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Abstract The complementary use of partial least-squares
(PLS) multivariate calibration and artificial neural net-
works (ANNs) for the simultaneous spectrophotometric
determination of three active components in a pharmaceu-
tical formulation has been explored. The presence of non-
linearities caused by chemical interactions was confirmed
by a recently discussed methodology based on Mallows
augmented partial residual plots. Ternary mixtures of chlor-
pheniramine, naphazoline and dexamethasone in a matrix
of excipients have been resolved by using PLS for the two
major analytes (chlorpheniramine and naphazoline) and
ANNSs for the minor one (dexamethasone). Notwithstand-
ing the large number of constituents, their high degree of
spectral overlap and the occurrence of non-linearities,
rapid and simultaneous analysis has been achieved, with
reasonably good accuracy and precision. No extraction
procedures using non-aqueous solvents are required.

Keywords Partial least-squares - Artificial neural
networks - Chlorpheniramine - Dexamethasone -
Naphazoline

Introduction

The application of multivariate calibration methods to both
spectral or electrochemical data in the biomedical and
pharmaceutical fields has acquired a routine nature [1, 2,
3,4,5,6,7, 8]. Partial least-squares (PLS) has become the
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de facto standard for multivariate calibration because of
the quality of the obtained calibration models, the ease of
its implementation and the availability of software [9]. It
shows the advantage of using full spectra, which is critical
for the spectroscopic resolution of complex mixtures of
analytes. It allows for a rapid determination of compo-
nents, usually with no need of a prior separation. An addi-
tional advantage of robust multivariate methods, such as
PLS, is that calibration can be performed by ignoring the
concentrations of all other components except the analyte
of interest. This makes these methods especially appeal-
ing for the determination of the active components in oph-
thalmic and nasal solutions as well as in syrups, whose
excipients may show absorption spectra that are severely
overlapped with those from the analytes. Although PLS
assumes a linear relationship between the measured sam-
ple parameters and the intensity of its absorption bands,
small deviations from linearity are acceptable as they can
readily be suppressed by including additional modelling
factors [10]. However, in the presence of substantial non-
linearity, PLS tends to give large prediction errors and calls
for more robust models. Intrinsically non-linear calibra-
tion techniques such as artificial neural networks (ANN5s)
[7, 11] are applicable in the latter cases.

In the present report, we discuss the possibility of ana-
lysing a three-component pharmaceutical mixture in which
a large difference among the analyte concentrations ex-
ists. If all constituents are to be determined with a single
calibration set, the major analytes would display concen-
trations which deviate from Beer’s law. However, they
can be determined with the aid of PLS-1, though requiring
additional factors to those expected if the system were lin-
ear. On the other hand, the minor analyte requires the use
of an ANN for successful prediction results. It is apparent
that the non-linearities cannot be adequately modelled by
PLS, a fact which may be ascribed to significant chemical
interactions with the major sample components.

Specifically, the present study is concerned with com-
mon commercial drops employed for the temporary relief
of nasal congestions, which contain a mixture of an anti-
histaminic, a vasoconstrictor, a corticoid, antibiotics and



several excipients. A typical formulation contains chlor-
pheniramine [}-(4-clorophenyl)-N,N-dimethyl-2-pyridine-
propanamine (CHL)], naphazoline hydrochloride [2-(1-
naphthylmethyl)-2-imidazoline monohydrochloride (NAP)],
dexamethasone 21-phosphate [9 o-fluoro-16 o-methyl-11
B,17 a,21-trihydroxy-1,4-pregnadiene-3,20-dione 21-phos-
phate (DEX)], two antibiotics (neomycin and gramicidin)
and several excipients such as sodium, potassium and cal-
cium chlorides, thimerosal and sodium hydrogen carbon-
ate. CHL is an antihistaminic derived from propylamine,
indicated for the treatment of many allergies [12]. NAP is
an imidazole-based sympathomimetic and vasoconstrictor
of relatively long-lasting action that acts on the alpha-re-
ceptors of the vascular smooth muscle [12]. DEX is a syn-
thetic glucocorticoid, typically indicated for the treatment
of several pathologies, due to its anti-inflammatory and
immunosuppressor effects. It leads to a symptomatic re-
lief, but has no effects on the development of the underly-
ing disease [12].

