RESEARCH

First‑principles calculations on the structures and electronic properties of the TMW₂O_n (TM = Mn–Ni, n = 1–6) clusters

Zhi Li1 · Zi‑hao Wu1 [·](https://orcid.org/0009-0002-7555-2013) Zhen Zhao[2](http://orcid.org/0000-0002-3813-6654)

Received: 11 January 2024 / Accepted: 1 April 2024 / Published online: 12 April 2024 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

Transition metals can enhance the electronic attributes of tungsten oxides. In this study, we focused on W_2O_n (n=1–6) clusters as a representative examples of tungsten oxide clusters with varying oxygen concentrations. The structures and electronic properties of the TMWO_n (TM=Mn–Ni) clusters have been calculated using first-principles. The ground-state TMWO_n clusters share some structural similarities with the ground-state W_2O_n (n=1–6) clusters. The W–O bonds of the TMWO₂ (TM=Fe–Ni) clusters are significantly distorted into a triangular structure. The NiWO_n (n=1–2) and CoWO_n (n=3–5) clusters display greater thermodynamic stability than other TMWO_n clusters. Among the TMWO_n clusters, the W₂O₄, W₂O₆, MnWO, MnWO₃, MnWO₆, FeWO, FeWO₄, FeWO₆, CoWO, CoWO₆, NiWO₂, NiWO₅ clusters are more kinetically stable. Furthermore, the amount of charge transfer between the TM atoms and W_2O_n clusters increases from 0.050 lel to 1.066 lel as the number of oxygen atoms increases. The 4*s* orbital electrons of the TM atoms for the TMWO_n clusters are partially transferred to the neighboring O atoms.

Keywords Tungsten trioxide clusters · First-principles · Structures · Electronic properties

1 Introduction

Tungsten oxides (WO_3) are important materials with a variety of industrial applications, including electrochromic devices, chemical sensors, dye-sensitized solar cells, and catalysts etc. [\[1,](#page-6-0) [2](#page-6-1)]. Due to the similarity of the chemical bond formed on the WO_3 surface to a cluster-like bond, investigating WO_3 clusters can provide insight into the properties of bulk surfaces $[3]$. In fact, the WO₃ clusters have been observed experimentally on the surfaces of WO_3 films $[4, 5]$ $[4, 5]$ $[4, 5]$ $[4, 5]$. Theoretical investigations on the WO₃ clusters have also been extensively conducted. For example, Li et al. [[6\]](#page-6-5) have investigated the ground-state structures of the (WO_3) _n (n = 1–6) clusters using the B3LYP gradientcorrected exchange–correlation functional. Sai et al. [[1\]](#page-6-0)

 \boxtimes Zhi Li lizhi81723700@163.com

School of Chemistry and Life Science, Anshan Normal University, PO Box 114007, Anshan, People's Republic of China

have investigated the ground-state structures of the $(WO_3)_{n}$ $(2 \le n \le 12)$ clusters using first-principles. These studies have revealed that the WO_3 clusters exhibit unique electronic, magnetic, and chemical properties compared to bulk mate-rials [[7\]](#page-6-6). It is important to note that the WO_3 clusters contain both terminal and bridging O atoms, except for the smallest WO_3 molecule [\[3](#page-6-2)]. On the other hand, to highlight the influence of oxygen concentrations on the electronic properties of tungsten oxide clusters, some studies have been performed. Such as, Zhai et al. [[8](#page-6-7)] have investigated the electronic structures and chemical bonding of WO_n and WO_n^- species $(n=3-5)$ using anion photoelectron spectroscopy (PES) and density functional theory (DFT) calculations. Huang et al. [[9\]](#page-6-8) have investigated the electronic structure and chemical bonding of the $W_3O_n^-$ and W_3O_n (n=7–10) clusters. Zhai et al. [[10\]](#page-6-9) have investigated the electronic structures and chemical bonding of the $W_2O_n^-$ and W_2O_n (n = 1–6) using PES and DFT calculations. However, the larger band gap of the WO_3 clusters restricts their potential applications [[10,](#page-6-9) [11](#page-6-10)]. To address this issue, various methods have been considered to reduce the energy gap, including transition metal doping [[12\]](#page-6-11). For example, Zhao et al. [\[13](#page-6-12)] have investigated the structures, electronic and magnetic properties of the TM@W₆O₁₈ clusters using DFT. Hameed et al [[14\]](#page-6-13) have

