
Abstract The 2002 IUPAC recommendation on pH (pro-
visional) has taken its own philosophy to provide a basis
for comparable and traceable assignment of a value, from a
measurement, to the quantity pH. Whereas the substituted
1983 IUPAC recommendation relied heavily on precisely
prescribed experimental techniques and procedures, the
current recommendation defines a hierarchical relationship
between references for comparison (primary and secondary
standards) and objective criteria on the comparison of mea-
surements with these standards. The recommendation aims
at a traceability chain from the national metrological insti-
tution (NMI) level down to field and laboratory measure-
ments. Currently, however, the traceability chain is devel-
oped to the level of certified reference materials (CRM),
namely the above mentioned primary and secondary stan-
dards. To complete the traceability chain, several theoret-
ical and practical aspects have to be pondered. In part, the
methods for comparative assessment of different options
have yet to be developed. As an illustrating example of
the complexity of issues to be considered in a further ex-
tension of the traceability chain is estimation of the doubt
associated with Pitzer coefficients. The Pitzer equations
for activity coefficient modelling are explicitly mentioned
in the 2002 IUPAC recommendation on pH (provisional)
as enabling possible improvement in the ionic strength ex-
trapolations to zero ionic strength. An assessment of un-
certainty of ternary Pitzer coefficients is given for the first
time.

Keywords Metrology · pH measurement · Pitzer 
coefficients · Uncertainty analysis · Latin hypercube
sampling · Bootstrap

Introduction

pH is one of the most frequently determined quantities in-
side and outside chemistry. pH is, in fact, often measured
routinely and understood as a matter of course. On the
other hand, the quantity pH is difficult to convey and dif-
ficult to determine as soon as the problems resulting from
its definition are fully considered. The quantity pH is, for
instance, the only quantity given in the IUPAC Green Book
immeasurable by its definition. In the 1983 IUPAC “com-
promise” recommendation, these important features of pH
were hidden behind the two mutually exclusive opera-
tional definitions that always led to a value from a pH
measurement – even though, in most situations, to differ-
ent values for the same sample [1, 2, 3].

The new 2002 IUPAC recommendation on pH (provi-
sional) no longer concentrates on measurement proce-
dures. To measure means to compare [4]. A measurement
is “a set of operations having the object of determining the
value of a quantity” [5]. Hence, values are compared with
other values. To enable comparisons, a hierarchical rela-
tionship among reference materials must exist. Reference
materials carry accepted values; national reference mate-
rials carry values that by the Mutual Recognition Agree-
ment (MRA) [6, 7] are mutually accepted by the national
metrological institutes (NMI) in 38 economically devel-
oped countries. The hierarchical order is established by
objective criteria against which measured values are inter-
preted. By applying criteria and reference materials to the
comparisons (measurements) a traceability chain is estab-
lished relating the value from one measurement to all
other values related to the same reference by an unbroken
chain of comparisons each with stated uncertainty [5, 8].

A major advantage of metrological concepts over oper-
ational definitions based on specific experimental meth-
ods is that assigned values are traced back to SI units, i.e.
they are independent of the method used. Currently, oper-
ations leading to a value of the quantity pH are based on
electrochemical measurements [9] which are not entirely
free from conventions. Hence assigned values are not fully
traced back to SI units with uncertainties mainly originat-
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ing from insufficient insight into electrolyte solution
theory. The uncertainty of pH(S) of primary standards
with respect to the SI system has been estimated to be
U(pH(S))=0.04 at the present state of the art [9]. There is
an explicit statement in the 2002 IUPAC recommendation
on pH (provisional) that this uncertainty is expected to be
minimized by application of the Pitzer theory of elec-
trolyte solutions, particularly for solutions of high ionic
strength. So far, however, this theory has been left for fur-
ther investigation, mainly because of lack of the data nec-
essary to perform the respective calculations, for example
dissociation constants of buffer materials. Further uncer-
tainties are involved in potentiometric determinations, e.g.
by glass combination electrodes, the preferred experimen-
tal methods of pH determination, for example by the oc-
currence of junction potentials.

There are other techniques, e.g. photochemical meth-
ods [10, 11] that might have advantages in certain envi-
ronments. Traceability to SI units of these methods re-
mains to be established, to incorporate pH values thus ob-
tained into the traceability chain mentioned above. A
clear advantage of photometric over potentiometric meth-
ods is the absence of junction potentials. The potential ad-
vantages of the traceability concept realized in the 2002
IUPAC recommendation on pH (provisional) however are
not yet fully realized. There are several issues of mostly
statistical nature to be clarified as discussed elsewhere
[12]. To make the advantages work practically, the trace-
ability chain must be available from the national reference
laboratories down to laboratory and field measurement
level. Currently, the 2002 IUPAC recommendation on pH
(provisional) considers mainly primary and secondary
standards provided by NMI and/or accredited laborato-
ries. Currently, analysts rely on commercial calibration
material that is not yet traceable to the primary standards
at the NMI. The 2002 IUPAC recommendation leaves the
detailed way open to future discussions on how to estab-
lish traceability between primary/secondary standards and
calibration solutions at the working level. A series of op-
tions must be considered and a wide range of interests ac-
commodated. Establishing a traceability chain requires
references and criteria against which these options and in-
terests can be tested. Without the 2002 IUPAC recom-
mendation of pH (provisional), any future activity would
lose direction. It must be emphasized that to make its
promises work it must be completed by future discussions
[12, 13]. Some elements of these discussions relating to
statistical considerations of the assignment of a value
from a calibration–estimation procedure to a measure-
ment have been given previously [12]. Some further as-
pects focusing on statistical properties of Pitzer activity
coefficient estimation will be provided in the following
discussion.