Several methods are available for the determination of
the CHL, NAP and DEX by high-performance liquid chro-
matography in different pharmaceutical preparations, ei-
ther alone or in combination with other active ingredients
[13, 14, 15]. CHL has been determined by derivative spec-
trophotometry [16]. DEX and NAP have been simultane-
ously determined by using capillary electrophoresis in
nose drops [17], while DEX has been quantified by flow-
injection with chemiluminometric detection [18] and by
derivative spectrophotometric determination in single for-
mulations and also in combination with other drugs [19].
Our results are indicative that the combination of UV-vis-
ible spectroscopy with suitable chemometric techniques
also constitutes a valid analytical strategy.

Materials and methods

Apparatus. Electronic absorption measurements were carried out
on a Perkin-Elmer Lambda 20 spectrophotometer, using 1.00 cm
quartz cells. All spectra were saved in ASCII format, and trans-
ferred to a PC Pentium 550 microcomputer for subsequent manip-
ulation.

Software. PLS-1 was applied with the well-tested program
MULTIVAR, written in Visual Basic according to algorithms al-
ready described [20]. Neural Unscrambler software version 1.02
from CAMO (Trondheim, Norway) was employed for ANN calcu-
lations and Sigma Plot 5.0 from SPSS (Chicago, USA) for statisti-
cal data processing.

Reagents. All experiments were performed with analytical-reagent
grade chemicals. Stock solutions of chlorpheniramine (5.01 g L-1),
naphazoline (4.92 g L-') and dexamethasone disodium phosphate
(1.02 g L-!) were prepared by dissolving the compounds in doub-
ly distilled water. A mixture of the excipients was also prepared
in distilled water: sodium chloride (1.00 g L"), calcium chloride
(50 mg L), potassium chloride (1.00 g L-!), thimerosal (100 mg L")
and sodium hydrogen carbonate 3.00 g L-!'. This solution also
contained two antibiotics: neomycin (5.00 g L") and gramicidin
(10 mg LY).

Experimental calibration and validation sets. Two 15-sample sets
were built to be used as calibration and validation sets for PLS-1.
For the application of ANNSs, the first 15 sample set was random-
ly divided into a training set (10 samples) and a monitoring set
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Table 1 Composition of the 15 sample central composite designs
used as calibration and validation sets for applying partial least
squares (PLS-1) and artificial neural networks (ANNs) methods.

CHL (mg I!) NAP (mg 1) DEX (mg 1)
Calibra- Valida- Calibra- Valida- Calibra- Valida-
tion tion tion tion tion tion
5.0 32.0 35.0 32.0 6.0 7.3
140.0 118.0 35.0 32.0 6.0 7.3
35.0 32.0 140.0 118.0 6.0 7.3
140.0 118.0 140.0 118.0 6.0 7.3
35.0 32.0 35.0 32.0 13.0 11.6
140.0 118.0 35.0 32.0 13.0 11.6
35.0 32.0 140.0 118.0 13.0 11.6
140.0 118.0 140.0 118.0 13.0 11.6
87.5 75.0 87.5 75.0 3.6 5.7
87.5 75.0 87.5 75.0 154 13
87.5 75.0 0.0 0.0 9.5 9.5
87.5 75.0 175.0 150.0 9.5 9.5
0.0 0.0 87.5 75.0 9.5 9.5
175.0 150.0 87.5 75.0 9.5 9.5
87.5 75.0 87.5 75.0 9.5 9.5

(5 samples), while the second 15 sample set was used as test set.
The component concentrations within both 15 sample sets corre-
sponded to central composite designs with different concentration
levels (see Table 1). Central composite designs are formed by a
three-component full-factorial design at two levels (i.e., 23=8 sam-
ples), a central point (1 sample), and a star design (2x3=6 sam-
ples), making a total of 15 samples. [21] All samples also con-
tained the antibiotics neomycin and gramicidin, and excipients in
the same concentrations as in the pharmaceutical preparation (i.e.
1.0 g LY. It should be noted that the concentrations of both CHL
and NAP lay outside their known linear absorbance-concentration
ranges, which are 5-125 mg L-! and 6-130 mg L-! respectively.
All spectra were recorded in random order with respect to analyte
concentrations, in the range 200—350 nm, every 1 nm (i.e. 151 data
points per spectrum), although wavelength selection was applied
before multivariate calibration (see below).

