
Abstract. A new method based on linear response
theory is proposed for the determination of the Kohn-
Sham potential corresponding to a given electron
density. The method is very precise and a�ords a
comparison between Kohn-Sham potentials calculated
from correlated reference densities expressed in Slater-
(STO) and Gaussian-type orbitals (GTO). In the latter
case the KS potential exhibits large oscillations that are
not present in the exact potential. These oscillations are
related to similar oscillations in the local error function
di�r� � �ĥÿ ei�ui�r� when SCF orbitals (either Kohn-
Sham or Hartree-Fock) are expressed in terms of
Gaussian basis functions. Even when using very large
Gaussian basis sets, the oscillations are such that
extreme care has to be exercised in order to distinguish
genuine characteristics of the KS potential, such as
intershell peaks in atoms, from the spurious oscillations.
For a density expressed in GTOs, the Laplacian of the
density will exhibit similar spurious oscillations. A
previously proposed iterative local updating method
for generating the Kohn-Sham potential is evaluated by
comparison with the present accurate scheme. For a
density expressed in GTOs, it is found to yield a smooth
``average'' potential after a limited number of cycles. The
oscillations that are peculiar to the GTO density are
constructed in a slow process requiring very many cycles.

Keywords: Density functional theory ± Kohn-Sham
potentials ± Gaussian basis functions

Introduction

Quantum chemical calculations can be performed very
conveniently in terms of single-particle orbitals within
the Kohn-Sham formalism of density functional theory
(DFT). Kohn and Sham postulate the existence of a
local potential Vs with the property that non-interacting
electrons moving in this potential will yield exactly the

same electron density as the actual (interacting) many-
electron system characterized by the local external
potential. In atomic units ��h � e � m � 1�, the Kohn-
Sham orbitals fuig given by

Ĥsui�r� � ÿ1
2r2 � Vs�r�

� �
ui�r� � eiui�r� �1:1�

generate the many-electron density q by occupying the N
orbitals with the lowest orbital energy ei,

q�r� �
XN

i�1
fijui�r�j2 ; �1:2�

where fi denotes the occupation number. The Kohn-
Sham potential Vs, which according to the Hohen-
berg-Kohn theorem [1] must be uniquely related to
the density q, can be subdivided into the external
potential ®eld Vext (the Coulomb ®eld of the nuclei),
the Hartree potential VH of the electrostatic electron
repulsion and the exchange-correlation potential Vxc;

Vs�r� � Vext�r� � VH �r� � Vxc�r� : �1:3�

Since Vext is known and VH can be calculated straight-
forwardly for any given density, the construction of Vs
amounts to that of the unknown potential Vxc. Although
the exchange-correlation potential is formally de®ned
through the relation Vxc�r� � dExc�n�=dn�r�, approxima-
tions have to be used since the energy functional
Exc�n� �

R
n�r�exc��n�; r�dr is unknown. Determination of

an accurate KS potential (in particular the exchange-
correlation part) from an accurate electron density q
allows us to judge approximations to the energy
functional Exc�n� by comparing the approximate model
potential V model

xc �r� � dEmodel
xc �n�=dn�r� with the accurate

one. A more direct test is of course a comparison
between approximate and exact exchange-correlation
energy densities. It has been demonstrated, however,
that in order to calculate the exact (a very accurate)
exchange-correlation energy density exc�r� from an
accurate wavefunction, a necessary step is the determi-
nation of the KS orbitals, and hence, the KS potential,
from the diagonal density q�r� corresponding to the
given wavefunction [2, 3].Correspondence to: P.R.T. Schipper
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If a reasonably accurate starting density n0, generated
by a trial potential V 0

s , is available, the determination of
Vs�r� corresponding to an accurate target density q
amounts, within the linear response approximation, to
the determination of the inverse density response func-
tion,

DVs�r� �
Z

vÿ1s �r; r0�Dn�r0�dr0 ; �1:4�

where Dn is the di�erence between n0 and q, and DVs is
the change that has to be made to V 0

s in order to obtain
the potential that generates the target density. This
problem is ill de®ned to the extent that the addition of a
constant to the Kohn-Sham potential does not change
the density. However, this unde®ned constant can in
principle be ®xed by the physical condition that the KS
potential Vs and the exchange-correlation part Vxc tend
to zero at in®nity,