The role of statistics in chemistry

The search for objective criteria to assess the information
content of a collection of data is the task of statistics.

Knowledge of statistics is certainly not a strength of chemists
in general. Statistics do not have a significant share in
chemical education. This apparent negligence in statistical
education is partly paralleled by the negligence in infor-
mation science education for chemists.

The comparatively minor share of analytical chemistry
in some academic curricula is certainly not improving the
situation [14].

Analysis of the statistical content of papers published
in two renowned journals of analytical chemistry in 1994
concluded that in 8% of the papers the statistics were sim-
ply incorrect, in 40% the authors had trouble understand-
ing, defining, or using confidence limits, and in 25% of
the papers the design was inappropriate or weak, so statis-
tics could not be used legitimately to summarize results
[15]. The establishment of traceability chains, evaluation
of uncertainty statements for given samples of experimen-
tal data, and comparison of given experimental data with
previously obtained information or data from the litera-
ture requires a working knowledge in statistics and nu-
merical computation.

Natural sciences direct attention to the elucidation of
truth assumed to be present in nature (i.e. the true value of
a quantity) and hidden only by human limits to control
equipment, environment, and experiment. However, there
is nothing like “true uncertainty” in nature. Uncertainty
expresses doubt and is an essential part of communicating
scientific results. The true value is supposed to be known
to nature; the uncertainty is a part of our limited abilities
to extract this truth. A reasonable estimate of uncertainty
is an indispensable part of each experimentally measured
value of a quantity [16, 17]. Statistical techniques offer
objective means of obtaining such estimates. Because an
uncertainty is not a quantity found in nature but is a mea-
sure of (human) doubt, different statistical methods pro-
vide different aspects instead of one value that might be
taken for granted. There is no single point of view. How-
ever, any analysis is better than no analysis.

Much focus in teaching statistics to chemists is given
to the normal distribution, hypothesis testing (sometimes
called “Fisherian statistics” because of the dominating
contribution of the biologist R.G. Fisher), and frequentist
arguments (sometimes named “NPW” statistics for the
statisticians J. Neyman, K. Pearson, and A. Wald). Pre-
sented in this way, statistics can be presented in a mathe-
matically formal language. A fundamental justification for
this presentation can be found in the central-limit theorem
which states that variates which are sums of many inde-
pendent effects tend to be normally distributed as the
number of effects becomes large. This theorem can be
proven. The proof is given in most fundamental textbooks
on probability and mathematical statistics. The central-
limits theorem, however, does not provide an explanation
for other observations that are a part of the every-day lab-
oratory experience of most experimenters, i.e. outliers,
correlations, and dependent data [18, 19]. The emphasis
on mathematical presentation, the lack of experience in
handling the results of a statistical analysis, the variability
of results depending on the statistical method used, the
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readiness by which modern instruments present large
numbers of numerical values of analytical quantities [20]
and – in part – an uncritical attitude towards computers
might be a part of the reason students of chemistry con-
sider statistics a “curse” [15].

Values of chemical quantities are often the result of
complicated procedures in which common progression-
of-error analysis cannot provide satisfactory results. Cor-
relation of different levels, non-linearity and non-normal-
ity are some of the most often encountered nuisance fac-
tors contributing to the variability of results in repeated
determinations of a quantity [21, 22]. Contemporary sta-
tistics in combination with modern high-speed computers
are powerful statistical tools for handling these situations
[23, 24, 25]. Efron has mentioned in 1990 that a today’s
data analyst can afford to expend more computation on a
single problem than the world’s yearly total of statistical
computation in 1920. Since 1990 the CPU clock speed of
an average desktop computer has increased by another
factor of approximately 1000.

The still increasing relevance and impact of chemical
measurements, e.g. in international trade (hormones in
food, BSE, foot and mouth disease, pesticides in green tea,
are just a few key words capturing public attention) de-
mands dependable and defendable criteria for assessment
of the quality of a measurement [26]. International agree-
ments like MRA and ISO standards (e.g. ISO 17025) [26,
27] underpin these necessities. It would be unwise to ignore
modern statistical tools and their power in supporting our
need to assess the reasonable doubt to be associated with
a value from chemical measurement. A possible barrier
to accepting these techniques might result from the ob-
servation that chemists have tended to overestimate the
accuracy of their measurements [25, 26, 28, 29] or have
ignored uncertainty in the subsequent uses of a value [27,
29].

