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Abstract
The mechanistic, thermochemical, and kinetic study of the 4-hydroxy-2-pentanone (4H2P) + OH radical reaction is performed 
for the first time by employing quantum theoretical calculations. The potential energy diagram was evaluated for five pos-
sible reaction pathways at the CCSD(T)/cc-pVTZ//BH&HLYP/cc-pVTZ level of theory. Theoretical rate coefficients of five 
abstraction pathways are computed as a function of temperature (210–350 K) utilizing the canonical variational transition 
state theory (CVT) with small-curvature tunneling (SCT). A three-parameter modified Arrhenius equation is used to fit rate 
coefficients. The thermodynamic quantities like reaction enthalpy and Gibbs free energy are calculated at the BH&HLYP/
cc-pVTZ level of theory. According to thermodynamic analysis, the hydrogen abstraction from the –CH group adjacent to 
the hydroxyl group occurs more favorably and is the dominant pathway with minimum barrier height. The structure–activity 
relationship is explored by comparing rate coefficients of the titled reaction with the literature values of similar species. The 
subsequent fate of the alkyl radical  (CH3C(O)CH2C·(OH)CH3) is further studied in a NO-rich environment resulting in the 
formation of acetone,  NO2, and oxygen as the major final products.
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1 Introduction

Carbonyl compounds are widely spread atmospheric key 
components formed in the atmosphere by oxidation of vola-
tile organic compounds (VOCs) emitted from biogenic and 
anthropogenic sources [1, 2]. They comprise a prominent 
class of organics released directly into the atmosphere. They 
are used in various industrial processes, including produc-
ing dyes, chloroform, fragrances, flavorings, and plastics, 
as well as solvents for resins, lacquers, and cellulose [3, 4]. 
They serve as fuel additives to lower soot emissions and fuel 
tracers for evaluating fuel qualities [5–8]. Volatile organic 
compounds (VOCs) are critical in the atmosphere because 
they directly connect with air quality and climate change 
[9–11]. Carbonyl compounds significantly affect urban 
air pollution and atmospheric chemistry. These carbonyl 

compounds extensively contribute to forming free radicals 
involved in the oxidation of hydrocarbons [12]. They are 
crucial intermediates in the creation of aerosols and serve 
as the building blocks for other oxidants like ozone, nitric 
acid, and peroxyacyl nitrates (PANs) [13].

Multifunctional ketones like hydroxyketones are hydroxyl 
and carbonyl group-containing compounds representing a 
significant class of oxygenated Volatile Organic Compounds 
(OVOCs) in the atmosphere. They are used in various 
industrial sectors, mainly in food [14], solvents, and phar-
maceutical synthesis [15]. Hydroxyketones can either be 
released into the atmosphere as biogenic [16, 17] or anthro-
pogenic pollutants [18] or formed by oxidation of alkanes, 
alkenes, and other oxygenated compounds [19, 20]. Like 
other carbonyl compounds, hydroxyketones are removed 
from the atmosphere in many possible ways like photolysis 
by solar radiation and oxidation by atmospheric oxidants 
like hydroxyl (OH), nitrate  (NO3) radicals, ozone  (O3) mol-
ecules, and. chlorine (Cl) atoms. The hydroxyl radical (OH) 
is the most reactive among these species, influencing various 
atmospheric chemical processes.
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Therefore, studying OH radical reaction with hydroxyke-
tones is necessary to assess their significance in air pollution. 
These hydroxyketones reactions have recently received sig-
nificant attention from experimental and theoretical research 
groups. Following this, we have studied the oxidation reaction 
of 4-hydroxy-2-pentanone (4H2P) with OH radical. 4H2P was 
found to be a biomass-derived molecule produced significantly 
through a distinct method than other hydroxyketones [21]. 
Based on the literature survey, no theoretical or experimental 
study has been reported till now for the 4H2P + OH reaction.

This paper provides the results of the first theoretical 
investigation of the kinetics and mechanism of 4H2P + OH 
radical reactions. This work's main objective is to better 
understand the studied reaction's importance as a removal 
process of 4H2P in the atmosphere. Therefore, we used 
computational tools to study the plausible mechanism and 
thermochemistry and obtain rate coefficients of various path-
ways of the titled reaction in the 210–350 K temperature 
range. The rate coefficient value was then used to calculate 
the atmospheric lifetime of 4H2P. Additionally, secondary 
organic aerosols (SOAs), which negatively impact the cli-
mate and humans, are produced as a byproduct of the oxi-
dation reaction of ketones like acetone and pentanone with 
atmospheric oxidants [22–25]. Therefore, the manuscript 
also discusses the subsequent reaction mechanisms of the 
product produced in the reaction's pathway and the forma-
tion of SOA.