Commercial sample. One commercial sample was tested: Dexaler-
gin (Syncro Laboratories, Argentina), a solution containing (per
100 ml) 100 mg chlorpheniramine maleate, 100 mg naphazoline
hydrochloride, and 5.0 mg dexamethasone disodium phosphate.
The sample was prepared by diluting 3.00 ml of the solution with
doubly distilled water in a 25.00 ml volumetric flask before mea-
surements.

Results and discussion
Application of PLS

Figure 1 shows the aqueous solution spectra of the ana-
lytes CHL, NAP and DEX, as well as that of the mixture
of excipients. As can be seen in this figure, the strong
overlapping among their spectra precludes the direct de-
termination of the components by conventional spectro-
photometry. An additional disadvantage is present in the
mixtures studied: the concentration of DEX is much smal-
ler than those of CHL and NAP. In such a situation, the
resolution of the three components with a single calibra-
tion set represents a difficult task for a multivariate cali-
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Fig.1 Aqueous solution spectra of the analytes: A CHL (100.0 mg 1-1),
B NAP (100.0 mg I'"), C DEX (5.0 mg '), D excipients

bration technique. In order to obtain reasonable sensitivity
for the minor constituent, it is necessary to work with
large concentrations of the major ones. This leads, in prin-
ciple, to deviations of the signal/concentration linearity
for the major analytes, but may also introduce non-linear-
ities in the minor component if chemical interactions oc-
cur between the latter and the more concentrated com-
pounds. In the present case, the C=0O moieties of DEX
may form strong hydrogen bonds with the NH protons of
CHL or NAP, providing the basis for chemically induced
deviations from Beer’s law.

A usual method for the quantification of multicompo-
nent mixtures, which has been thoroughly applied for
analysing pharmaceutical preparations, is PLS, in which
the presence of certain types of mild non-linearities can in
principle be modelled by using additional spectral factors.
Thus, electronic absorption spectra for the standard sam-
ples were recorded in the range 200-350 nm and sub-
jected to PLS-1 analysis. The optimum spectral ranges
(including the number of data points) and the correspond-
ing statistical parameters are shown in Table 2. Wave-
length selection is a critical step for increasing the predic-
tive ability of multivariate analysis, and should ideally
eliminate both uninformative and/or highly correlated
data. In the present report we have applied a moving win-
dow strategy to the calibration set itself, in order to find
the most informative range in the spectra by localising the
minimum calibration variance [22]. However, the tech-
nique should not be blindly applied: after selecting an ad-
equate region, care should be taken in checking whether
the results are consistent with the spectroscopic properties
of the analytes at hand. In our case, the selected ranges co-
incided with the location of component spectral peaks with
minimum overlapping, a fact which strongly supports their
use for multivariate regression. Once the optimum spec-
tral ranges were obtained, the cross-validation procedure
was applied to assist in the selection of the number of fac-
tors. This consists of systematically removing one of the
training samples in turn, and using only the remaining

Table 2 Composition of the 15 sample central composite designs
used as calibration and validation sets for applying partial least
squares (PLS-1) and artificial neural networks (ANNs) methods.

