number of neurons in the hidden
layer was fixed as the base dimension for the following
optimisations. From this preliminary base dimension, two
further dimensions were examined, explicitly ±50% of the
number of neurons in the hidden layer. With respect to the
transference function in the output layer, two variants
were evaluated in order to check their effect: first, a non-
linear function, tansig, and next, a linear function, the
satlins type [31].

During the few days employed in the generation of in-
put data, neither appreciable drift for the electrode con-
stant nor for the sensitivity was detected. To check this
point, preliminary tests were performed with an extra in-
put related to a time index. This was used to take into ac-
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count possible drift issues. First studied ANNs showed us
that this information was the least significant for the mod-
elling, so it was discarded in the rest of the study.

Training

From the set of generated experimental data, 174 values,
approximately 50%, were selected randomly for the train-
ing of the ANN; the rest were reserved for its external
testing. First, the data set was normalized to a range of
[–1,+1], both the input patterns (measured emf) and the
output patterns (concentration values). This detail ensures
proper operation of the selected transfer functions, which
are also normalized.

To initiate training the neural network model formed by
the numeric values of the weights interconnecting the neu-
rons in the hidden and output layers was iterated changing
these values towards the minimization of the prediction
errors, SSE. This numeric procedure was started from a
random arrangement of weights, generated using the pre-
programmed tools provided in the Matlab environment.
The training procedure was stopped when one of two con-
ditions was achieved:

– a maximum number of iterations (500 epochs) is
reached, or

– the modelling error, SSE, is lower than an arbitrarily
preset value of 0.001. This value was chosen as a com-
promise observed in initial evaluations of the data. First,
a greater value would not permit a correct training with
the ANNs of the BR type, while a smaller value would
have caused overfitting with the ANNs employing the
LM algorithm, and so, with a defective generalization
as outcome.

As mentioned previously, two types of training algorithm
were considered, ANN-LM and ANN-BR, and each type
was checked with different topologies. For every training
configuration five runs were launched, with fresh random
initialisation of weights each. This precaution is recom-
mended to estimate precision and to give confidence to
the final calibration model. Moreover, it permitted us to

check the effect of the initial conditions on the ANN per-
formance.

Testing

The modelling ability of each proposed ANN configura-
tion was assessed with the remaining 50% of the data not
used for training. This performance was numerically quan-
tified by checking individual values, as the sum of relative
absolute error, RAE(%), calculated according to:

where the outputs refer to concentration values for the two
ions considered. The choice of this relative weighted ex-
pression is caused by the relatively wide range of concen-
trations spanned, close to five orders of magnitude.

Optimisation of the ANN configuration

A light training procedure enabled fixing of a base num-
ber of neurons in the hidden layer for each type of ANN
training algorithm. These were 20 and 50 neurons for the
BR and LM types respectively.

Once the base dimensions of the topologies were set,
these were studied with a greater detail at three selected
values (base plus base±50%), but also considering the rest
of factors defining the ANN configuration. Apart from the
topology and training algorithm considered, these included
the two types of transference function assayed. The total
amount of 12 configurations were outlined as Table 2
shows. The table also adds the SSE obtained at conver-
gence, or at the arbitrary ending (500 epochs) in the case
of ill convergence.

Each of the 12 ANNs was trained five times, randomly
initialising each time the values of the weights of the neu-
rons with the purpose of obtaining a precision estimate for
the model. Each network, trained with the presented crite-
ria, was evaluated or tested afterwards with the data set

(%) 100
Actual ANN output Desired ANN output

RAE
Desired ANN output

−
= ×
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Table 2 The 12 ANN configu-
rations evaluated: two training
algorithms, Bayesian regula-
tion (BR) and Levenberg–Mar-
quardt (LM), different topolo-
gies and two transfer functions.
The general performances ob-
tained in their training are also
given

ANN Training Number of Transference SSE Epochs
configuration algorithm neurons in the function at the 

hidden layer output layer

BR-T-10 BR 10 Non-linear 0.0013 500
BR-T-20 BR 20 Non-linear 0.00098 489
BR-T-30 BR 30 Non-linear 0.00093 480
BR-S-10 BR 10 Linear 0.00067 475
BR-S-20 BR 20 Linear 0.00093 118
BR-S-30 BR 30 Linear 0.0019 500
LM-T-25 LM 25 Non-linear 0.00097 32
LM-T-50 LM 50 Non-linear 0.00099 31
LM-T-75 LM 75 Non-linear 0.00089 27
LM-S-25 LM 25 Linear 0.00055 13
LM-S-50 LM 50 Linear 0.00045 9
LM-S-75 LM 75 Linear 0.00036 7



not participating in training. The predicted values ob-
tained were used to calculate an RAE (%) error (relative
value). Table 3 presents information related to this feature,
the range of observed dispersion of errors for the different
training variants and for the two considered ions, NH4

+

and K+. For some of the cases evaluated, particularly the
LM-T-50 and LM-T-75 configurations, extreme disper-
sion values could be detected. For the rest of the ANNs
tested, the mean error did not reach 8%.