2  Computational details

All reaction species involved in hydrogen abstraction 
pathways were optimized in gas-phase using second-
order Møller–Plesset perturbation (MP2) [26] theory and 
hybrid meta-density functional, Becke-Half-and-Half-LYP 
(BH&HLYP) [27]. Dunning's correlation-consistent polar-
ized valence triple zeta (cc-pVTZ) basis set was used for 
geometrical optimization purposes [28]. In the previous 
studies of hydrogen abstraction reactions, the BH&HLYP 
method is trustworthy for evaluating optimized geometries 
and frequencies of reaction species [29–31]. <  S2 > values 
given in Table S5 in the Supplementary Information (SI) 
evince the absence of spin contamination in various reac-
tion species at the BH&HLYP/cc-pVTZ level of theory. We 
performed computations at BH&HLYP and MP2 levels with 
cc-pVXZ basis sets and then extrapolated to the complete 
basis set (CBS) limit to refine energies. We used Helgaker 
relation [32, 33] to carry out CBS extrapolations, which are 
given as

where EX is the energy with X, that is 2, 3, 4, and 5 for cc-
pVXZ basis sets, ECBS is the CBS energy limit, and A is the 

(1)EX = ECBS + AX−3

fitting parameter. We did harmonic vibrational frequency 
analysis to understand the characteristics of stationary points 
on the potential energy diagram. Minima were defined as 
stationary points with only positive frequencies, and the 
appearance of one imaginary frequency verified the transi-
tion state. To validate the connectivity of transition states to 
their respective reactants and products, we performed intrin-
sic reaction coordinate (IRC) [34, 35] calculations at both 
theoretical methods. The minimum energy path (MEP) is 
obtained for further kinetic calculations at the BH&HLYP/
cc-pVTZ level with a 0.1 Bohr gradient step size. Along the 
MEP, energy derivatives such as hessians and gradients are 
also calculated.

The rate coefficients depend on energy barriers, so 
higher theoretical calculations are performed to obtain bar-
rier height values accurately. Using BH&HLYP/cc-pVTZ 
optimized geometries, we calculated single-point energy 
at coupled-cluster single-double and perturbative triples 
(CCSD(T)) [36] method with cc-pVTZ basis set to achieve 
a more accurate energetics. T1 diagnostic [37, 38] values 
given in Table S6 in the Supplementary Information (SI) 
are evaluated at the CCSD(T)/cc-pVTZ level and are clearly 
within the acceptable limit (0.045). Hence, the CCSD(T) 
single reference wave function is appropriate here. The IRC 
routes, vibrational movements, and molecular geometries 
were all visualized using the GaussView software [39]. 
Using the quantum chemistry code Gaussian16, all calcula-
tions involving electronic structure and energy were carried 
out [40].

All rate coefficient calculations were performed by utiliz-
ing the POLYRATE 2017-C program [41]. Utilizing vari-
ational transition state theory (VTST) and the interpolated 
single point energy (ISPE) method, the rate coefficients 
of each reaction pathway of the titled reaction are calcu-
lated. The rate coefficients are computed utilizing canonical 
variational transition state theory (CVT) in the 210–350 K 
temperature range [42–44]. For tunneling corrections, zero 
curvature tunneling (ZCT) [44–48] and small curvature tun-
neling (SCT) methods are employed [49, 50]. By minimiz-
ing the dividing surface s, the canonical variational theory 
rate coefficients(kCVT(T) ) [30, 51–53] are derived and can 
be written as:

where kGT(T , s) denotes the generalized transition state 
theory rate coefficient at s, kB is the Boltzmann con-
stant = 1.38 ×  10–23  J   K−1, T is the temperature, h is the 
Planck's constant = 6.63 ×  10–34  J   Hz−1, and σ is the 

(2)kCVT(T) = minkGT (T , s)

(3)kGT(T , s) =
�kBT

h

QGT (T , s)

�R(T)
exp

(

−
VCVT
MEP

(s)

kBT

)
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symmetry factor considered as unity. QGT(T , s) is the parti-
tion function of the generalized transition state at s. �R(T) 
is the partition function of reactants per unit volume and 
VCVT
MEP