Parameters? CHL NAP DEX
Spectral region nm 240-280 245-320 236-256
Number of data points 41 76 21
Factors 5 5 7
PRESS (g ml1)? 49.2 0.938 10.2
RMSD g ml! 1.81 0.25 0.61
REP% 2.07 0.29 6.16
R? 0.9981 0.9999 0.9772
SEN 0.0112 0.0571 0.009
SEL 0.185 0.454 0.080
v (mg I-1)® 0.089 0.017 0.111

I-1

I 172
—_ . N 2 ! 2
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1

¢ is the average component concentration in the / calibration mix-
tures.
b3r=0.001 (taken as the standard deviation of several blank sample
signals)

ones for construction of the latent factors and regression.
In order to estimate the optimum number of factors, the
criteria proposed by Haaland and Thomas [1] were used.
In our case, the value of F corresponding to a probability
smaller than 0.75 yielded the optimum numbers of factors
shown in Table 2. Note the large number of factors re-
quired to adequately model the three components, espe-
cially in the case of DEX. This latter table also gives the
values of other important statistical parameters such as the
square of the correlation coefficient (R?), the root mean
square difference (RMSD) and the relative error of pre-
diction (REP%). As can be seen in Table 2, the calibration
parameters and figures of merit are excellent for CHL and
NAP, but those for DEX are rather poor. This fact may be
due to the lesser sensitivity towards this particular ana-
lyte, but (see below) it could also be caused by non-lin-
earities which cannot be accounted for by including addi-
tional factors in the PLS calibration model.

Selectivity (SEL), sensitivity (SEN) and limit of deter-
mination are important figures of merit, which allow one
to evaluate the performance of the analytical methodolo-
gies. They can be calculated and used for method compar-
ison or to study the quality of a given analytical technique.
The limit of determination is not strictly necessary in the
present case, but only for the assessment of impurities. The
SEL is a measure of the degree of overlap, and indicates the
part of the total signal which is not lost due to spectral over-
lap [23]. In multivariate calibration it usually can be defined
by resorting to net analyte signal (NAS) calculations [23]:

SEL = [[s|[/]Iskll (1)

where s, is the spectrum of pure component £ at unit con-
centration, and s;” is its corresponding NAS.



Table 3 Results obtained for
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CHL and NAP when applying Sample CHL NAP
EES_szeta:riiy(s)irlsetg()trl;err:{earlg?aﬁ_ Added Found Recovery Added Found Recovery
sample. The values in paren- mg I mg I % mg I” mg I %
theses are the standard devia- 1 32.0 31.8 99.4 32.0 32.1 100.3
tions for five replicates 2 118.0 119.0 100.8 32.0 32.0 100.0
3 32.0 32.0 100.0 118.0 118.0 100.0
4 118.0 118.0 100.0 118.0 118.0 100.0
5 32.0 323 100.9 32.0 32.2 100.6
6 118.0 120.0 101.7 32.0 31.9 99.7
7 32.0 32.6 101.9 118.0 118.0 100.0
8 118.0 118.0 100.0 118.0 118.0 100.0
9 75.0 76.7 102.3 75.0 74.5 99.3
10 75.0 77.1 102.8 75.0 74.8 99.7
11 75.0 76.7 102.3 0.0 0.02 -
12 75.0 78.4 104.5 150.0 148.0 98.7
13 0.0 0.03 - 75.0 74.4 99.2
14 150.0 150.0 100.0 75.0 74.5 99.3
15 75.0 77.2 102.9 75.0 74.6 99.5
Dexalergin 100.0 97.1 (7) 97.1 100.0 106.5 (7) 106.5
On the other hand, the sensitivity (SEN) tells to what 3.0 ™
extent the response due to a particular analyte varies as a g
function of its concentration [23], and is given by: e S
SEN = |[s;| () 0.0 4
Another parameter, that may be useful for method com- 15 A
parison, is the analytical sensitivity y [23, 24]. It may be de- e /
fined, in analogy to univariate calibration, as the quotient: 8 -3.0 4 / A
b
y= (SEN/ér) 3) o “ —
and allows one to compare analytical methods regardless ""_ ‘,r";
of the specific technique, equipment, and scale employed QO 151 A
. L. . . o A+
and establishes the minimum concentration difference e G A
(y") which is statistically discernible by the method across 'f //‘”
the dynamic range where it is applicable. In Eq.3, r is a a 157 /«*‘/
measure of the degree of instrumental noise. x i B
Table 3 shows the result obtained when applying PLS-1 % 53 e
analysis for CHL and NAP to the validation set. As can be o
seen, the results are excellent for these particular analytes. 15 ,g--:c"*f
The results for DEX, on the other hand, are disappointing, ;/1#’*
. . . . 0.0
and will be deferred for a comparison with those provided
by employing ANN. 15 /)
-3.0
Detection of non-linearities 45 <