Vs ! 0; Vxc ! 0; jrj ! 1 : �1:5�
Various methods have been successfully applied in the
determination of the Kohn-Sham potential. In the case
of one-dimensional systems, including atoms if they are
(chosen) spherically symmetrical, Aryasetiawan and
Stott [4] were able to solve a set of coupled non-linear
di�erential equations for the Kohn-Sham potential
(cf. also [5]). Nagy [6, 7] constructed local potentials
belonging to Hartree-Fock atomic densities using this
method and Chen, Stott et al. have applied it to atomic
Hartree-Fock and CI densities [5, 8]. Almbladh and
Pedroza [9] proposed a method based on non-linear
optimization of a local potential incorporating a large
number of variational parameters. Many results for
atoms have been reported with the constrained search
method of Zhao and Parr [10, 11], which has been
applied to molecules by Ingamells and Handy [12].
Linear response theory was ®rst considered by Werden
and Davidson [13], and a basis set formulation has been
given by GoÈ rling [14, 15] and used to generate KS
potentials corresponding to Hartree-Fock densities for
the alkaline earth and noble gas atoms by GoÈ rling and
Ernzerhof [15]. Van Leeuwen and Baerends [16] pro-
posed and applied a method that essentially consists of
an iterative local updating scheme, the potential at each
point being updated depending on the local density
di�erence between present density and target density.
Molecular applications with this method have been
reported for the hydrides LiH, BH, HF, CH2 �3; 17� as
well as for the dimers Li2; C2; N2; F2 �18�.

In all cases, however, insight into the behaviour of the
exchange-correlation potential can only be obtained
when it is determined from an accurate reference density.
An important source of reference densities are con®gu-
ration interaction (CI) calculations, which almost ex-
clusively employ expansion in Gaussian-type orbitals
(GTOs). Although GTOs are unable to represent the
physical characteristics of the wave function near and far
from the nuclei, the ease with which the many-centre
two-electron integrals can be evaluated has led to the
widespread use of GTO expansions in quantum chemical
calculations. However, if a CI density expressed in

GTOs is used, it is important to establish whether the
GTO expansion gives rise to unphysical features in the
KS potential that would not be present in the exact KS
potential. It is the purpose of this paper to formulate a
linear response-based method for the calculation of KS
potential from a given density that is rapidly convergent
and very accurate. This method is then used to demon-
strate that a density expressed in terms of Gaussians
oscillates around the exact one. The oscillations may be
quite large, i.e. there may be rather large local deviations
of the Gaussian KS potential from the exact one. Such
spurious oscillations do not arise if Slater type orbitals
are used in the generation of a reference density by
Hartree-Fock and CI calculations, although of course
the Slater basis set has to be of high quality in order to
obtain an accurate KS potential. We also compare the
performance of the Van Leeuwen-Baerends (LB) meth-
od [16], which has already proven to be useful for mo-
lecular applications, with the present one. In fact, the LB
method is capable of generating a KS potential for a
Gaussian density that has the spurious oscillations (that
properly belong to the Gaussian KS potential), but the
local updating procedure of the LB method builds these
oscillations up only very slowly, i.e. requiring many it-
erations. The smooth potential, lacking the oscillations,
that is obtained after a limited number of cycles happens
to be closer to the exact KS potential than the oscillating
Gaussian KS potential is.

In this paper we use numerical grid-based methods to
generate the KS potential belonging to a reference den-
sity. In this way it is possible to obviate the problems
that arise when ®nite basis set expansions are used in the
iterative procedure [15, 19, 20]. For example, if the or-
bitals ui are expanded in a ®nite basis set fvig while Vxc is
represented on a grid, arti®cial oscillations of Vxc can be
produced which do not alter the values of the matrix
elements hvijVxcjvji calculated with numerical integration
and, hence do no in¯uence the resulting density and
orbital energies ei. Moreover, if both Vxc and fuig are
expanded in a ®nite basis set, an in®nite number of
symmetrical matrices of a special structure can be added
to the matrix representation of Vxc, which will not alter
the resulting density but will shift the orbital energies ei
by arbitrary shifts Dei di�erent for di�erent orbitals ui
[19, 20]. In order to avoid these problems, we use direct
numerical integration of the relevant di�erential equa-
tions.

In the following, we ®rst give a description of our
linear response-based method. Then, using di�erent
reference densities, we make a comparison between ex-
change-correlation potentials obtained from Gaussian
and Slater type densities.

2 A linear response method for the generation
of the Kohn-Sham potential

In order to solve the problems arising from basis set
representation of the operators v and vÿ1 and from the
inverse density response function being ill de®ned, we
proceed by developing a method for the determination
of Vs that exploits the fact that only occupied orbitals are
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needed for the density. Elementary response theory gives
an expression relating the linear response of the orbitals
dui�r� to a change in the e�ective potential dVs�r�,
dVs�r�ui�r� � 1