(s) is the potential energy at point s, along the mini-
mum energy path. While calculating electronic partition 
functions, the 2Π3/2 and 2Π1/2 electronic states of the OH 
radical are taken into account with a splitting of 140  cm−1. 
By multiplying the CVT rate coefficient by a transmission 
coefficient �T , the tunneling effect is calculated. Transmis-
sion coefficient �T is computed by using two semiclassical 
tunneling approximations. One is the minimum energy path 
semiclassical adiabatic ground state (MEPSAG) method, 
also called zero-curvature tunneling (ZCT) approximation. 
ZCT approximation assumes that the reaction path has neg-
ligible curvature, so the tunneling path coincides with it. It 
neglects the contribution of multidimensional reaction-path 
curvature.

Another tunneling approximation is the centrifugal domi-
nant slight curvature semiclassical adiabatic ground state 
(CD-SCSAG) method. This method is also called small-
curvature tunneling (SCT) approximation. When the reac-
tion path possesses curvature, the tunneling occurs on the 
concave side of the MEP [54–59]. CD-SCSAG method is a 
generalization of the Marcus-Coltrin approximation [59] in 
which the tunneling path is distorted from the MEP out to 
a concave-side vibrational turning point in the direction of 
the internal centrifugal force [49]. This method is based on 
the vibrationally adiabatic assumption and the assumption 
that the curvature of the reaction path in inertial coordinates 
is small [60].

ZCT and SCT keywords are given in the POLYRATE 
input file to get the transmission coefficient �T and tunneling 
corrected rate coefficients in the output file. Mainly geome-
tries, frequencies, and force constants of reactants, transition 
states, and products, along with other keywords, are given in 
the POLYRATE input file and partition functions ( QGT(T , s) , 
and �R(T) ), potential energy ( VCVT

MEP
(s) ), transmission coef-

ficients ( �T  ), and tunneling corrected rate coefficients 
 (kCVT/ZCT and  kCVT/SCT) are obtained in the POLYRATE 
output file along with other results. A brief explanation of 
how the POLYRATE program calculates partition functions 
( QGT(T , s) , and �R(T) ) and transmission coefficients ( �T ) is 
given in the Supplementary Information (SI).

Modified Arrhenius equation is used to fit CVT/SCT rate 
coefficients in the temperature range of 210–350 K with the 
help of Origin2018 software [61].

Here k = CVT/SCT rate coefficient values in the 210–350 K 
temperature range, T = 210–350 K, and R is the universal 
gas constant of 1.98 cal  mol−1  s−1. With the help of these 

(4)k = ATnexp

(

−Ea

RT

)

values, we fitted the modified Arrhenius equation in the Ori-
gin2018 software and got the values of Arrhenius prefactor 
(A), energy barrier (Ea), and temperature exponent (n). The 
temperature exponent n arises from the temperature depend-
ence of the Arrhenius prefactor. In the case of the famous 
Arrhenius theory, n = zero and n = 1/2 in the collision theory 
of gases for bimolecular gas phase reactions. In transition 
state theory, n is one or greater depending on the number of 
reacting species involved in the geometry of the activated 
complex [62].

The VTST-ISPE approach is utilized to evaluate temper-
ature-dependent rate coefficients [63]. In this method, fre-
quencies, stationary point geometries, and first derivatives 
were computed at the BH&HLYP/cc-pVTZ theoretical level. 
Reaction energies and barrier heights were improved by per-
forming computations at a higher CCSD(T)/cc-pVTZ level.

3  Results and discussion

3.1  Optimized structures of stationary points

Figure 1 shows the optimized geometries of all station-
ary points involved in five hydrogen abstraction pathways 
of the 4H2P + OH reaction. Bond lengths and angles at 
BH&HLYP/cc-pVTZ and MP2/cc-pVTZ levels are dis-
played in Fig. 1. These two theoretical approaches are used 
to calculate vibrational frequencies. Table S1 in the Supple-
mentary Information (SI) illustrates scaled vibrational fre-
quencies accompanying limited experimental values. Each 
transition state has an imaginary frequency corresponding 
to the stretching modes of coupling breaking and forming 
bonds.