The presence of non-linearity may be detected by apply-
ing both graphical and numerical detection tools. To de-
tect the non-linear (quadratic) nature of the relationship be-
tween some of the first factors and the concentration, the
Mallows augmented partial residual plot (APaRP) is rec-
ommended as the most universal diagnostic tool [10]. This
procedure is implemented in the following way: individ-
ual analyte concentrations contained in the vector c; are
first regressed against the first A PLS-1 components (PCs)
of the data matrix R and the square of the first PC [10]:

¢; = bo + biPCy + ... + bsPCx + b1 (PC1)? + eaparp  (4)

Fig.2A-C Mallows augmented partial residual plot (APaRP) for
CHL (5 factors) (A), NAP (5 factors)(B) and DEX (7 factors)(C)

where e,p.rp 1S a vector collecting the APaRP fitting resid-
uals. The relevant plot is obtained by plotting the sum
[eaparptb; PC +by; (PC))?] as a function of PC, [10].
Figure 2 shows the APaRPs for the calibration of the
three studied analytes, using five PCs for both CHL and
NAP, and seven PCs for DEX. It suggests that the deter-
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mination of DEX should be treated as a strongly non-lin-
ear problem (Fig.2C) and that one could expect an im-
provement in the results when applying non-linear cali-
bration models such as ANNs for this particular analyte.
The cases of CHL and NAP require suitable statistical tests
in order to ascertain the degree of non-linearity. One com-
monly employed diagnostic tool to investigate the correla-
tion in residuals is the Durbin-Watson test [25]. This test
examines the null hypothesis (H,) that successive residu-
als are uncorrelated, versus the alternative hypothesis that
correlation occurs. The relevant statistical indicator is d,
computed in the following way [25]:

- 2
Y (ei —eiz1)
i=

R 5)

where ¢; is a given residual, and e, ; the preceding one (the
residuals are ranked according to the associated value in
the vector c;). The value of d is compared to two critical
values: d; (lower) and dy; (upper), leading to the following
conclusions: (a) if d<d| the null hypothesis is rejected, in-
dicating correlation between residuals, (b) if d; <d <dy, the
test is inconclusive, and (c) if d>dy the correlations are
considered to be negligible.

An alternative is the so-called runs test, which exam-
ines the number of series of consecutive residuals with the
same sign (runs). The test is based on the calculation of
the indicator z [25]:

z=w—o0+05) /o (6)
where u is the number of runs, and:
w=1+2n,n_/(ns +n_) (7)
2
o- =2nyn_Q2nin_ —ny —n_)/
3)

[(ny +n_)*(ny +n_— 1]

In Eq.7 and Eq.8, n, and n_ are the number of positive
and negative residuals. Once z is obtained, it is compared
with the critical value 1.96 (at 95% confidence level). If
Iz 1>1.96, it can be concluded that non-linearity is present.

Table 4 shows the results obtained by analysing the
APaRP plots of Fig.2 with the above two tests. As can be
seen, the results for CHL and NAP suggest the presence

Table 4 Results of the Durbin-Watson and runs tests applied to
the diagnostic augmented partial residual plots, in order to detect
the presence of non-linearities for the studied analytes

Component Durbin-Watson test*  Runs test?
d value Conclu- z value Conclu-
sion sion
Chlorpheniramine 1.97 Linear 3.80 Non-linear
Naphazoline 1.31 Non-linear 1.97 Borderline
Dexamethasone 0.67 Non-linear 8.89 Non-linear

2The critical d and z values for the Durbin-Watson and runs tests at
0=0.05 are, respectively, d;=1.32, dy=1.92 and z.;=1.96

input layer

first hidden layer

second hidden layer

output layer

output

Fig.3 Schematic representation of the unscrambler multilayer
feed-forward network with direct connections used in the present
work

of only mild non-linearities, whereas those for DEX clear-
ly indicate that this analyte behaves in a strongly non-lin-
ear manner.