For the rest of the study two ANN configurations were
selected if lower RAE (%) values for the external test set
were to be obtained. These are visualized in Fig. 2, which
shows the error quantifier for each considered ion. From
this figure, and from the performance data in Table 3, it
can be deducted that the LM ANN configurations, which
are those employing the Levenberg–Marquardt training

algorithm, require fewer iterations for convergence than
those employing Bayesian regularization (BR) strategies.
Indeed, some of these (BR-T-10 and BR-T-30) did not
reach convergence.

However, in the external test, the ANNs of the BR type
were shown to be a better calibration model for the sensor
array than the LM type, as observed in Table 3. From the
values in Fig. 2 it can be stated that the average RAE (%)
for the different BR networks employing the linear trans-
ference function at the output layer were, in all cases, be-
low 1%, a remarkable result. This goal, was never achieved
by any of the LM configurations. The reduced number of
neurons used in the hidden layer of the BR type networks
is an advantage which should simplify its implementation
in a portable electronic system for an in-situ, out of labo-
ratory, use. This advantage becomes clearer, when com-
pared with the LM-S-75 configuration (the LM network
with the best performance), which employs a greater num-
ber of neurons.

Additionally, the results obtained during the test stage
show that the LM networks tend to present overfitting when
compared with the BR type. The generalization ability of
the BR networks is better than the LM, as seen in the ex-
ternal test stage. Nevertheless, the latter present good
learning potential, as demonstrated with their lower train-
ing errors, SSE.

A further consideration is the effect of the transference
function in the output layer. With both types of network
the modelling was better when the function was of the
satlins type, the linear one. A reflection can be placed here,
recalling the fact that the models built employing ANNs
have a high empirical foundation. These are the intuitive
interpretations that the hidden layer is performing a clas-
sification of the data (not linearly separable), and the out-
put layer is performing their fine quantification.
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Table 3 Ranges of relative absolute error, RAE (%), values, ex-
pressed as percentage, obtained in the test stage of the different
evaluated ANNs, corresponding to five consecutive trainings em-
ploying random initial weights

ANN RAE range (%)

NH4
+ ion K+ ion

BR-T-10 2.5673–3.2198 3.8273–4.001
BR-T-20 1.9983–2.6823 2.12–2.3474
BR-T-30 1.2645–1.6382 0.9975–1.327
BR-S-10 0.7272–0.9875 0.7024–1.4653
BR-S-20 0.6355–1.3473 0.4946–0.8709
BR-S-30 0.6851–1.1048 0.4209–0.8556
LM-T-25 4.1802–4.576 1.6772–2.3724
LM-T-50 3.7589–65.4812 1.9683–4.3193
LM-T-75 4.1581–101.216 1.5132–4.8752
LM-S-25 4.5154–7.4776 2.5252–3.1082
LM-S-50 0.806–4.2318 2.3865–5.7255
LM-S-75 2.1038–4.1246 1.9365–2.7513

Fig. 2 Relative absolute error,
RAE, values, expressed as per-
centages, obtained for the ex-
ternal test set not participating
in the training process for the
different ANN configurations
evaluated. Minimum, average,
and maximum RAE values are
indicated. The observed ranges
correspond to five randomly
initialised training processes



Validation of the model

According to the results obtained, the network that best
modelled our potentiometric sensor array, or electronic
tongue, was the BR-S-20 type. This is, a neural network
with 20 neurons in its hidden layer, using a linear satlins
transference function in the output layer, and employing
Bayesian regularization as the learning strategy. Figure 3
summarises the global behaviour in modelling the system,
both in training and external test stages for the two ions
considered: NH4

+ and K+. Satisfactory prediction ability is
found for ammonium alone, potassium alone and the mix-

ture. Figures 4 and 5 present the correlations between ob-
tained (y) and expected (x) values for each point used in
the external test set, individualised for ammonium and
potassium ions. The accuracy in the response demon-
strated by the sensor array for the external test set is sim-
ilar for the NH4

+ ion y=1.000x +0.0272 (mmol L–1) and
the K+ ion y=0.993x–0.0325 (mmol L–1). For the training
set the corresponding values are comparable, although
this is already expected and less objective, considering
these make up the information used in the learning pro-
cess. In the case of training, the comparison line for the
NH4

+ ion is y=1.000x–0.00209 (mmol L–1); for the K+ ion
it is y=1.000x–0.00324 (mmol L–1).