School of Materials and Metallurgy, University of Science and Technology Liaoning, PO Box 114051, Anshan, People's Republic of China

investigated the influence of the TM $(TM = Fe - Zn)$ concentrations on the catalytic properties of WO_3 nanoparticles using ultraviolet laser irradiation. Mansouri et al. [[15\]](#page-6-14) have investigated the efect of TM substitution and vacancies the in WO_3 crystal using Ab Initio method. However, no reports on the electronic properties of the TM substituted small tungsten oxide clusters with diferent oxygen concentrations.

In this study, to highlight the infuence of oxygen concentrations on the electronic properties of magnetic TM-substituted tungsten oxide clusters, the structures, electronic properties and dipole magnitudes of the $TMWO_n (TM=Mn-Ni)$, $n=1-6$) clusters have been investigated using DFT.

2 Computational details

The ground-state structures of the W_2O_n (n = 1–6) clusters were obtained from Ref. [[10\]](#page-6-9). Then a W atom of the W_2O_n clusters was substituted by a TM $(TM = Mn-Ni)$ atom to construct the hypothetical $TMWO_n$ clusters. The geometry optimization and property calculations were executed using the $DMol³$ software [\[16,](#page-6-15) [17\]](#page-6-16). The generalized gradient approximation (GGA) and Perdew-Burke-Ernzerhof (PBE) were adopted to consider exchange-correction interaction $[1, 18]$ $[1, 18]$ $[1, 18]$ $[1, 18]$. The structures of the TMWO_n clusters were optimized without any symmetry constraints [[1](#page-6-0), [7\]](#page-6-6). Spin unrestricted was chosen [[1,](#page-6-0) [13,](#page-6-12) [19\]](#page-6-18). All electron relativistic calculations were adopted to account for electron–ion interactions, as W is a heavy element $[1, 19]$ $[1, 19]$ $[1, 19]$ $[1, 19]$. Double numerical plus polarization (DNP) was considered for each atom [\[19](#page-6-18)]. Mülliken population analysis was performed to obtain the net charge of each atom [[20\]](#page-6-19). Harmonic vibrational analysis of the frequencies of the $TMWO_n$ clusters was executed to ensure the presence of saddle points on the potential energy surfaces $[1, 21, 22]$ $[1, 21, 22]$ $[1, 21, 22]$ $[1, 21, 22]$ $[1, 21, 22]$ $[1, 21, 22]$ $[1, 21, 22]$. It has been confirmed that there are no imaginary frequencies of the $TMWO_n$ clusters. The convergence thresholds for self-consistent feld calculations were set: 1×10^{-5} Hartree/Bohr for the energy gradient, 2×10^{-3} Hartree/Å for the maximum force and 5×10^{-3} Å for the atomic displacement, respectively. For total energy convergence, the threshold was set at 1×10^{-5} Hartree, and for charge density, it was set at 1×10^{-6} e/Å³. The width of smearing was selected as 0.005 eV and the project out zero frequency modes option was selected.

The binding energies per atom of the W_2O_n (n = 1–6) and TMWO_n (TM = Mn–Ni, n = 1–6) clusters were calculated to investigate their thermodynamic stability [\[13](#page-6-12)]

$$
E_b = [2E(W) + nE(O) - E(W_2O_n)]/(2+n)
$$
\n(1)

$$
E_b = [E(TM) + E(W) + nE(O) - E(TMWO_n)]/(2 + n)
$$
 (2)

where $E(W)$, $E(O)$ and $E(TM)$ represent the atomic energies of single W, O and TM, respectively. $E(W_2O_n)$ and $E(TMWO_n)$ represent the total energies of W_2O_n and TMWO_n clusters, respectively.

The temperature dependence of the free energy of the ground-state W_2O_n (n = 1–6) and TMWO_n (TM = Mn–Ni, $n=1-6$) clusters [\[23](#page-6-22)]

$$
F(T) = E_{tot} + \frac{1}{2} \int F(\omega) \hbar \omega d\omega + kT \int F(\omega) \ln \left[1 - \exp\left(-\frac{h\omega}{kT} \right) \right] d\omega \tag{3}
$$

where the second item is the zero point vibrational energy, *k* is Boltzmann constant, *h* is Planck constant and $F(\omega)$ is the phonon density of states. Due to the change of *P*Δ*V* is rather small under constant pressure, *F* is approximately equal to the Gibbs free energy *G*.