In summary, analytical chemistry will need metrology
to express and communicate the quality of the information
produced. Metrology in turn needs thorough statistical
analysis of the experimental data obtained. It seems that
the share of statistics in chemical curricula must be ex-
tended to meet metrological challenges.

Approach to single-ion activity coefficient 
by use of splitting conventions

When selecting a model to interpret experimental data,
two extreme positions can be taken – a model with many
parameters being sufficiently flexible to model all kinds
of data at the expense of poor predictive power, or a
model with few parameters that is not as flexible but
might have better predictive abilities. Between these both
extreme positions, the transition is fluent and the abun-
dance of ionic strength corrections available in literature
mirrors this situation. In Section 5.4 of the 2002 IUPAC
recommendation on pH (provisional), the Pitzer virial ap-
proach to ionic strength correction is explicitly men-
tioned. Hope is expressed that these equations might over-

come some limitations in the Bates–Guggenheim conven-
tion [9, 30].

All elements of the preceding argumentation can be
found in the following discussion of Pitzer coefficient un-
certainty. Even though widely used, only a single study
dealing with Pitzer coefficient uncertainty is available
[31]. The possibility that activity coefficients calculated
on basis of the Pitzer equations, at least in certain cir-
cumstances, might give unreliable results, has not oc-
curred.

The Pitzer equations (in the single-ion activity formu-
lation of Møller, Harvie, and Weare [32]) are given in the
Appendix. These authors also have shown the descriptive
power of the Pitzer equations when applied to multi-com-
ponent electrolyte systems of high ionic strength. To de-
scribe a binary electrolyte system, three terms, β(o), β(1),
and Cφ, are required (the term β(2) will not be considered).
In ternary systems additional term, the mixing terms Ψ
and θ, are needed. The Pitzer virial equations are empiri-
cal equations based on statistical thermodynamics. Never-
theless these terms represent interactions between ions of
like and opposite charge but without physical meaning. It
is, hence, futile to discuss and evaluate possible numerical
relationships within these terms.

The Pitzer equations have been fitted to many binary
and ternary electrolyte systems [32, 33, 34, 35, 36]. Inter-
estingly, Pitzer coefficient data are based on almost the
same basic electrolyte data sources. In several instances
the electrolyte data (commonly osmotic coefficients, φ)
are smoothed or selected from a larger amount of avail-
able data before interpretation [37]. It has, furthermore,
been observed that the fitting criteria have a considerable
effect on the optimum value of a value obtained from such
a fitting exercise [31].

In the framework of pH determination in aqueous solu-
tions, ionic strength corrections play an important role at
two critical points. First point is the extrapolation to zero
ionic strength currently done via the Bates–Guggenheim
convention. The second point is the derivation of single-
ion activity coefficients of H+ at higher ionic strengths,
e.g. for predicting liquid junction potentials.

The quantity pH is immeasureable because its defini-
tion involves a single-ion activity. Such single-ion activi-
ties cannot be experimentally determined by use of ther-
modynamically valid electrochemical cells. A feasible route
to single-ion activities is a suitable splitting convention in
which, for a reference ion pair, the assumption is made
that the mean activity coefficient, is split into a cationic
and an anionic part. Several splitting conventions have
been proposed in the past. Some relevant conventions are
listed below:

ln γCl= ln γ ◦
HCl(I) : hydrochloric acid convention (16 m)

(1)

ln γCl= ln γ ◦
NaCl(I) : sodium chloride convention (6.0 m)

(2)

ln γCl= ln γKCl(I) : extended MacInnes convention (4.6 m)

(3)



ln γCl = −A

√
I

1 + 1.5
√

I
:

Bates − Guggenheim convention (low ionic strength)
(4)

The current definition of the quantity pH is based on the
Bates–Guggenheim convention. Because the true single-
ion activity coefficient is unknown, any decision to split
mean activity coefficients is necessarily conventional. Be-
cause of the electrical neutrality requirement, any differ-
ence between true, but unknown, cationic single activity
coefficients is offset by the corresponding difference in
the anionic single activity coefficient. It is therefore nec-
essary to combine only single-ion activity coefficients de-
rived exclusively under the same splitting convention.
The splitting convention itself must be established sepa-
rately for each ionic strength. Thus, deciding on a splitting
convention limits the complete system of single-ion activ-
ities by the solubility of the salt on which the splitting
convention is based. The solubilities of the different salts
are given in parentheses in Eqs. (1), (2), (3), and (4).

The Bates–Guggenheim convention is not connected
with a specific salt, and is limited to low ionic strengths.
Extension of any of the splitting conventions given above
to ionic strengths higher than 0.1 mol L–1 introduces incon-
sistency because the extrapolation to zero ionic strength is
based on a system different from extrapolation to higher
ionic strength. It should be emphasized that such an in-
consistency is not necessarily a disadvantage as long as
the uncertainty contributed by this inconsistency to the to-
tal uncertainty of the quantity pH can be assessed and as
long as this uncertainty is lower than the contribution re-
sulting from the uncertainty in the splitting convention
chosen to represent extrapolation to higher ionic strength.
Again, considerable work will be necessary to identify
the possible choices and to establish a dependable frame-
work in which these uncertainties can be assessed objec-
tively.