As a kind of further validation, the performance of the se-
lected network, the BR-S-20 configuration, was compared
with two GR networks. From these, one was for NH4

+ ion
and the other for K+ ion, and both were trained with the full
data set. Each of these networks, of probabilistic nature,
used 174 neurons in its hidden layer, and it is known to at-
tain a very good modelling ability. The average RAE (%)
values obtained with these networks were 0.593% and
0.552% for NH4

+ and K+ ions, respectively. The correspond-
ing values for the selected network, BR-S-20, were 0.6916%
and 0.5366% for the test set – of comparable magnitude.

In order to show a typical application in the laboratory,
seven synthetic samples were prepared by appropriate di-
lution of standards in an imidazole background, and pro-
cessed as proposed above. Employing the network model
BR-S-20 and the learning process performed before, quite
close results to the expected values were obtained in all
cases for both ions considered. These results are sum-
marised in Table 4.

Finally, to illustrate the effort involved in the described
approach, the different time intervals needed for each
stage can be established from the studied case. These are:

– obtaining the initial departure information, which is es-
timated as around 2 days (this figure can be extrapo-
lated to any case involving two ions);
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Fig. 3 Simultaneous visualization of the goodness of fit finally
achieved with the best configuration of ANN tested (BR–S–20) for
the two ions considered. The represented pairs are the complete
data set (targets): open circles, true concentration values; crosses,
values obtained for the training set; filled circles, values obtained
for the test set

Fig. 4 Correlation between expected and obtained concentration
values for the ammonium ion. The dotted line represents the theo-
retical comparison line y=x. The ANN used was the BR–S–20; R is
the correlation coefficient

Fig. 5 Correlation between expected and obtained concentration
values for the potassium ion. The dotted line represents the theo-
retical comparison line y=x. The ANN used was the BR–S–20; R is
the correlation coefficient



– optimisation of the ANN, which normally takes around
3 days of computer analysis, but can be reduced with
directions similar to those explained in this work, and
finally

– once the network is trained, the final readout for a new
set of samples, that can be immediate.

In the conditions employed here, and using modern Pen-
tium-processor computers (processing frequency larger than
1 GHz), a single training process is completed in less than
30 s.

Conclusions

An electronic tongue for simultaneous determination of
ammonium and potassium has been developed and opti-
mised. This is achieved by a direct measurement process
employing an ISE array and advanced processing tools,
artificial neural networks. The best variant among these
involved training employing a Bayesian regularization al-
gorithm. A double criterion for the optimisation was taken.
First, networks with a good training ability are needed, i.e.
with a correct description of the underlying model and with
reduced final errors. And, secondly, a good generalization
potential is also sought, to yield comparable performance
for training and test data. With the final configuration, the
performance in the prediction of the concentration values
of both ions is outstanding, with average relative errors
(RAE %) around 1% for the different training and valida-
tion subsets considered. Extra validation using a few sep-
arate synthetic samples also shows comparable results,
with almost all errors below 1% of the considered con-
centration range. The learning strategy used, Bayesian
regularization demonstrates clearly better performance than
the more established Levenberg–Marquardt algorithm.
Besides, the final optimal topology is of reduced com-
plexity (only one hidden layer formed by 20 neurons), fa-
cilitating future hardware implementation for a portable
analyser for in-situ use or for a base station with radio or
SMS mobile phone link. The possibility of creating a
higher-order system capable of assaying a greater number
of ions is clearly apparent – just by increasing the number
and variety of sensors used in the array. The chief diffi-
culty can be foreseen as the exponential growth of amount
of information needed for a proper modelling of the sys-

tem, where a training set can reach several hundreds of
standard solutions. Besides, for correct application of the
proposed methodology with real samples a reference
buffer is recommended for conditioning and pre-treatment,
together with the use of relative measurements in compar-
ison with the same reference solution. As a whole, the
presented results summarize an interesting advanced strat-
egy for the simultaneous quantification of different spe-
cies in solution able of an easy automation, in what is al-
ready called the electronic tongue.
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