2r2dui�r� � �ei ÿ Vs�r��dui�r� � deiui�r� :
�2:1�

Pre-multiplication of equation (2.1) by fiu�i �r� and using
the Kohn-Sham equation (1.1) for the relation
�ei ÿ Vs�r��u�i �r� � ÿ1=2r2u�i �r� results in

dVs�r�ni�r� � 1
2 fifu�i �r�r2dui�r� ÿ dui�r�r2u�i �r�g
� deini�r� ; �2:2�

where ni denotes the orbital density ni � fiu�i ui. Inte-
gration of this equation over r yields the well-known
linear-reponse relation dei � hu�i jdVsjuii � dVi. As a
®rst step towards an expression for dVs in terms of
Dn � qÿ n0, we obtain from Eq. (2.2) an expression for
dVs in terms of the orbital densities ni and the orbital
density di�erences dni � fi�u�i dui � uidu�i �. Since the
KS potential is a real local potential, the complex
conjugate of a solution to the KS equation (1.1) is also a
solution at the same eigenvalue. So either the KS
orbitals are real (apart from an arbitrary phase factor),
or they are degenerate with their complex conjugate and
can be transformed into real functions by a suitable
linear transformation. Using real KS orbitals ui Eq. (2.2)
can be rewritten after some manipulations, substituting
ui � ni=ui and dui � dni=�2ui�, in the form

dVs�r�ni�r� � 1

4
r2dni�r� ÿ r � dni�r�rni�r�

ni�r�
� �� �

� dVini�r� : �2:2a�
In this form, the equation obviously has to be treated
very carefully at points r where ni�r� is equal to zero
(since the orbital density must always be greater or equal
to zero, rni�r� is then also equal to zero). However,
motivated by the fact that the KS potential is in one-
to-one correspondence with the total density, we try to
obtain an equation for dVs in terms of the total Dn rather
than the individual orbital dni by summing Eq. (2.2a)
over the occupied orbitals and assuming that for each
spatial region r the density n�r� can be ascribed to a
certain orbital with density np�r�,
dnp�r�rnp�r�

np�r�
� �

� Dn�r�rn�r�
n�r�

� �
: �2:3�

This approximation appears to be well justi®ed within
atomic shells, as is evident from the fact that the step
structure exhibited by the response part of Vxc [21] can
be reproduced quite well by the Krieger-Li-Iafrate
equation [22] involving constants times np�r�=n�r�. Other
evidence is provided by the clear shell structure in the
Fermi orbital coe�cients cp�r� � p�up�r�=n�r��, cf.
Fig. 2.2 of Ref. [23]. Ultimately, of course, this approx-
imation will have to be justi®ed by correct convergence
of the iterative generation of the KS potential. The
expression for dVs now reads

dVs�r� � 1

4n�r� r
2Dn�r� ÿ r: Dn�r�rn�r�

n�r�
� �� �

�
XN

i�1
dVi

ni�r�
n�r� : �2:4�

This equation resembles the Krieger-Li-Iafrate equation
for an approximate optimized e�ective potential [22, 24]
and may be solved in the same way by ®rst determining
the constants dVi from a set of linear equations obtained
by multiplying Eq. (2.4) by nj�r� and integrating over r,XN

i�1

Z
nj�r�ni�r�

n�r� drÿ fjdji

� �
dVi

� ÿ
Z

nj�r�
4n�r� r

2Dn�r� ÿ r: Dn�r�rn�r�
n�r�

� �� �
dr :

�2:5�
It is easily veri®ed that the relation

PN
i�1 ni�r� � n�r�

causes the above set of linear equations to be dependent.
This is in keeping with the fact that Vs is only determined
up to an arbitrary constant. As will become apparent
below, we cannot ®x this constant by requiring that Vs
goes asymptotically to zero, since a KS potential
corresponding to a Gaussian density cannot obey this
condition. We ®x the constant by choosing dVN such that
the highest orbital energy will not change from the value
obtained with the starting potential, i.e. dVN � 0 (the
starting potential is chosen so as to make eN equal to
minus the ®rst ionization energy I of the system, see
below). A practical approach is as follows. Since
asymptotically the total density becomes equal to the
density of the highest occupied orbital, nN �r� �
n�r� for r!1, we note that equation (2.4) introduces
a constant shift dVN in the potential (note that all other
terms apart from dVN �nN �r�=n�r�� tend to zero at in®nity
since also Dn=n� 1 asymptotically). We may eliminate
this shift by subtraction of dVN , yielding as the desired
equation for dVs

dVs�r� � 1

4n�r� r
2Dn�r� ÿ r: Dn�r�rn�r�

n�r�
� �� �

�
XN

i�1
dVi

ni�r�
n�r� ÿ dVN : �2:4a�

This leads to the set of independent linear equationsXN

i�1

Z
nj�r�ni�r�

n�r� drÿ fjdji ÿ fjdiN

� �
dVi

� ÿ
Z

nj�r�
4n�r� r

2Dn�r� ÿ r: Dn�r�rn�r�
n�r�

� �� �
dr :

�2:5a�
which can be solved by standard methods. Moreover,
equation (2.4a) implies dVN � 0 automatically, as can be
seen by multiplying with n�r� and integrating over r.