Analysis of the uncertainty in binary Pitzer coefficients

The suitability of the Pitzer interaction model for descrip-
tion of complex electrolyte systems at high ionic strengths
has been successfully demonstrated [32, 36]. These demon-
strations have contributed to the popularity of the Pitzer
model in several fields of electrolyte solution chemistry.
As mentioned earlier [40], most applications ignore the
fact that Pitzer coefficients are derived from experimental
measurements and, hence, are affected by uncertainty.
The complexity of the equations (cf. Appendix) seems to
make assessment of uncertainty prohibitively demanding.
In a pioneering effort, however, Marshall et al. [31] have
performed statistical analysis on Pitzer coefficients by or-
dinary linear regression (OLS) based on the observation
that Pitzer’s equations are linear.

Ordinary linear regression analysis with the familiar
optimisation criterion of least sum of residual squares is
based on the conditions:

1. a linear function is a correct expectation function;
2. the response from experiment is the expectation func-

tion plus random disturbance;
3. the disturbance is independent of the expectation func-

tion;
4. each disturbance has a normal distribution;
5. each disturbance has a zero mean;
6. the disturbances have equal variances; and
7. the disturbances are distributed independently.

These limitations of ordinary linear regression result in
unsatisfactory estimates if dependent observations, corre-
lated residuals, non-normally and/or residuals following
different distributions, etc., occur, as is true for most ex-
perimental data [38].

The limitations of ordinary linear regression are well
known in the statistical literature [39, 40, 41] and can be
overcome by computer-intensive statistical methods, e.g.
the bootstrap [23, 24, 25]. These methods replace sophis-
ticated mathematical treatment by computing power and
can be applied to complex models that are difficult or even
impossible to treat otherwise. These methods are widely
applied in social and medical sciences and are becoming
increasingly used in chemistry [21, 22, 42].

Pitzer equations are commonly calculated from the pa-
rameters evaluated, and have been tabulated by Kim and
Frederick [33, 34]. These parameters are derived from de-
terminations of osmotic coefficients compiled by Hamer
and Wu [37], Goldberg [43, 44], Goldberg and Nuttall
[45], Goldberg, Nuttall and Staples [46], Robinson and
Stokes [47] and others. In the compilation of Hamer and
Wu, the various procedures used to combine activity coef-
ficient data from different sources and different methods
used to arrive at “best” values are discussed in some de-
tail. It is, furthermore, shown, by presenting activity coef-
ficient data for KCl as an example, that different assess-
ments will arrive at slightly different “best” values.

In the following, the 27 KCl activity coefficient data
given Table 28 in the compilation of Hamer and Wu [37]
are taken as a basis of discussion. These data are of inter-
est because the extended MacInnes splitting convention is
based on KCl. In addition, 30 NaCl activity coefficient data
from Table 16 [37] are used to obtain CDF (cumulative
distribution functions) for NaCl which were subsequently
used in conjunction with 20 activity coefficients in the
ternary system Na–K–Cl from [48] (electrode C data only)
to obtain uncertainty estimates for ternary coefficients.

The computer-intensive methods applied for statistical
analysis were bootstrapping and jackknifing. Latin hyper-
cube sampling in combination with bootstrap statistics has
been used to estimate a CDF for ternary Pitzer coeffi-
cients conditional on the CDF for the binary systems KCl
and NaCl. These are the first uncertainty estimates for
ternary Pitzer coefficients.

The theory of the statistical methods is well established
[23, 24]. A bootstrap analysis is a computer-intensive re-
sampling technique creating subsamples from n experi-
mental data by drawing randomly n data points from the
original data with replacement. Hence, in a subsample a
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certain data point might appear several times whereas an-
other data point is not represented in a subsample. The
process of subsample creation and subsequent interpreta-
tion by the theoretical model is repeated a large number of
times, where large number means m=1000 and more. Thus
for each model parameter m realisations are obtained.
These realisations can be ordered. By giving a weight of
1/m to each of the realisations, the empirical cumulative
distribution functions (CDF) are obtained. The empirical
CDF is a maximum likelihood estimate of the true but un-
known distribution function. There is no need to pre-
sume a CDF like the normal distribution, etc. Inference
to empirical CDF can be made by nonparametric statis-
tical techniques such as Kolmogorov–Smirnov tests or
Wilcoxon–Mann–Whitney tests [49]. Application of these
tests requires either familiarity with statistical programs
(i.e. SPSS or S plus) and/or computational ability. An ac-
count on these techniques, with examples, is given else-
where [25, 49]. No further account will be given.