To ensure the accuracy of the selected PBE functional, the calculated bond length (1.757 Å) and the binding energy (1.082 eV) of WO_3 clusters were compared to the corresponding calculated values (1.752 Å and 1.10 eV) [[7](#page-6-6)]. Similarity, the calculated bond length (1.619 Å) and binding energy (4.180 eV) of FeO molecules were compared to experimental results (1.62 Å and 4.17 eV) [\[24](#page-6-23)]. These comparisons demonstrate the suitability of the PBE functional for calculating $TMWO_n$ clusters.

3 Results and discussion

3.1 Structures

The binding energies per atom E_b have been used to determine the lowest-energy configurations of the $T\text{MWO}_n$ $(TM = Mn-Ni, n = 1-6)$ clusters. Only the ground-state configurations of the calculated $TMWO_n$ (TM = Mn–Ni, $n=1-6$) clusters have been shown in Fig. [1](#page-2-0). It is worth noting that the lowest-energy structures of the TMWO_n clusters are largely inherited from those of the W_2O_n (n=1–6) clusters. However, the point groups of the $TMWO_n$ clusters exhibit a degeneracy, resulting in an asymmetric structure C_1 . Compare these TMWO_n clusters, it can be found that the sizes of TM atoms have less efect on the tungsten oxide structures $[25]$ $[25]$ $[25]$. For instance, in the case of the TMWO₂ $(TM = Fe-Ni)$ clusters, the W–O bonds are significantly distorted into a triangular structure due to the infuence of TM-*d* electrons, leading to the Jahn–Teller distortion [\[8,](#page-6-7) [21](#page-6-20)]. Zhao et al. [[13\]](#page-6-12) have also found that the structural distortions of the $Co@W_6O_{18}$ clusters using DFT.

3.2 Stabilities

The calculated binding energies per atom E_b of W_2O_n and TMWO_n (TM = Mn–Ni, n = 1–6) clusters have been

Fig. 1 Ground-state structures of the TMWO_n (TM=Mn, Fe, Co and Ni, $n=1-6$) clusters

Fig. 2 Binding energies per atom of pristine W_2O_n and TMWO_n $(TM=Mn, Fe, Co and Ni, n=1–6) clusters$

exhibited in Fig. [2.](#page-2-1) The more the negative binding energies, the more the stability will be [\[26](#page-6-25)]. The binding energies per atom of the W_2O_n clusters decrease with the increase of O concentrates. Wang et al. [[27\]](#page-6-26) have revealed that more O atoms prefer to frm W atoms. When comparing the binding energy per atom of the W_2O_n clusters to the TMW_{n-1}O_{3n} clusters, it is evident that the W_2O_n clusters have lower binding energies per atom. This indicates that the W_2O_n clusters are less thermodynamically stable. When comparing the different $TMWO_n$ clusters, it can be observed that the NiWO_n (n = 1–2) clusters display greater thermodynamic stability than the other $TMWO_n$ (TM=Mn, Fe and Co, $n=1-2$) clusters. This is likely due to the ability of these clusters to maximize the coordination number of the surface atom [\[28](#page-6-27)], as well as the strong binding of oxygen-2p electrons $[8, 9]$ $[8, 9]$ $[8, 9]$ $[8, 9]$. Similarly, the CoWO_n (n=3–5) clusters exhibit more thermodynamic stability than the other $TMWO_n$ $(TM=Mn, Fe and Ni, n=3–5) clusters. On the other hand,$ the FeWO₆ clusters show more thermodynamic stability than the other TMWO₆ (TM=Mn, Co and Ni) clusters. This is mainly due to differences in the electron affinity of the TM atoms [\[29](#page-6-28), [30](#page-6-29)].