The iterative scheme to determine the e�ect potential
from an atomic reference density q�r� is now as follows.
We start the procedure with a good approximate ex-
change correlation potential V 0

xc�r�, which, combined
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with the external potential owing to the nucleus Vext�r�
and the Hartee potential VH ��q�; r� describing the classi-
cal electron-electron repulsion, gives a reasonable guess
for the e�ective potential

V 0�r� � Vext�r� � VH ��q�; r� � V 0
xc��q�; r� �2:6�

where

Vext�r� � ÿ Z
jrj

VH �r� �
Z

q�r0�
jrÿ r0j dr

0 :

A good initial guess for the exchange-correlation
potential [17] is

V 0
xc�r� � VXa�q; r� � 2eB

x;nl�q; jrqj; r� � 2eVWN
c �q; r� ;

where the local-density exchange potential VXa is im-
proved by the gradient correction to the exchange energy
density according to Becke [25], and a correlation
correction is added derived from the local-density
approximation in the Vosko, Wilk and Nusair [26]
parametrization to the correlation energy density. The
parameter a in the Xa potential is chosen in such a way
that the KS equations with the starting potential yield a
highest occupied orbital eigenvalue equal to minus the
ionization energy I. This ensures proper asymptotic
behaviour of the density and in subsequent cycles dVj
can then be put at zero for the highest occupied orbital
uN .

The n� 1-th cycle starts by solving the Kohn-Sham
equations (1.1) to obtain the density nn�r� corresponding
to the potential V n

S �r� obtained in the previous cycle.
This results in a density di�erence which, when substi-
tuted into Eq. (2.4a) after solving Eq. (2.5a), yields the
potential for the next cycle

V n�1
s �r� � V n

s �r� � bdV n
s �r� ; �2:7�

where b is a damping parameter for which we have taken
b � 0:7 and dV n

s �r� is obtained from Eq. (2.5) slightly
rewritten as

dV n
s �r� �

1

4n�r�

(
r2q�r� ÿ q�r�

n�r� r
2n�r�

ÿ 1

n�r� rq�r� � rn�r� ÿ q�r�
n�r� jrn�r�j2

� �)

�
XNÿ1
i�1

dVi
ni�r�
n�r�

by explicitly taking Dn�r� � q�r� ÿ n�r�, where q�r� is the
target density. Convergence of the procedure is reached
when the integrated absolute density di�erence is less
than some threshold parameter,

e�q� �
Z
jq�r� ÿ nn�r�jdr < emax �2:8�

with emax in the order of O�10ÿ6� or lower. This is to be
considered complete convergence, since the precision of
the numerical integration is of this order. The local

updating method of Van Leeuwen and Baerends [16],
with which we will make a comparison, is very much
analogous except that the correction dVs on the n� 1-th
cycle is obtained purely from the local value of the
potential on the n-th cycle and the local values of the
target density and the present (n-th cycle) density.
Taking out the constant external potential, the update
of the electronic part of the potential, Vel � VH � Vxc, is
obtained from

dVel�r� � ÿDnn�r�
q�r� V n

el : �2:9�
We have determined the e�ective potential for a number
of atomic reference densities in a linear-logarithmic
integration grid [27], solving the Kohn-Sham equations
(1.1) by means of the very accurate Numerov method
[28] with the adaptation procedure as described in [29].
In all calculations we have taken an integration grid of
10000 points between rmin � 10ÿ6 to rmax � 10, which
allowed for very accurate numerical integration. The
STO reference density of Neon is taken from Bunge and
Esquivel [30]. All GTO reference densities are calculated
with the ATMOL direct-CI program [31] using the
correlation-consistent polarized core-valence x-zeta
(cc-pcvxz) basis sets of Dunning et al. [32].

3 Results

As a preliminary to the presentation of our results for
KS potentials corresponding to Gaussian CI densities,
we wish to emphasize that an expansion in Gaussians of
a smooth function like an atomic or molecular orbital,
which has an essentially exponential behaviour close to
and far from the nuclei, will lead to large deviations if
not the function values themselves but the Laplacians
are considered. In order to indicate that this issue has
wider implications than just for KS potential generation,
we demonstrate the problem by considering the error
function di�r� associated with a ®nite basis approxima-
tion to the Hartree-Fock solution,

ui�r� �
XM
l�1

vl�r�Cli

f̂ ui�r� � eiui�r� � di�r� :
Ideally di�r� would be close to zero everywhere. The
common variation method leads to the secular equation,
which is equivalent to the requirement that the compo-
nents of di�r� along the basis functions are all zero. Other
types of minimization require the integrated square of
di�r� to be minimal (least squares approaches) or the
components of di�r� in more general subspaces than just
fvpg to vanish (methods of moments). A GTO expan-
sion however yields very poor di�r�. In Fig. 1 the local
GTO basis set error di�r� of the solution of the Hartree-
Fock (HF) equation for the H2 molecule