Hydrogen abstraction from –C(O)CH3 group (1), from 
–CH2 group (2), from –CH group (3), from –OH group (4), 
and from –CH3 group (5) comprises five reaction pathways 
of the 4H2P + OH reaction as follows:

C H 3C ( O ) C H 2C H ( O H ) C H 3 +  O H  →   C H 2C ( O )
CH2CH(OH)CH3 +  H2O (1)

CH3C(O)CH2CH(OH)CH3 + OH →  CH3C(O)CHCH(OH)
CH3 +  H2O (2)

CH3C(O)CH2CH(OH)CH3 + OH →  CH3C(O)CH2C(OH)
CH3 +  H2O (3)

CH3C(O)CH2CH(OH)CH3 + OH →  CH3C(O)CH2CH(O)
CH3 +  H2O (4)

C H 3C ( O ) C H 2C H ( O H ) C H 3 +  O H  →   C H 3C ( O )
CH2CH(OH)CH2 +  H2O (5)

The abstraction reaction of 4H2P by OH radical starts by 
forming reactant complexes. Due to hydrogen bond interac-
tions, all reactant complexes have lower energies than reac-
tants, stabilizing them. The breaking C–H bond in TS1, TS2, 
TS3, and TS5 is lengthened by 13.24%, 13.47%, 18.48%, and 
15.75% as compared to the equilibrium C–H bond distance 
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Fig. 1  Optimized geometries of reactants, reactant complexes, transition states, product complexes, and products of  CH3C(O)CH2CH(OH)CH3 + OH reac-
tion at BH&HLYP/cc-pVTZ and MP2/cc-pVTZ (in brackets) levels. Bond lengths are in angstroms, and angles are in degrees
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Fig. 1  (continued)
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in 4H2P, respectively. The dissociating O–H bond length in 
TS4 increases by 7.52% compared to the equilibrium O–H 
bond length in 4H2P. Compared to the equilibrium O–H 
bond length in free  H2O molecule, the O–H bond in TS1, 
TS2, TS3, TS4, and TS5 is stretched by 34.41, 34.18, 51.92, 
23.47, and 30.10%, respectively. It is evident from transition 

states TS1, TS2, TS3, TS4, and TS5 that establishing bonds 
elongate more than breaking bonds do. All transition states 
are reactant-like according to Hammond's postulate [64], 
and reactions will progress through early transition states. 
Product complexes (PC1, PC2, PC3, PC4, and PC5) are 

Fig. 1  (continued)
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more energetically stable than their related products after 
overcoming potential barriers because of hydrogen bonding.

3.2  Reaction mechanisms and energetics

Figure  2 depicts the potential energy diagram for the 
4H2P + OH reaction's five abstraction pathways. Reactants' 
energies are fixed to zero for reference. Relative energies are 
given in Table S3 in the Supplementary Information (SI). 
From Fig. 2, it can be visualized that the barrier height for 
reaction pathway 1 is 10.84 kcal/mol, 7.29 kcal/mol for reac-
tion pathway 2, 2.84 kcal/mol for pathway 3, 11.73 kcal/mol 
for pathway 4, and 10.18 kcal/mol for pathway 5. Reaction 
pathway 3 has the lowest barrier height among all other reac-
tion pathways. As a result, reaction pathway 3's rate coef-
ficients will be higher than those of other reaction pathways.

The thermodynamic quantities like reaction enthalpies 
(

ΔH
◦

298.15

)

 and Gibbs free energies 
(

ΔG
◦

298.15

)

 of five reaction 
pathways are computed at the BH&HLYP/cc-pVTZ level of 
theory, and values are given in Table S4 in the Supplemen-
tary Information (SI). The reaction enthalpies values for 1, 2, 
3, 4, and 5 reaction pathways are − 17.46, − 19.98, − 20.23, 
− 8.50, and − 10.54 kcal/mol, respectively. Based on these 
values, it can be gleaned that all reaction pathways are exo-
thermic, with reaction pathway 3 being thermodynamically 
more favorable than the others. From 

(

ΔG
◦

298.15

)

 values given 
in Table S4, we can conclude that all reaction pathways (1, 
2, 3, 4, and 5) are spontaneous, having 

(

ΔG
◦

298.15

)

 values 

− 18.35, − 21.97, − 21.90, − 10.41, and − 12.56 kcal/mol, 
respectively.