Results from bootstrapping the KCl data are given in
Figs. 1, 2, and 3 for terms β(0), β(1), and Cφ. (these terms are
defined in the Appendix). The cumulative distribution func-
tions (CDF) are compared with the normal distributions of
Marshall, May and Hefter [31] (MMH) and mean values
reported by Kim and Frederick [33] (KF). For the bootstrap
analysis two different CDF have been obtained. Both dis-
tributions result from different optimisation criteria applied
in the fitting procedure. The absolute criterion minimizes
the sum of squared residuals whereas the relative criterion
takes the magnitude of the data into account by dividing
the residuals by the experimental values before squaring.

Only for β(1) does the OLS distribution deviates from
the bootstrap result. There is no obvious reason for this
deviation. For the other terms, however, the three distri-

butions and the four location estimates (mean values in
case of KF and MMH, medians for the bootstrap esti-
mates) are close together. This can be assumed to be a re-
sult of data preprocessing and smoothing.

The correlation among the data cannot be easily re-
moved by smoothing. Correlation is graphically visual-
ized in Fig.4, in which the result of a jackknife analysis is
given for the binary coefficients of KCl. In a jackknife
analysis the effect of successively omitting one of the data
points after the other from the fitting procedure is calcu-
lated. The binary estimates thus produced vary in such a
way that the values of Cφ and β(1) are high if the values for
β(0) are low, and vice versa. In addition, the strong effect
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Fig.1 CDF of Pitzer coefficient β(0) for KCl compared with re-
sults from normal distribution analysis by Marshall, May, and
Hefter [31] and the value given in the compilation of Kim and
Frederick [33]. The close agreement between the three distribu-
tions (OLS, bootstrap with absolute residuals, and bootstrap with
relative residuals) is apparent and might indicate the effect of data
preprocessing and smoothing [37]

Fig.2 CDF of Pitzer coefficient β(1) for KCl compared with results
from normal distribution analysis of Marshall, May, and Hefter
[31] and the value given in the compilation of Kim and Frederick
[33]

Fig.3 CDF of Pitzer coefficient Cφ for KCl compared with results
from normal distribution analysis of Marshall, May, and Hefter
[31] and the value given in the compilation of Kim and Frederick
[33]



of the data points at higher ionic strength (data point nos.
22–28) are clearly visible. The strong shift especially in
the values for β(0) and Cφ on omission of data point no. 28
is suspicious – the results are almost outlying. Because of
the sensitivity of OLS to extraneous observations, the
wide confidence limits given by OLS for β(1) might be the
result of the large effect of the data point for the highest
concentration. None of the values varies sufficiently,
however, to enable inclusion of the mean values reported
by KF (β(0)=0.04661, β(1)=0.22341, Cφ=–0.00044) into the
diagrams of Fig.4.

The KCl example shows that none of the four location
measures provided by the different approaches is signifi-
cantly deviating on both the bootstrap CDF and the nor-
mal distribution when the .16 and .84 percentiles of the
CDF (corresponding to 1σ in the normal case) are taken as
the confidence limits. Four legitimate location estimates
are, nevertheless, available – none of which can claim ex-
clusive consideration – and there are further arguments
leading to other values! It is common to choose the sum of
squared residuals as the optimization criterion – either ab-

solute or relative. This criterion is commonly termed the
L2 criterion in the statistical literature. Its ubiquity results
from maximum likelihood considerations of data sets for
which the conditions 1–7 given above are valid. In this
case the optimum value is the maximum likelihood esti-
mate of the quantity of interest. If these conditions are not
valid (and they are not for almost all experimental data
sets) the L2 criterion has lost its special position. It is then
natural to sum the absolute differences, the so-called L1
criterion. Consequences are shown in Fig.5 for β(1) for
NaCl. In this case the location measures deviate signifi-
cantly on basis of the parameter distributions. The KF
mean value is below the lower .95 percentile of the MMH
cumulative normal distribution. The CDF also differ slightly
but both are above the upper .95 percentile of MMH cu-
mulative normal distribution. Please note that these differ-
ences do not favour or reject one of the location measures
but require the user of the data to be appropriately scepti-
cal about the quality of information extractable from the
experimental data available. The analysis shows, for ex-
ample, that already the second decimal place of the value
for β(1) is doubtful; it is inappropriate to tabulate the value
to five decimal places (β(1)=0.25183) as given in KF.

It is an illustrative example of the flexibility of the
Pitzer model itself that even grossly deviating values do
not result in fitting problems; at least no such example has
been indicated. The Pitzer model undoubtedly has high
descriptive power, partly a consequence of the many
terms involved in the fitting process. For a ternary system,
i.e. KCl–NaCl the six binary system terms β(0)

KCl, β(1)
KCl,

C(φ)
KCl, β(0)

NaCl, β(1)
NaCl, and C(φ)

NaCl and the ternary system
properties ψK-Na and θK-Na-Cl are needed. The large number
of variables results in high fitting ability but the uncer-
tainty introduced by the many uncertainty-affected vari-
ables is large. Consequently, the predictive power of the
Pitzer equations is restricted.
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Fig.4 Variability of the mean value of binary Pitzer coefficients
β(0), β(1), and Cφ calculated by jackknife analysis. The negative cor-
relation between β(1) and both β(0) and Cφ is readily visible as is the
strong effect of the data points at higher ionic strength (higher data
point no.)