ÿ 1
2
r2 ÿ 1

jRA ÿ rj ÿ
1

jRB ÿ rj �
1

2

Z
qHF �r0�
jrÿ r0j dr

0
� �

uHF �r�

� eHF uHF �r� � d�r� �3:1�
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at the equilibrium bond distance R�HA ÿ HB� � 1.401 a.u.
is plotted along the bond axis as a function of the
distance z from the bond midpoint. For the HF
calculations a GTO basis [33] with ®ve s-, two p-type
functions and an extra valence polarization d-type
function was used for H. The GTO basis set chosen
yields the value EHF � ÿ1:1335 a.u. for the HF electronic
energy, which is close to the HF limit. However, the local
error d�r� of this basis is quite large over a region of ca.
0.6 bohr around a H nucleus, in particular when
compared to the function values of the rg Hartree-Fock
orbital uHF also plotted in the ®gure. The error has its
origin in the Laplacian term ÿ�1=2�r2uHF �r� which
emphasizes the small oscillations in the GTO expansion
of uHF �r� around the exact orbital and therefore has a
much worse representation in a GTO expansion than the
orbital itself. It is obvious that the GTOs fail to
reproduce the cusp of uHF �r� at the H nucleus, thus
producing a ®nite value ofr2uHF �r�. Because of this, d�r�
is in®nite at the nuclei. More disconcertingly, however,
we also ®nd large oscillations of d�r� at relatively large
distances �0:3 a.u. from the nucleus (see Fig. 1).

We may expect related problems when determining
precise KS potentials from Gaussian densities. Let us
consider an atomic wave function in the vicinity of the
nucleus. The density corresponding to the GTO CI wave
function does not satisfy the nuclear cusp conditions,
having a ®nite Laplacian at the nucleus. The KS orbitals
belonging to the GTO reference density will therefore
also have a ®nite Laplacian at the nucleus. If we now
considering an orbital with a ®nite value at the nucleus,
it is easily seen from the Kohn-Sham equations (1.1) that
only a Vs having a ®nite value at the nucleus can generate
such an orbital. However, the external potential in
Eq. (2.6) certainly has a ÿ1=r singularity at the nucleus.
As the Hartree potential is obviously ®nite, only Vxc can
provide a compensating singularity. During the iterative
determination process, the exchange-correlation poten-
tial will therefore develop increasingly large positive
values in this region of the nucleus.

Next we consider the tail of the density. In contrast to
the exact decay q�r� / exp�ÿar� [34] the asymptotic
behaviour of the GTO density will be governed by the
density of the highest occupied orbital and is expected to
decay like the most di�use Gaussian in the basis set,
q�r� / exp�ÿ2br2�. The Laplacian of the highest occu-
pied orbital will therefore yield a term / r2 far from the
nucleus, which must be compensated by a similar term in
the Kohn-Sham potential. The KS potential will there-
fore develop the asymptotics / r2 in the iterative pro-
cess. This is nothing but a manifestation of the fact that
the Gaussians are harmonic oscillator eigenfunctions,
characterized by a parabolic potential.

The one-electron H atom provides a convenient
model case to study the e�ect of a GTO expansion of a
reference density on the form of the constructed poten-
tial. For a one-electron system there is no electron cor-
relation and the single KS orbital /KS is also the HF
orbital /KS � /HF � p�q=2�. In the case of the hydro-
gen atom it is convenient to represent the exchange-
correlation potential Vxc as the sum of the exchange
Vx and the Coulomb correlation Vc potential, with the
exchange potential exactly cancelling the Hartree po-
tential, Vx � ÿVH , and the correlation potential Vc de-
®ned from the KS equation as

Vc�r� �
1
2r2

�������������
q�r�=2p�������������

q�r�=2p � 1

r
ÿ 0:5 � ÿd�r��������������

q�r�=2p ; �3:2�

which would be zero for the exact hydrogen density. For
the GTO expansion of the density, Vc is, apart from thep�q�r�=2� factor, just the local basis set error which in
the case of Gaussians originates mostly from the
Laplacian-dependent term.

Although the correlation potential Vc for the H atom
may be obtained immediately fromEq. (3.2), we have also
calculated it by the iterative linear-response approach
described in the previous section from the exact density
q�r� � exp�ÿ2r�=p as well as a number of GTO densities
obtained with double-, triple-, quadruple-, and quintuple-
zeta cc-PVXZ basis sets in order to check its e�ectiveness.
For the exact reference density and some small initial
potential the iterative procedure yields a constant near-
zero potential V �r� / 10ÿ4 after only 8 iterations. Con-
trary to this, for the reference double-zeta GTO density
large oscillations appear in the corresponding converged
potential V 2f

c �r� (see Fig. 2a). Also, V 2f
c �r� exhibits the

expected features of a large positive spike at the nucleus
and a quadratic build-up to positive values at large r.