3.3  Rate coefficient calculations

Using canonical variational transition state theory (CVT), 
we estimated the 4H2P + OH reaction rate coefficients over 
the temperature range of 210–350 K. Zero curvature tun-
neling (ZCT) and small curvature tunneling (SCT) correc-
tions are used to incorporate the tunneling effect. Figure 3a, 
b, c, d, and e displays the CVT, CVT/ZCT, and CVT/SCT 
rate coefficients of five abstraction pathways of the titled 
reaction. Tables S7-S11 in the Supplementary Information 
(SI) comprise all rate coefficient values.

The tunneling effect is defined as the ratio of CVT/SCT 
with CVT rate coefficients in Fig. 3a–e is significant for 
all reaction pathways across the temperature range. With 
temperature rise, the tunneling effect decreases. Figure 3f 
displays the CVT/SCT rate coefficients for each reaction 
pathway and the overall reaction, and Table S12 in the Sup-
plementary Information (SI) provides the values. From 
Fig. 3f, we can conclude that reaction pathway 3 has faster 
rate coefficients than other reaction pathways. This outcome 
is compatible with energy barrier values, as reaction path-
way 3's energy barrier is minimum among other reaction 
pathways.

Fig. 2  Potential energy diagram 
of the 4H2P + OH reaction. 
Relative electronic energies 
(in kcal/mol) are computed 
at the CCSD(T)/cc-pVTZ//
BH&HLYP/cc-pVTZ level
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Modified Arrhenius parameters utilizing CVT/SCT rate 
coefficients of the five abstraction pathways and overall 
4H2P + OH reaction are given in Table 1. Figure 4 shows 
the fitted Arrhenius plot, demonstrating that CVT/SCT rate 
coefficients exhibit a positive temperature dependency in the 
210–350 K temperature range.

The negative and zero Ea values are found for all reaction 
pathways and overall reaction. Negative Ea values imply that 
reactants have attractive forces, and reaction initially pro-
ceeds via the formation of intermediate complexes [65]. This 
can be seen in the mechanism proposed for the titled reac-
tion. Reactant complexes are found on the potential energy 
diagram in Fig. 2.

Fig. 3  CVT/SCT rate coefficients of reaction pathways 1 (3a), 2 (3b), 3 (3c), 4 (3d), 5 (3e) and overall reaction of 4H2P + OH (3f) at CCSD(T)/
cc-pVTZ//BH&HLYP/cc-pVTZ level in the temperature range of 210–350 K
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3.4  Branching ratio

The branching ratio is the ratio of the individual reaction 
pathway rate coefficient to the overall rate coefficient. We 
have calculated the branching ratio for all reaction path-
ways of the 4H2P + OH reaction, and values are given in 
Table S13 in the Supplementary Information (SI). The com-
puted branching ratios for 1, 2, 3, 4, and 5 reaction pathway 
at 298 K are 0.06, 14.12, 85.30, 0.04, and 0.49%, respec-
tively. From Fig. 5, it can be concluded that the branching 
ratios of reaction pathways 1, 4, and 5 are extremely low, and 
reaction pathway 3 is having highest branching ratio among 
all reaction pathways over the entire temperature range. The 
contribution from reaction pathway 3 is maximum, so it is 
the major pathway.

Table 2 provides an overview of the overall rate coeffi-
cients of the titled reaction and reactions of several similar 
hydroxyketones with OH radical at 298 K.

The oxidation reaction of 4H2P by OH radical is antici-
pated to occur through hydrogen abstraction, similar to other 
aliphatic ketones. According to our theoretical study, hydro-
gen abstraction advances mainly from the active methylene 
group (–CH group), i.e., reaction pathway (3), followed by 

the –CH2 group and methyl group (–CH3 group). Compari-
son of rate coefficients of 4H2P + OH reaction with that of 
other aliphatic ketones and hydroxyketones leads to the fol-
lowing trends:

⦁ The rate coefficients of hydroxyketones + OH reac-
tion are more significant than their corresponding ketones. 
Because hydroxyketones react with OH primarily through 
hydrogen abstraction of the weakest C-H bond of the 
-CH(OH) group, which is activated by the -OH substitu-
ent group. 4H2P + OH, 3-Hydroxy-2-Butanone + OH, and 
hydroxyacetone + OH reactions follow this trend compared 
to their corresponding ketones.

⦁ Hydroxyketones with one tertiary hydrogen atom at 
the β position are more reactive toward OH oxidation than 
hydroxyketones with no β hydrogen atom. The OH func-
tional group activates this tertiary hydrogen atom, which 
increases the rate coefficient value. This trend was followed 
by 4H2P when compared with 4-hydroxy-4-methyl-2-pen-
tanone and 3-hydroxy-2-butanone when compared with 
3-hydroxy-3-methyl-2-butanone.