Fig.5 Comparison of fitting results of β(1) for the binary electrolyte
system NaCl. The L1 and L2 criteria are applied in the bootstrap
analysis, whereas MMH uses the L2 criterion in combination with
normal distribution assumptions



An account of the estimation of Pitzer coefficients 
of ternary electrolyte solutions

Ternary electrolyte solutions, i.e. the NaCl–KCl system,
require as additional Pitzer coefficients the mixing coeffi-
cients θij and ψijk. The virial coefficients θij account for in-
teractions of ions of equal sign whereas the virial coeffi-
cients ψijk account for cation–cation–anion and cation–an-
ion–anion triple interactions. These coefficients can be
calculated from osmotic coefficients of mixtures of the
ternary systems of interest of different composition. In
evaluating these coefficients the binary coefficients β(0),
β(1), and Cφ are necessary input data. It is a relatively sim-
ple procedure to put mean values into an OLS regression
procedure and to extract the mean ternary coefficients
conditional on the binary solutions and the experimental
data. The procedure is less straightforward if the empiri-
cal distributions replace the mean values. There is also
no algorithm available for estimating confidence regions
conditional on binary coefficient distributions as is the
Gauss–Legendre algorithm in the binary coefficient ex-
ample where only data variability had to be accounted for.

It is possible to perform a Monte Carlo study in which
binary coefficients are randomly drawn from the binary
coefficient empirical distributions. Many cumulative nor-
mal distributions would result. There is no reason to as-
sume the central-limit theorem would be valid for six con-
tributing distributions.

The approach taken here is a combination of Latin hy-
percube sampling (LHS) [49, 50] and bootstrapping. Twenty
LHS samples of the six binary coefficients (three for each
binary electrolyte system) have been generated from the
empirical CDF. Each sample is subsequently used as input

vector for a bootstrap analysis with 2500 replicates. The
advantage of the LHS is its efficiency in homogeneously
representing all sections of a distribution (especially the
tails of a distribution) in a limited number of repetitions.
Twenty LHS samples were selected on the basis of a vari-
ance analysis – the variance of repeated calculations sta-
bilized at approximately 12 to 15 LHS samples. The pro-
cedure was implemented in a higher computer language
and the total of 50,000 bootstrap replicates took 16 h on a
700 MHz CPU. The bootstrap results were pooled and a
result for ψK–Na–Cl is given in Fig.6 on basis of 2500 regu-
larly spaced points of 50,000 data points. The long tail 
is evident. The median is not different from the value
ψNa–K–Cl=–0.0098 given by KF – a consequence of the al-
most normal distributions of the binary coefficients and
smoothing of the ternary data in Ref. [48]. A Kolmogorov–
Smirnov test results in a probability of less than 1% that the
CDF is normal, however. The maximum deviation between
the closest fitting normal distribution and the CDF does not
occur in the long tail but almost in the centre of the distri-
bution. As is observed with many ternary parameters of
univalent-univalent electrolyte systems, the hypothesis that
these parameters are actually zero and the observed small
values are random effects would not be easy to reject.

Analysis of uncertainties associated with Pitzer coeffi-
cients thus indicates that these uncertainties are not negli-
gible. The uncertainties associated with the Bates–Gug-
genheim convention are quite narrow. It is highly doubtful
whether replacement by a Pitzer equation approach will
actually result in an improvement.

Last but not least it must be remembered that this analy-
sis is by far not exhaustive. Possible correlation with the
data, e.g. because of smoothing of the data tabulated in the
literature, correlation of the coefficients, and non-linearity
effects are not discussed. With reference to the hope ex-
pressed in the 2002 IUPAC recommendation on pH (provi-
sional) that the Pitzer model might help improve the extrap-
olation to low ionic strength it must be remembered that the
power of the Pitzer model lies at high ionic strengths. It is,
however, necessary to stay within one splitting convention
when considering extrapolation both to high ionic strength
by use of a Pitzer virial model and to zero ionic strength by
use of the Bates–Guggenheim convention. As already men-
tioned in the 2002 IUPAC recommendation on pH (provi-
sional), the electrolyte data available are not suitable for es-
timation of activity coefficients for more unusual salts. The
discussion has, furthermore, been limited to univalent–uni-
valent electrolytes. In addition, the problem of estimating
activity coefficients from multidimensional uncertainty dis-
tributions is not an easy task. Computer-based techniques on
basis of Bayesian statistics are available but are neither easy
to implement nor easy to explain [51, 52].