The structure distortions should lead to the electron redistributions [[31\]](#page-6-30). The calculated gaps between the highest molecular occupied orbital (HOMO) and the lowest molecular unoccupied orbital (LUMO) states of the W_2O_n and TMWO_n (TM = Mn–Ni, n = 1–6) clusters have been plotted in Fig. [3](#page-3-0). The calculated values of the HOMO–LUMO gaps are determined by the basis set [\[2](#page-6-1)], but it is still possible to investigate the relative electronic stability of the W_2O_n and $TMWO_n$ clusters. According to previous research, the

Fig. 3 HOMO–LUMO gaps of pristine W_2O_n and TMWO_n $(TM=Mn, Fe, Co and Ni, n=1–6) clusters$

clusters with larger HOMO–LUMO gaps tend to be more stable and chemically inert [\[13\]](#page-6-12). Among the clusters studied, the W_2O_4 , W_2O_6 , MnWO, MnWO₃, MnWO₆, FeWO, $FewO₄$, $FewO₆$, $CowO₆$, $CowO₆$, $NiWO₂$, $NiWO₅$ clusters display higher kinetic stability compared to their neighboring TMWO_n clusters. On the other hand, the W₂O, W₂O₅, $MnWO₂$, $MnWO₄$, $FewO₂$, $FewO₅$, $CowO₅$, $NiWO$, $NiWO₄, NiWO₆ clusters exhibit higher kinetic activity. This$ can be attributed to the distortion of the HOMO mainly on the O sites and the LUMO mainly on the W atoms. These results are a result of the distortion of the atoms and charge redistribution near the atoms [[18\]](#page-6-17).

Clusters with both good structural and thermodynamic stability tend to be synthesized experimentally. The $NiWO_n$ $(n=1-2)$ and CoWO_n $(n=3-5)$ clusters display greater thermodynamic stability than other $TMWO_n$ clusters. The MnWO, MnWO₃, MnWO₆, FeWO, FeWO₄, FeWO₆, CoWO, $CoWO₆$, NiWO₂, NiWO₅ clusters display higher kinetic stability compared to their neighboring TMWO_n clusters. It indicates that the $NiWO₂$ and $CoWO₆$ clusters prefer to synthesize.

The HOMO and LUMO orbitals of the W_2O_n and TMWO_n (TM = Mn–Ni, n = 1–6) clusters have been depicted in Figs. [4](#page-3-1) and [5.](#page-4-0) In the HOMO states of the TMWO_n clusters, there are more electrons surrounding the TM atoms, except for the NiWO, $FewO_2$, $CowO_2$ clusters. Similarly, in the LUMO states of the TMW_{n−1}O_{3n} clusters, there are more electrons surrounding the TM atoms, except for the NiWO, FeWO₂, CoWO₂, NiWO₂, CoWO₃, NiWO₃, MnWO₄, $CoWO₄ clusters [21, 32]$ $CoWO₄ clusters [21, 32]$ $CoWO₄ clusters [21, 32]$ $CoWO₄ clusters [21, 32]$. The HOMO and LUMO states of the TMWO_n clusters, σ-type bonds and π-type bonds are coexist [[32](#page-6-31)]. This can be attributed to the contributions of TM-*d* and O-*p* orbital electrons [[1,](#page-6-0) [25,](#page-6-24) [33,](#page-6-32) [34\]](#page-6-33).

Fig. 4 HOMO orbitals of the TMWO_n (TM=Mn, Fe, Co and Ni, $n=1-6$) clusters

Fig. 5 LUMO orbitals of the TMWO_n (TM=Mn, Fe, Co and Ni, $n = 1-6$) clusters

Fig. 6 Temperature dependence of the Gibbs free energy of the W_2O_n and TMWO_n (TM=Mn, Fe, Co and Ni, $n=1, 6$) clusters

The thermodynamical stability of the W_2O_n and TMWO_n $(TM=Mn, Fe, Co and Ni, n=1–6) clusters can be analyzed$ by Gibbs free energy (*G*). The Gibbs free energies of the ground-state W_2O_n and TMWO_n clusters have been plotted in Fig. [6](#page-4-1). The Gibbs free energies of the W_2O_n and TMWO_n clusters gradually decreases with the increase of the cluster size. It demonstrates that the W_2O_n and TMWO_n clusters prefer to spontaneous grow with the increase of temperature.

It demonstrates that the thermal stability of the W_2O_n and $TMWO_n$ clusters gradually increase with the increase of the cluster size. It results from the shell closing efect which obvious afects the activity of clusters [\[25](#page-6-24)].