⦁ The reactivity of hydroxyketones toward OH radi-
cal increases with chain length. At room temperature, the 
rate coefficient increases from hydroxyacetone, 3-hydroxy 
2-butanone, to 4-hydroxy 2-pentanone. The increase in rate 
coefficient values is due to an increase in the number of 
abstractable hydrogens as chain length increases.

⦁ β-hydroxyketones are more reactive toward OH oxi-
dation than α-hydroxyketones because of deactivating 
effect of the carbonyl group on α-carbon atoms. This trend 
can be seen in the case of 4-hydroxy-4-methyl-2-pen-
tanone, as its rate coefficient values are higher than that of 
3-hydroxy-3-methyl-2-butanone.

Table 1  Fitted modified Arrhenius parameters (k =  ATn exp(− Ea/
RT)) of all reaction pathways and overall 4H2P + OH reaction utiliz-
ing CVT/SCT rate coefficients at CCSD(T)/cc-pVTZ//BH&HLYP/
cc-pVTZ level over the temperature range of 210–350 K

Reaction pathway A  (cm3  molecule−1  s−1) n Ea (kcal  mol−1)

1 6.02 × 10
−22 2.71 − 1.17

2 7.41 × 10
−20 2.78 − 1.31

3 7.13 × 10
−19 2.87 − 0.74

4 8.80 × 10
−21 2.26 − 0.83

5 1.66 × 10
−17 1.45 − 0.60

Overall 2.17 × 10
−19 3.04 − 0.93

Fig. 4  The fitted Arrhenius plot of overall reaction and all reaction 
pathways of 4H2P + OH over the temperature range of 210–350 K

Fig. 5  The 4H2P + OH reaction calculated branching ratios over the 
temperature range of 210–350 K utilizing CVT/SCT rate coefficients
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3.5  Secondary reactions of  CH3C(O)CH2C·(OH)CH3 
radical

Thermodynamic and kinetics results reveal that pathway 
3 is the most favorable, producing alkyl radical  CH3C(O)
CH2C·(OH)CH3 and water. The degradation processes 
of  CH3C(O)CH2C·(OH)CH3 were further studied and are 
shown in Scheme 1. In the oxygen-abundant atmosphere, 
alkyl radical forms peroxide radical  CH3C(O)CH2C(OO·)
(OH)CH3 (A) by reacting with  O2 in the atmosphere through 

a barrierless pathway. Peroxide radicals are crucial in atmos-
pheric chemistry. [10, 72–75]. The peroxide radical (A) 
undergoes a H-migration reaction to form acetonyl radical 
and peroxyacetic acid. Also, after reacting with  HO2, perox-
ide radical (A) forms  CH3C(O)CH2C(OOH)(OH)CH3 and 
 O2 via TS11.

According to Atkinson and Arey, the reaction of  RO2 with 
NO occurs predominantly in the atmosphere compared to 
other radicals [10]. Generally, the  RO2 + NO reaction pro-
duces alkoxy radicals and  NO2. But in the present work, 

Table 2  Rate coefficients of the reactions of OH radicals with several ketones and hydroxyketones, including 4H2P at 298 K

Species kOH  (cm3  molecule−1  s−1) Technique References

Acetone (2.16 ± 0.16) ×  10–13 Flash photolysis resonance fluorescence Wallington and Kurylo [66]
1.92 ×  10–13 Theory Alvarez-Idaboy et al. [67]

Hydroxyacetone (3.02 ± 0.28) ×  10–12 Resonance fluorescence Stevens et al. [68]
3.15 ×  10–12 Theory Galano [69]

2-Butanone (1.15 ± 1.0) ×  10–12 Flash photolysis resonance fluorescence Wallington and Kurylo [66]
3.5 ×  10–12 Theory Gao et al. [70]

3-Hydroxy-2-Butanone (1.03 ± 2.2) ×  10–11 Relative rate (GC-FID) Atkinson et al. [9]
1.20 ×  10–11 Theory Singh et al. [29]

3-Hydroxy-3-Methyl-2-Butanone (9.4 ± 3.7) ×  10–13 Relative rate (GC-FID) Atkinson et al. [9]
1.04 ×  10–12 Theory El Dib et al. [30]