Application of ANNs

When non-linearities are significant and cannot be prop-
erly modelled by PLS, one can apply ANNs [11]. These
are calibration methods especially created to model non-
linear information, although they are also able to deal with
linear behaviour and can often improve the results in com-
parison with a linear model. These so-called multilayer
feed-forward networks [26] are often used for prediction
as well as for classification. The unscrambler multilayer
feed-forward network (UMLF) consists of four layers of
neurons or nodes which are the basis computing unit: the
input layer with a number of active neurons (up to 16)
corresponding to the predictor variables in regression, two
hidden layers with a number of active neurons (up to 8 in
the first and 3 in the second hidden layer) which are opti-
mised during the training, and the output layer with just
one unit (Fig. 3).

The neurons are connected in a hierarchical manner,
i.e., the outputs of one layer of nodes are used as inputs
for the next layer and so on. Direct connections from the
input layer to the output layer are also available. In an
ANN using direct connections, the weighted input data
are directly added to the output neuron. This increases the
training speed, but its use is inadvisable for modelling
systems with strong non-linearities.

In the hidden layer the sigmoid function f{x) =1/
(1+ e™) is used, and the output of the hidden neuron j,
0;, is calculated as:

0; = f[z (siw;ij + wp;)]

i=1

)



Table 5§ Comparative prediction of DEX on the validation set and
one commercial sample by applying PLS-1 and ANNs methods

Validation DEX mg 1! Recovery %
sample
Added Found Found ANNs PLS-1
ANNs PLS-1
1 7.3 8.7 4.1 118.6 56.1
2 7.3 6.3 3.8 86.7 51.5
3 7.3 6.1 3.7 83.4 50.6
4 7.3 6.3 34 86.3 46.9
5 11.6 12.1 8.6 104.3 73.8
6 11.6 9.7 8.2 83.8 70.8
7 11.6 9.6 8.3 82.4 71.4
8 11.6 8.1 8.2 70.2 70.4
9 5.7 5.7 2.1 99.9 36.7
10 13.0 11.5 9.9 88.8 76.0
11 9.5 10.0 6.4 105.6 67.2
12 9.5 7.7 5.7 81.2 60.4
13 9.5 9.6 6.2 101.1 65.4
14 9.5 8.2 6.0 85.8 63.1
15 9.5 7.7 6.2 81.1 65.6
Dexalergin 5.0 4.9 =33 98.0 -

where s, is the input from neuron i in the layer above, to
neuron j in the hidden layer, w;; are the connection weights
between neurons i and j, wy, is the bias to neuron j and m
is the total number of neurons in the layer above. Linear
functions are used in both the input and output layers. In
the UMLF the learning is carried out through the back-
propagation rule.

In the present work we applied UMLF to the determi-
nation of DEX. The calibration set of 15 samples was di-
vided into two randomised subsets: a training and a mon-
itoring set, formed by 10 and 5 samples respectively. The
15-sample validation set was used as the test set. The
number of neurons in the input and first and second hid-
den layers were optimised by trial and error. The finally
selected architecture was (5, 4, 0, 1)+ (the numbers indi-
cate how many active neurons are employed in each layer,
and ‘+’ stands for the presence of direct connections): this
means that the employed architecture had five input neu-
rons, four neurons in a single hidden layer and a single
output neuron. The results when analysing the test set with
both PLS and ANNS are given in Table 5, which also shows
the results obtained for a real sample. As can be seen, the
results are reasonably good when the ANNs are used,
whereas very poor recoveries are obtained with PLS-1.
This fact suggests that the simultaneous determination of
all three analytes is possible using PLS-1 for CHL and
NAP and ANNs for DEX, employing a single calibration
set.

To conclude, the contents of several components usu-
ally present in nasal solutions, chlorpheniramine, napha-
zoline and dexamethasone were simultaneously deter-
mined using electronic absorption data, together with PLS
multivariate calibration for the former two and an ANN
for the latter. A validation set of synthetic mixtures was
employed for testing the accuracy and precision of the
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methods, and a commercial pharmaceutical was analysed.
Reasonably good recoveries, statistical indicators and fig-
ures of merit (SEL, SEN and analytical sensitivity) were
obtained with PLS-1 for the two major analytes, chlor-
pheniramine and naphazoline. The use of an ANN allowed
the determination of dexamethasone, a minor component
which could not be adequately modelled by PLS-1.