Figure 2b shows the e�ect of increasing the quality of
the GTO expansion on the constructed V nf

c �r�. As might
be anticipated, the number of oscillations in the con-
verged V nf

c �r� increases with the number GTOs in the
basis, while the amplitude of these oscillations decreases.
All V nf

c �r� exhibit the singularity at the nucleus and the
parabolic asymptotic behaviour that are artefacts of the
Gaussian density, see above. Also the GTO density qnf is
expected to oscillate around the exact one, which is
clearly con®rmed by Fig. 2c, in which the oscillations of
the di�erence r2dqnf � r2�qnf ÿ q� between the GTO
density and the exact one are represented for double-zeta
and quintuple-zeta basis sets. The oscillations for r2dqnf

Fig. 1. Plot of the error function d�r� � � f̂ ÿ e�uHF �r� (drawn curve)
and of the rg molecular orbital uHF �r� (broken line) along the bond
axis of H2. The bond midpoint is at z � 0:0 a.u., a H nucleus at
z � 0:7 a.u.

20



are quite small compared to those of the potential (note
the scale of the plot) and decrease considerably when the
basis set is extended. The oscillations in the density
correlate with those in the potential, but they are am-
pli®ed in the latter through the Laplacian terms
r2pq=�2pq� that produce relatively large oscillations in
Vc. The correlation between the oscillations in the den-
sity and in the potential is very clearly demonstrated in
Fig. 2d which shows that when the approximate density
is larger than the exact density, the potential will be
lower (more attractive) than the exact potential, and vice
versa. This incidentally provides support for a local
updating procedure, cf. Eq. (2.9). Furthermore, we note
that although the amplitude of the oscillations in
�qGTO=qSTO ÿ 1� increases at larger distance from the
nucleus, the actual densities and dq are already too low
for this to have a large in¯uence on the potential.

Next, the iterative linear response scheme has been
applied to the ten-electron Ne atom to construct Vxc

from the accurate Bunge-Esquivel [30] STO reference CI
density as well as from GTO triple- and quintuple-zeta
basis set CI densities. The converged KS densities ob-
tained with the iterative procedure are very close to the
corresponding reference ones, with the absolute integral
error [Eq. (2.10)] being only of order 10ÿ6e. With respect
to the most important KS characteristic, i.e. the kinetic
energy of the non-interacting particles, the value
Ts � 128:609 a.u. obtained for the STO density agrees to
0.001 a.u. with the value Ts � 128:610 a.u. obtained in
[35] for the same reference density with the alternative
scheme of Vxc construction due to von Barth, Almbladh,
and Pedroza [9, 36, 37]. The values Ts � 128:616 and
Ts � 128:610 a.u. obtained for the triple- and quintuple-
zeta GTO densities are also close to that obtained for the
STO density, so that in this respect the GTO expansion
seems to have a good integral quality.

Figure 3 compares the potentials V STO
xc for the Ne

atom obtained with the above-mentioned scheme and
the LB scheme [16] for the STO density. The potentials
nearly coincide with each other and within the scale of
Fig. 3, one can hardly distinguish between the two
curves. The Vxc potential exhibits the by now [9, 11, 16]
well-known characteristic features of a deep well around
the nucleus, a peak and a small local minimum in the
1s-2s intershell region at r � 0:3 a.u. and Coulombic
asymptotics ÿ1=r at large r.

Fig. 2. a) Plot of the correlation potential in the H atom belonging
to a double-zeta electron density. The exact correlation potential is
identically zero in this case. b) Plots of the correlation potentials
belonging to electron densities calculated in the H atom with
Gaussian basis sets of varying quality. c) The di�erences of the
double-zeta and quintuple-zeta Gaussian densities and the exact
density in the H atom. d) Correlation between oscillations in the
density and in the potential
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Figure 4 compares V STO
xc with the potentials V 3f

xc and
V 5f

xc constructed with the linear-response based scheme
from the triple- and quintuple-zeta GTO densities. In
spite of the above-mentioned good integral quality of the
triple-zeta expansion, the corresponding V 3f

xc displays
relatively large oscillations around V STO

xc . It has, more-
over, a positive spike at the nucleus and it curves up
quadratically at larger r. The oscillations are reduced
considerably when going from V 3f

xc to V 5f
xc and this last

one may be considered a good approximation to V STO
xc

over large ranges of r. However, similar de®ciencies as in
V 3f

xc do exist at large r (beyond 4 bohr) and small r (be-
low 0.2 bohr). This is demonstrated in Figure 5, where
the potentials V 5f

xc constructed with the linear response
and LB schemes are compared with V STO

xc for small val-
ues of r. We will turn to a comparison of the response
and LB methods below, but we ®rst note that in cons-

trast to the accurate STO potential the KS potential
obtained from the quintuple-zeta Gaussian basis exhibits
very large oscillations in the region close to the nucleus.
Nevertheless, the oscillations are around the accurate
potential, so that the average value does not show a
systematic deviation.