3.3 Electronic attributes

The calculated Mülliken-charges of TM atoms of TMWO_n $(TM=Mn-Ni, n=1-6)$ clusters have been plotted in Fig. [7.](#page-5-0) The amount of charge transferred between the TM atoms and WO_n clusters increases significantly as the number of oxygen atoms increases. This suggests that the W atoms become more positively charged with an increase in the number of O atoms. This indicates a conversion of the TM-O bond from a covalent bond to a partially ionic bond [\[1](#page-6-0)], which can help stabilize the remaining *d* electrons and increase their binding energies [[10](#page-6-9)]. The amount of charge transferred of the MnWO_n clusters is greater than in other TMWO_n (TM=Fe, Co and Ni) clusters. While the amount in the $CoWO_n$ clusters is less than in other $TMWO_n$ clusters, except for the $NiWO₂ clusters. The difference can be attributed to discrepancy$ ancies in the electron affinity of the TM atoms [\[29](#page-6-28), [30](#page-6-29)].

The natural electron configurations of TM atoms of TMWO_n (TM = Mn–Ni, n = 1–6) clusters have been displayed in Table [1.](#page-5-1) Upon comparison of the valence electrons

Fig. 7 Net-charges of TM atoms of the TMWO_n (TM=Mn, Fe, Co) and Ni, $n=1-6$) clusters

Table 1 Natural electron confgurations of TM (TM=Mn, Fe, Co and Ni) atoms for the TMWO_n (TM=Mn, Fe, Co and Ni, n=1–6) clusters

Cluster	Atom	Natural electron configuration
MnWO	Mn	[core] $3p(6.006)3d(5.837)4s(0.925)4p(0.126)$
MnWO	Mn	$[core]3p(6.005)3d(5.742)4s(0.707)4p(0.182)$
MnWO ₃	Mn	[core] $3p(5.996)3d(5.563)4s(0.450)4p(0.293)$
MnWO _A	Mn	[core] $3p(5.994)3d(5.497)4s(0.304)4p(0.307)$
MnWO ₅	Mn	[core] $3p(5.991)3d(5.425)4s(0.263)4p(0.325)$
MnWO ₆	Mn	[core] $3p(5.981)3d(5.318)4s(0.151)4p(0.490)$
FeWO	Fe	[core] $3p(6.004)3d(6.817)4s(0.969)4p(0.104)$
FeWO ₂	Fe	[core] $3p(6.004)3d(6.754)4s(0.725)4p(0.164)$
FeWO ₂	Fe	[core]3p(5.997)3d(6.552)4s(0.490)4p(0.295)
FeWO ₄	Fe	[core] $3p(5.996)3d(6.489)4s(0.337)4p(0.329)$
FeWO ₅	Fe	[core]3p(5.994)3d(6.421)4s(0.301)4p(0.358)
FeWO ₆	Fe	[core] $3p(5.988)3d(6.324)4s(0.177)4p(0.521)$
CoWO	Co	$[core]3p(6.004)3d(7.819)4s(0.998)4p(0.128)$
CoWO	Co	$[core]3p(6.005)3d(7.785)4s(0.745)4p(0.186)$
CoWO ₃	Co	[core]3p(5.999)3d(7.560)4s(0.520)4p(0.338)
CoWO ₄	Co	[core] $3p(5.999)3d(7.507)4s(0.372)4p(0.362)$
CoWO ₅	Co	[core] $3p(5.998)3d(7.430)4s(0.343)4p(0.397)$
CoWO ₆	Co	[core]3p(5.994)3d(7.327)4s(0.233)4p(0.566)
NiWO	Ni	[core]3p(6.002)3d(8.738)4s(1.069)4p(0.108)
NiWO ₂	Ni	[core]3p(6.002)3d(8.725)4s(1.034)4p(0.084)
NiWO ₃	Ni	$[core]3p(6.000)3d(8.492)4s(0.547)4p(0.333)$
NiWO ₄	Ni	[core]3p(6.001)3d(8.458)4s(0.398)4p(0.350)
NiWO ₅	Ni	$[core]3p(6.000)3d(8.384)4s(0.365)4p(0.389)$
NiWO ₆	Ni	[core]3p(5.998)3d(8.278)4s(0.262)4p(0.523)