Reflections on the future development 
of pH measurement

Because of the ubiquitous importance of the medium wa-
ter in many fields inside and outside chemistry, the quan-
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Fig.6 Cumulative empirical probability distribution function of
the ternary coefficient ψNa–K–Cl. The CDF is obtained conditional
on the CDF of the binary parameters by a combination of LHS
with a bootstrap scheme. From the in total 50,000 estimated values
of ψNa–K–Cl an interpolation of 2500 regularly spaced data points is
shown. The probability of the resulting CDF being normal is as-
sessed to be less than 1% from a Kolmogorov–Smirnov test



tity pH is of fundamental relevance. One aspect often not
given its due importance is that pH measurement and its
quality also affects the opinion of non-chemists about
chemistry itself. These users rely on the validity of proto-
cols and procedures and expect reliability. To disappoint
these expectations has the potential to damage the reputa-
tion of chemistry. Thus claimed progress in pH measure-
ment must persist under scrutinizing investigation. It is in
the central focus of metrology in chemistry to create ob-
jective measures against which such critical inquiries can
be performed. The 2002 IUPAC recommendation on pH
(provisional) is a first stage in this task for pH. Further
stages must follow. Several subjects can be identified in
which detailed options must be measured critically and as
quantitative as possible [13]:

• completion of the traceability chain down to the labora-
tory and field level;

• extension to a wider range of ionic strengths;
• extension to a wider range of media; and
• derivation of calibration protocols enabling measure-

ment of traceable values for different analytical tech-
niques

None of these four topics (the list is not complete by far)
has a simple solution. The challenge is in part the need to
develop objective criteria and methods to appraise possi-
ble options comparatively. The analysis of Pitzer coeffi-
cient uncertainty has been given in some detail to give an
idea of the complexity of the issue. The rôle of glass elec-
trode calibration has been given elsewhere [12]. A more
general approach to UV–visible spectroscopy is also to be
found elsewhere [22]. Surely, alternative options will turn
up and extensions will become necessary.

Conclusions

The tenor of the preceding sections can be summarized in
three points. To establish information of defined quality,
we need:

• references and standards;
• chains of comparison and evaluation (traceability chain);

and
• objective criteria.

References and standards enable us to measure (=to com-
pare) equal things. The traceability chain gives an indica-
tion of the quality of our activities and a measure against
which to judge progress and improvement. The objective
criteria provide the openness of the system towards future
developments, new demands, and alternative methods. At
present progress and improvement can easily be claimed
but is very difficult to assess or even to prove, i.e. in the
event of conflicting interest. Within the system the hierar-
chical structure is the stabilizing factor.

The instrumental revolution in analytical chemistry from
1970 to the present and the enormous increase in elec-
tronic calculation power have resulted in computer-based
equipment capable of obtaining large amounts of data in a

short time. Chemical information is enclosed in these data
heaps together with random noise, scatter, and other nui-
sance effects. Objective criteria to judge data are devel-
oped by statistical science. The amounts of data obtained
during electrode calibration and interpretation of sample
potentials can be handled easily. But with the intention of
avoiding overinterpretation and underestimation, statisti-
cal techniques can aid rational discussion.

An example has been given on the assignment of un-
certainty to Pitzer model virial coefficients. These coeffi-
cients are widely used in literature but almost always given
without an associated estimate of uncertainty. Because Pitzer
model equations are multi-parameter equations their
modelling capacity is great, as already amply demonstrated
in literature. Conversely, their predictive power is low, be-
cause each experimentally determined value contributes
measurement uncertainty from its determination, as shown
by estimating this uncertainty by computer-intensive sta-
tistical methods. Comparison with an OLS approach by
Marshall, May, and Hefter [31] for the binary electrolytes
indicates that within the limitations of each of the differ-
ent methods the assigned uncertainty estimates do not
highly diverge substantially.

Future work in the field of pH measurement must be
directed toward extension of the new IUPAC recommen-
dation on pH to a wider range of applications and media.
Several options are possible. Each option, however, needs
detailed and unprejudiced analysis. Past experience indi-
cates that such an analysis is time-consuming and tedious,
but unavoidable.

The determination of pH is largely based on electro-
chemical measurements. For most situations, the focus on
electrochemical methods is justified by their efficiency in
time and costs. The new IUPAC recommendation on pH
also indicates the problems that result from our incom-
plete theoretical understanding of electrolyte solutions. It
is therefore necessary to investigate other techniques, i.e.
photometric pH measurement in the same manner and
with the same scrutiny as for electrochemical methods.
Alternative traceable methods for study of pH are urgently
needed.

The still increasing influence of chemical measure-
ments, e.g. in international trade, demand dependable cri-
teria for appraisal of a value for a quantity from chemical
measurements that is defendable even in the event of con-
flicting interests. This development gains further momen-
tum from international agreements and standards, e.g. the
BIPM “Guide to the Expression of Uncertainty”, the
“Mutual Recognition Agreement” and the already widely
recognized ISO standards, e.g. ISO 17025. The changes
and requirements emerging from this development are
difficult to foresee. The procedure(s) of assigning values
to the quantity pH is, however, a pioneering example of
the challenges that face other areas of chemistry, i.e.
chemical thermodynamics with its wide fields of applica-
tions.
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Appendix

The Pitzer equations:

Equations (5), (6), (7), and (8) describe summations of in-
teractions between different ions as a function of ionic
strength, I, on the molality scale, where φ gives the os-
motic coefficient and γ a single-ion activity coefficient
based on the appropriate splitting convention. Indices M,
c, and c′ denote cations, indices X, a, and a′ denote an-
ions. N and n represent uncharged species. Molal concen-
trations are represented by the symbol m.