In analogy with the hydrogen atom considered above,
the form of V nf

xc for the neon atom can be understood,
if we sum the KS equations (1.1) over the N occupied
orbitals and obtain the following expression for the
exchange-correlation potential

Vxc�r� �
PN
i�1

fiu�i �r� 12r2ui�r�
q�r� � 10

r
ÿ VH �r�

�
PN
i�1

eifijui�r�j2

q�r� : �3:3�

Owing to the ®niteness of all Laplacians r2ui�r�; V nf
xc

diverges at the nucleus because of the second, nuclear-
attraction term of Eq. (3.3). At large r the latter term as
well as VH �r� approach zero, the fourth term turns into
the energy eN of the highest occupied orbital uN , while
the ®rst term turns into r2uN �r�=�2uN �r�� / r2, thus
determining the observed quadratic asymptotics of V nf

xc .
The observed oscillations of V nf

xc in the core region of Ne
can be understood in the following way. Suppose, that in
a chosen region of r a certain 1s-type function
u1sĜ � c exp�ÿar2� of the GTO expansion has a dom-
inant contribution to the ®rst term of Eq. (3.3), yieldingPN
i�1

u�i �r�r2ui�r�
2q�r� � 1

2

r2uG
1s�r�

uG
1s�r�

� ÿ3a� 2a2r2 : �3:4�

Starting out at negative values at small r�r < p3=p�2a��, in the end of the region of uG
1s dominance

(roughly at r >
p
3=
p�2a��; uG

1s has its own asymptotical

Fig. 3. Comparison between the exchange-correlation part of the
Kohn-Sham potentials for the Ne atom determined by the present
linear responsemethod andwith theVanLeeuwen-Baerendsmethod.
The target density is the Bunge-Esquivel STO-based CI density

Fig. 4. Comparison of the precise exchange-correlation Kohn-Sham
potential, corresponding to the Bunge-Esquivel STO density, with
the potentials determined for triple- and quintuple-zeta Gaussian
densities

Fig. 5. Comparison of a the precise V STO
xc with potentials corre-

sponding to the quintuple-zeta Gaussian density, constructed either
with the present linear response method �V 5f

xc � and with the Van
Leeuwen-Baerends method �V 5f

xc �LB��
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region with a strongly positive term �r2. Owing to this
term, V nf

xc of (3.3) may be higher in this region than V STO
xc ,

in complete analogy with the asymptotic behavior of V nf
xc

at larger r. In the adjacent region, where r approaches
the value

p
3=
p�2a0� characteristic of the Gaussian

function with next lower exponent a0; V nf
xc goes down-

wards again, which results in its observed oscillations
around V STO

xc .
We close this section with a comment concerning a

feature of the LB scheme for constructing Vxc, which has
allowed us to apply this scheme with reasonable accu-
racy to the construction of atomic and molecular Vxc
[3, 16, 17] from Gaussian CI densities. It can be observed
in Fig. 3 and 5 that the response method and the LB
method yield practically coinciding potential curves,
except that in the immediate vicinity of the nucleus the
amplitudes of the strong oscillations are lower (and
therefore not correct) in the LB scheme. The reason for
this di�erence is simply the di�erent convergence be-
haviour of the LB method. This method shows reason-
able initial convergence, so that after ca. 100 cycles the
density deviation, Eq. (2.10), has typically dropped
below 10ÿ3e: The potential is then very close to the
converged potential of either the response or the LB
method, except in the region of strong oscillations.
Figure 6 compares V STO

xc with V 5f�100�
xc obtained from the

quintuple-zeta GTO density after 100 iterations of the
LB procedure. At this point the absolute integral error
of the density has already become small �� 10ÿ4e�, while
the form of the potential V 5f�100�

xc obtained after 100 it-
erations is smooth. V 5f�100�

xc is quite close to the con-
verged V 5f

xc (see Fig. 4) except in the vicinity of the
nucleus. It therefore reproduces the accurate potential
V STO

xc reasonably well and only starts to diverge appre-
ciably from V STO

xc at r > 4 a.u. because of its intrinsic
quadratic asymptotic behaviour. A closer inspection
of the form of V 5f�100�

xc in the immediate vicinity of the
nucleus shows that at 100 iterations the iterative LB
procedure yields a potential that is still close to the ac-

curate V STO
xc down to quite small values of r. It has only

just started to develop the oscillations of V 5f
xc around

V STO
xc ; however, it takes about 10000 subsequent itera-
tions to develop fully the oscillations of the LB V 5f

xc
displayed in Fig. 5, and even then those amplitudes are
not yet converged. The very slow convergence in build-
ing in these large oscillations, which have high amplitude
and small ``wavelength'', is perfectly understandable
from the local updating character (usually damped) of
the LB method. In view of the somewhat spurious nature
of these oscillations it is usually not worthwhile spending
many iterations to determine them accurately.