 $(3d⁵4s², 3d⁶4s², 3d⁷4s²$ and $3d⁸4s²$) of a single Mn, Fe, Co and Ni atom with those of $TMWO_n$ clusters, it can be observed that there is internal charge transfer of TM atoms of the TMWO_n clusters from the 4*s* orbital to the 3*d* and 4*p* orbitals. Thus is evident in the Mülliken charges of the TM

atoms of $TMWO_n$ clusters (See Fig. [6\)](#page-4-1). This indicates that the 4*s* orbital electrons of the TM atoms for the TMWO_n clusters are also partially transferred to the neighboring O atoms [[13\]](#page-6-12). Similarly, there is internal charge transfer in the O atoms of the $TMWO_n$ clusters, with electrons from the 2*s* orbital being transferred to the 2*p* orbital [[13](#page-6-12)]. This suggests that the 2*p* and 3*d* orbital electrons of the O atoms are obtained from the TM atoms.

3.4 Dipole magnitudes

Considering the high dipole moment leads to higher reactivity but less stability. The dipole magnitudes of the $T\text{MWO}_n$ $(TM = Mn-Ni, n = 1-6)$ clusters have been displayed in Fig. [8](#page-5-2). The nonzero dipole moments of the TMWO_n clusters emerge. This is due to the symmetry of the W_2O_n clusters being degenerated by the TM substitution [\[35](#page-6-34)]. This is caused by insufficient hybridization between the TM- d electrons and O -*p* electrons of the TMWO_n clusters. It causes the TMWO_n (TM = Mn–Ni, n = 1–6) clusters display less structural stability. In general, the dipole moments of the $T\text{MWO}_n$ clusters decrease with the increase of the cluster sizes. It is due to the compensation effect of free electrons of O atoms on the dipole moments of $TMWO_n$ clusters. Similarly, the structural stability of the $TMWO_n$ clusters increases with the increase of the cluster sizes. The dipole magnitudes of the $MnWO₃$, FeWO₂, CoWO₂, NiWO₂ clusters are larger than those of neighboring $TMWO_n$ clusters.

4 Conclusions

The structures and electronic properties of the $TMWO_n$ $(TM = Mn-Ni)$ clusters have been calculated using firstprinciples. The ground-state $TMWO_n$ clusters share some

Fig. 8 Dipole magnitudes of the TMWO_n (TM=Mn, Fe, Co and Ni, $n=1-6$) clusters

structural similarities with the ground-state W_2O_n (n=1–6) clusters. In the case of the TMWO₂ (TM=Fe–Ni) clusters, the W–O bonds are signifcantly distorted into a triangular structure. However, the $TMWO_n$ clusters are less thermodynamically stable compared to their corresponding W_2O_n clusters. The NiWO_n (n=1–2) and CoWO_n (n=3–5) clusters display greater thermodynamic stability than the other TMWO_n clusters. Among the TMWO_n clusters, the W_2O_4 , W_2O_6 , MnWO, MnWO₃, MnWO₆, FeWO, FeWO₄, FeWO₆, CoWO, CoWO₆, NiWO₂, NiWO₅ clusters are more kinetically stable. As the number of O atoms increases, there is a signifcant increase in the amount of charge transferred from 0.050 lel to 1.066 lel between the TM atoms and W_2O_n clusters. This charge transfer is highest in the $MnWO_n$ clusters compared to other TMWO_n (TM=Fe, Co and Ni) clusters. The 4*s* orbital electrons of the TM atoms for the TMWO_n clusters are also partially transferred to the neighboring O atoms. Additionally, the dipole magnitudes of the $MnWO₃$, FeWO₂, CoWO₂, NiWO₂ clusters are larger than those of neighboring TMWO_n clusters.

Acknowledgements We gratefully acknowledge the fnancial support from the National Natural Science Foundation of China (Grant No. 51634004).

Author contributions ZL contributed to data curation, formal analysis, investigation, methodology, writing-original draft, writing-review and editing. ZHW contributed to investigation, writing-review and editing. ZZ contributed to funding acquisition, writing-review and editing.

Declarations

Conflict of interest The authors declare that they have no confict of interest.