∑

i

mi (φ − 1) = 2
−Aφ

√
I 3

1 + 1.2
√

I
+

Nc∑

c=1

Na∑

a=1

mcma(Bφ
ca + ZCca)

+
Nc−1∑

c=1

Nc∑

c′=c+1

mcmc′(�
φ

cc′ +
Na∑

a=1

ma�cc′a)

+
Na−1∑

a=1

Na∑

a ′=a+1

mama ′(�
φ

aa ′ +
Nc∑

c=1

mc�aa ′c)

+
Nn∑

n=1

Na∑

a=1

mnmaλna +
Nn∑

n=1

Nc∑

c=1

mnmcλnc)

(5)

ln γM = z2
M F +

Na∑

a=1

ma(2BMa + ZCMa) +
Nc∑

c=1

mc(2�Mc +
Na∑

a=1

ma�Mca)

+
Na−1∑

a=1

Na∑

a′=a+1

mama′�aa′ M + |zM |
Nc∑

c=1

Na∑

a=1

mcmaCca +
Nn∑

n=1

mn(2λnM )

(6)

ln γX = z2
X F +

Nc∑

c=1

mc(2BcX + ZCcX ) +
Na∑

a=1

ma(2�Xa +
Nc∑

c=1

mc�Xac)

+
Nc−1∑

c=1

Nc∑

c′=c+1

mcmc′�cc′ X + |zX |
Nc∑

c=1

Na∑

a=1

mcmaCca +
Nn∑

n=1

mn(2λn X )

(7)

ln γN =
Nc∑

c=1

mc(2λnc) +
Na∑

a=1

ma(2λna) (8)

The charge of a species is given by z. The Debye–Hückel
coefficient AΦ is given by Eq. (9); AΦ=0.392 at 25°C.

Aφ = 1

3

√(
2π N0dw

1000

)√(
e2

DkT

)3

(9)

where No is the Loschmidt number, dw and D are the den-
sity and static dielectric constant, respectively, of water,
and e represents the electron charge. Temperature T is
given in Kelvin. The symbol k is the Boltzmann constant.

C and CΦ are related according to Eq. (10):

CM X = Cφ

M X

2
√|zM zX | (10)

where Z is defined by Eq. (11):

Z =
∑

i

|zi | mi (11)

and F is given by Eq. (12):

F = −Aφ(

√
I

1 + 1.2
√

I
+ 2

1.2
ln(1 + 1.2

√
I )) +

Nc∑

c=1

Na∑

a=1

mcma B ′
ca+

Nc−1∑

c=1

Nc∑

c′=c+1

mcmc′�′
cc′ +

Na−1∑

a=1

Na∑

a ′=a+1

mama ′�′
aa ′

(12)

Coefficients B are understood as functions of ionic
strength, I, and described by Eq. (13). Functions g(x) and
g′(x) are calculated from Eq. (14):

Bφ

M X = β
(0)

M X + β
(1)

M X e−αM X

√
I + β

(2)

M X e−12
√

I

BM X = β
(0)

M X + β
(1)

M X g(αM X

√
I ) + β

(2)

M X g(12
√

I )

B
′
M X = β

(1)

M X

g′(αM X
√

I )

I
+ β

(2)

M X

g′(12
√

I )

I

(13)

Constant α is 2.0 for electrolyte solutions with at least one
monovalent ion. For 2:2 ion pairs or even higher charged
electrolytes α=1.4. For electrolytes with monovalent ions,
β(2) is almost zero and is not considered in this implemen-
tation.

g(x) = 2
1 − (1 + x)e−x

x2

g′(x) = −2
1 − (1 + x + x2

2 )e−x

x2

(14)

with

xM N = 6zM zN Aφ
√

I (15)

Mixing terms Φ of asymmetric electrolytes depend on ionic
strength, I, and are made up from terms θ, Eθ, and Eθ′:

�
φ

i j = θi j + Eθi j (I ) + I Eθ ′
i j (I )

�i j = θi j + Eθi j (I )

�
′
i j = Eθ ′

i j (I )

(16)

E θM N (I ) = zM zN

4I
(J0(xM N ) − 1

2
J0(xM M ) − 1

2
J0(xN N )

E θ ′
M N (I ) = zM zN

8I 2
(J1(xM N ) − 1

2
J1(X M M ) − 1

2
J1(X N N )) −

E θM N

I

(17)

Functions Jo and J1 are integrals according to Eq. (18).
Suitable approximations are given by Pitzer.

J0(x) = 1

4
x − 1 + 1

x

∞∫

0

[
1 − e− x

y e−y
]

y2 dy

J1(x) = 1

4
x − 1

x
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0

[
1 − (1 + x

y
e−y)e− x

y e−y

]
y2 dy

(18)
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