4 Conclusions

In this paper a new method, based on linear response
theory, has been introduced to determine the Kohn-
Sham potential corresponding to a reference density.
The method has proven to be rapidly convergent and
capable of high accuracy. The method has been used to
investigate Kohn-Sham potentials derived from CI
densities generated with standard Gaussian basis sets.
Exchange-correlation potentials V nf

xc and V STO
xc construct-

ed from various Gaussian and Slater basis set reference
densities have been compared for the model case of the
H atom and for the Ne atom. In order to study the e�ect
of the quality of the GTO expansion, reference densities
with double-, triple-, quadruple-, and quintuple-zeta cc-
PCVXZ basis sets have been employed. To exclude the
errors associated with a ®nite basis set expansion of the
Kohn-Sham orbitals or of Vxc itself, the atomic Kohn-
Sham equations have been solved by means of the
Numerov method. In all cases the Kohn-Sham poten-
tials have been obtained with su�cient accuracy, with
the absolute integral error of the density [Eq. (2.8)]
e�q� � 10ÿ4 ÿ 10ÿ5e, so that, according to the Hohen-
berg-Kohn theorem, the constructed potential is expect-
ed to represent the unique potential corresponding to the
given reference density adequately.

A reference density based on a GTO expansion can
provide a good integral quality of the obtained KS so-
lution; the KS kinetic energies obtained for Ne with the
triple- and quintuple-zeta GTO-based densities are close
to that obtained with the STO-based reference density.
However, locally the quality of the GTO KS potential
has been found to be relatively poor, especially in the
inner atomic region and at large distances from the
nucleus. While the accurate correlation potential for the
H atom is zero and the accurate exchange-correlation
potential for Ne is a smooth function with Coulombic
asymptotics, the corresponding potentials V nf

c and V nf
xc

obtained with double- and triple-zeta GTO expansions
of the reference density diverge at the nucleus and have
quadratic long-range asymptotics. They oscillate around
the accurate potential, the oscillations being quite strong
in the inner atomic region. The amplitude of the oscil-
lations in the valence region is considerably reduced
when increasing the quality of the GTO expansion from
double- and triple- to quintuple-zeta sets. It is therefore
possible to obtain the KS potential to fair accuracy with
a Gaussian reference density, although we have noted

Fig. 6. Comparison of the precise exchange-correlation Kohn-Sham
potential, corresponding to the Bunge-Esquivel STO density, with
the potential determined by the Van Leeuwen-Baerends method
from quintuple-zeta Gaussian density after ion iterations
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that even the most accurate GTO-based densities still
lead to a noticeable deviation in the intershell peak in the
Ne KS potential (see Figs. 4, 5).

The origin of the oscillations of V nf
c and V nf

xc is the
oscillating nature of the Laplacian-dependent terms,
ÿ1=2r2ui, when the Kohn-Sham orbitals ui are ex-
panded in Gaussians. As these oscillations have to be
cancelled by the potential-dependent term Vsui in order
to obtain the smooth function eiui, we obtain oscilla-
tions in Vs. We have emphasized the relation between
the oscillations in the Gaussian-based KS potential
and the large oscillations of the local error function of
the SCF solutions, di�r� � � f̂ ÿ ei�uHF

i �r�, when the
Hartree-Fock orbitals are expanded in Gaussian func-
tions. We note that the Laplacian of a density expressed
in GTOs will exhibit similar spurious oscillations. When
one introduces Laplacian dependent terms in exchange-
correlation functionals, it is not at all clear that the er-
rors resulting from the spurious oscillations will cancel,
i.e. will integrate to (almost) zero. This point will require
careful in investigation when applying the Laplacian of
the density in conjunction with GTO basis sets.

The response method for generating the KS potential
has been compared to the local updating method of Van
Leeuwen and Baerends [16]. The results of the two
methods agree to any desired accuracy, but the response
method converges much more rapidly, in particular
when the KS potential has much structure, as is the case
in the core region when a GTO-based reference density
is used. The LB method is characterized by reasonable
convergence in regions where the potential is behaving
smoothly (everywhere except the core region), but builds
in the strong oscillations in the core region only very
slowly. The oscillations of V nf

xc are genuine features of the
unique potential which corresponds to a given GTO
basis set density. On the other hand, they are an unde-
sirable artefact of the GTO expansion, since they would
not enter the unique potential Vxc, which corresponds to
the exact ground state density. A fair picture of the ac-
curate potential is therefore obtained even with a GTO
reference density when a restricted number ��100� of
iterations is used in the LB scheme of Vxc construction.
This has been demonstrated by comparing it with an
accurate KS potential corresponding to an accurate
STO-based reference density. It is nevertheless obvious
that STO-based densities are much to be preferred.
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