References

- 1. Sai L, Tang L, Huang X, Chen G, Zhao J, Wang J (2011) Chem Phys Lett 544:7
- 2. Valentin CD, Wang F, Pacchioni G (2013) Top Catal 56:1404
- 3. Jin H, Zhu J, Hu J, Li Y, Zhang Y, Huang X, Ding K, Chen W (2011) Theor Chem Acc 130:103
- 4. Kim YK, Dohnalek Z, Kay BD, Rousseau R (2009) J Phys Chem C 113:9721
- 5. Santo N, Filipescu M, Ossi PM, Dinescu M (2010) Appl Phys A 101:325
- 6. Li S, Dixon DA (2006) J Phys Chem A 110:6231
- 7. Sun Q, Rao BK, Jena P, Stolcic D, Kim YD, Gantefor G, Castleman AWJ (2004) J Chem Phys 121:9417
- 8. Zhai H-J, Kiran B, Cui L-F, Li X, Dixon DA, Wang L-S (2004) J Am Chem Soc 126:16134
- 9. Huang X, Zhai H-J, Li J, Wang L-S (2006) J Phys Chem A 110:85
- 10. Zhai H-J, Huang X, Cui L-F, Li X, Li J, Wang L-S (2005) J Phys Chem A 109:6019
- 11. Li D, Huang W-Q, Xie Z, Xu L, Yang Y-C, Hu W, Huang G-F (2016) Mod Phys Lett B 30:1650340
- 12. Xu L, Yin M-L, Liu S (2014) Sci Rep-UK 4:6745
- 13. Zhao Z, Wu Z, Li Z (2023) Struct Chem 34:1395
- 14. Hameed A, Gondal MA, Yamani ZH (2004) Catal Commun 5:715
- 15. Mansouri M, Mahmoodi T (2016) Acta Phys Pol A 129:8
- 16. Delley B (1990) J Chem Phys 92:508
- 17. Delley B (2000) J Chem Phys 113:7756
- 18. Li W, Da P, Zhang Y, Wang Y, Lin X, Gong X, Zheng G (2014) ACS Nano 8:11770
- 19. Zhao Z, Li Z, Xue G, Shen X, Wu J (2021) Mater Chem Phys 262:124272
- 20. Mulliken RS (1955) J Chem Phys 23:1841
- 21. Cora F, Patel A, Harrison NM, Dovesi R, Catlow CRA (1996) J Am Chem Soc 118:12174
- 22. Li Z, Shen X, Zhao Z (2022) Res Chem Intermediat 48:339
- 23. Baroni S, de Gironcoli S, Corso AD, Giannozzi P (2001) Rev Mod Phys 73:515
- 24. Fan J, Wang L-S (1995) J Chem Phys 102:8714
- 25. Geusic EM, Morse MD, Smalley RE (1985) J Chem Phys 82:590
- 26. Li Z, Zhou Z, Zhao Z, Wang Q (2018) Int J Mod Phys B 32:1850187
- 27. Wang S, Zhan J, Chen K, Ali A, Zeng L, Zhao H, Hu W, Zhu L, Xu X (2020) ACS Sustain Chem Eng 8:8214
- 28. Zhang J-M, Duan Y-N, Xu K-W, Ji V, Ma Z-Y (2008) Phys B 403:3119
- 29. Zhao L, Qu X, Wang Y, Lv J, Zhang L, Hu Z, Gu G, Ma Y (2017) J Phys: Condens Matter 29:265401
- 30. Zheng H, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantarzadeh K (2011) Adv Funct Mater 21:2175
- 31. Pan H, Wu Y, Li C, Li H, Gong Y, Niu L, Liu X, Sun CQ, Xu S (2022) Appl Surf Sci 571:151230
- 32. Ingham B, Hendy SC, Chong SV, Tallon JL (2005) Phys Rev B 72:075109
- 33. Zhao YR, Xu YQ, Chen P, Yuan YQ, Qian Y, Li Q (2021) Results Phys 26:104341
- 34. Zhang XY, Zhao YR, Li HX, Cheng KG, Liu ZR, Liu ZP, He H (2023) Chinese Phys B 32:066102
- 35. Li Z, Wu Z-H (2024). Surf Rev Lett. [https://doi.org/10.1142/](https://doi.org/10.1142/S0218625X24500392) [S0218625X24500392](https://doi.org/10.1142/S0218625X24500392)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.