Acknowledgements Financial support from CONICET (Consejo
Nacional de Investigaciones Cientificas y Técnicas), the Univer-
sity of Rosario, the Agencia Nacional de Promocién Cientifica y
Tecnoldgica (Project PICT No. 06-06078), the Fundacién Antor-
chas and the Universidad Nacional del Litoral (Project CAI+D
2002 # 219) is gratefully acknowledged. A. C. Olivieri is a fellow
of the John Simon Guggenheim Memorial Foundation (2201-
2002).

References

1.Haaland DM, Thomas EV (1988) Anal Chem 60:1193-1202
2.Martens H, Naes T(1989) Multivariate Calibration, Wiley, Chi-
chester
3.Beebe KR, Kowalski BR (1989) Anal Chem 61:1007A-1017A
4.Espinosa-Mansilla A, Mufioz de la Pefia A, Salinas F, Martinez
Galera M (1993) Anal Chim Acta 276:141-149
5.Sanchez Pefia M, Muiioz de la Pefia A, Salinas F, Mahedero
MC, Aaron JJ (1994) Analyst 119:1177-1181
6.Durdn Meras I, Munoz de la Pefa A, Rodriguez Céceres MI,
Salinas F (1998) Talanta 45:899-907
7.Guiberteau Cabanillas A, Galeano Diaz T, Mora Diez NM, Sa-
linas F, Ortiz Burguillos JM, Viré JC (2000) Analyst 125:909—
914
8.Blanco M, Coello J, Iturriaga H, Maspoch S, De la Pezuela C
(1996) Anal Chim Acta 333:147-156
9.Lavine BK (2000) Anal Chem 72:91R-97R
10. Centner V, de Noord OE, Massart DL (1998) Anal Chim Acta
376:153-163
11.Despagne F, Massart DL (1998) Analyst 123:157R-178R
12. Goodman-Hillman A, Rall T, Nier A, Taylor P (1996)The phar-
macological basis of therapeutics. McGraw-Hill, New York
13.Gonzalo Lumbreras R, Santos Montes A, Garcia Moreno E,
Izquierdo Hornillos R (1997) J Chromatogr Sci 35:439-445
14. Doepppenschmitt SA, Scheidel B, Harrison F, Surmann JP
(1995) J Chromatogr B:Biomed Appl 674:237-246
15. Santos Montes A, Gasco Lépez A, Hornillo Izquierdo R (1994)
Chromatographia 39:539-542
16.Yazbi FA, Korany FA, Abdel Razak O, Elsayed MA (1986)
J Assoc Off Anal Chem 69:614-618
17.Raith K, Althoff E, Banse J, Neidhardt H, Neubert RHH (1989)
Electrophoresis 19:2907-2911
18.Deftereos NT, Calokerinos AC (1994) Anal Chim Acta
290:190-200
19.Bedair MN, Korany NA, Elsayed MAE, Fahamy OT (1989)
J Assoc Off Anal Chem 72:432-435
20. Goicoechea HC, Olivieri AC (2000) Trends Anal Chem 19:
599-605
21.Massart DL, Vandeginste BGM, Deming SN, Michotte Y,
Kaufman L (1988) Chemometrics:a textbook. Elsevier, Am-
sterdam
22.Collado MS, Mantovani VE, Goicoechea HC, Olivieri AC
(2000) Talanta 52:909-920
23.Lorber A, Faber K, Kowalski BR (1997) Anal Chem 69:1620—
1626
24.Xu L, Schechter I (1997) Anal Chem 69:3722-3730
25.Drapper NR, Smith H (1981) Applied regression analysis, 2nd.
edn., Wiley, New York
26.McCelland JL, Rumelhart DE, Hinton GE (1986) Parallel dis-
tributed processing:explorations in the microstructure of cogni-
tion. Vol 1:Foundations. MIT Press, Cambridge, Mass.