2-Pentanone (4.56 ± 0.30) ×  10–12 Relative rate-FTIR Atkinson et al. [71]
2.38 ×  10–12 Theory Alvarez-Idaboy et al. [67]

4-Hydroxy-2-Pentanone 3.70 ×  10–11 Theory This work
4-Hydroxy-4-Methyl-2-Pentanone 4.75 ×  10–12 Laser-induced fluorescence Lakshmipathi et al. [53]

2.88 ×  10–12 Theory Lakshmipathi et al. [53]

A

B

Scheme 1  Proposed mechanism of the consequent reactions of the  CH3C(O)CH2C(OO·)(OH)CH3 radical
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because of the poor stability of the alkoxy radical, while 
performing the  NO2 elimination reaction, the C–C bond will 
break. The peroxide radical (A) reaction with NO results in 
the formation of peroxynitrite (B). This peroxynitrite (B) 
has two forms, namely IM1(cis-CH3C(O)CH2C(O2NO)(OH)
CH3 and IM2 trans-CH3C(O)CH2C(O2NO)(OH)CH3). IM1 
isomerizes to form IM2 through TS6. IM1 and IM2 yield 
acetonyl radical and stable product acetic acid through TS8 
and TS9, respectively, by eliminating  NO2. The acetonyl 
radical, after reacting with  HO2, yields acetone and oxygen 
molecule.

Secondary organic aerosols (SOA) account for the major-
ity of aerosol mass present in the atmosphere. These SOA 
seriously affect air quality, atmospheric chemistry, and 
human health [22–25]. IM1 do tautomerization via TS7 to 
form IM3  (CH3C(O)CH2C(ONO2)(OH)CH3) which is an 
SOA that influences climate and people's life adversely.

The relative energies of various species are obtained at 
the CCSD(T)/cc-pVTZ//BH&HLYP/cc-pVTZ level. The 
transition state TS10 of the H-migration reaction has a 
barrier height of 45.86 kcal/mol. The enthalpy and Gibbs 
free energy associated with the H-migration reaction are 
5.48 kcal/mol and − 8.73 kcal/mol, respectively, implying 
this reaction is endothermic and spontaneous. Transition 
state TS11 involved in A's reaction with  HO2 has a barrier 
height of 16.57 kcal/mol. This reaction has a − 34.27 kcal/
mol ΔH value and − 32.46 kcal/mol ΔG value, demonstrat-
ing this reaction to be exothermic and spontaneous. The 
potential energy surface for the A + NO reaction is shown 
in Fig. 6. The <  S2 > and T1 diagnostic values of the A + NO 

reaction species are listed in Tables S14 and S15 in the Sup-
plementary Information (SI).

After reacting with NO, the peroxide radical (A) forms 
peroxynitrites IM1 and IM2, which have binding energies 
of − 26.25 and − 24.59 kcal/mol, respectively. IM1 can be 
transformed into IM2 and IM3 via TS6 and TS7 transi-
tion states with a barrier height of 20.77 and 13.41 kcal/
mol, respectively. Barrier height values imply that IM1 
and IM2 conversion is easier than IM1 and nitrate ester 
IM3 conversion. With respect to reactants, the energy of 
nitrate ester IM3 is -50.43 kcal/mol, and the exothermicity 
of this reaction is –38.83 kcal/mol, implying this reac-
tion is exothermic. In addition, IM2 nitrite undergoes C–C 
and O–O bond scission via TS9 to form acetonyl radical, 
acetic acid, and  NO2. The barrier height of this reaction 
is 47.91 kcal/mol with a − 42.96 kcal/mol ΔH value, and 
ΔG for this reaction is − 44.50 kcal/mol. However, IM1 
generates the same product via TS8 with an energy barrier 
of 38.62 kcal/mol. Hence, cis-form generates  NO2 more 
easily than trans-form. Therefore, acetone,  NO2, and oxy-
gen are the final products of OH-initiated atmospheric 
oxidation of 4H2P.

4  Atmospheric implications

The atmospheric lifetimes of volatile organic compounds 
generally depend on the atmosphere's many physical and 
chemical processes. However, oxidizing species, including 
OH radicals, Cl atoms,  O3 molecules, and  NO3 radicals, are 

Fig. 6  Schematic potential 
energy diagram for the conse-
quent pathways of the A + NO 
reaction at the CCSD(T)/cc-
pVTZ//BH&HLYP/cc-pVTZ 
level
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primarily responsible for removing volatile organic chemi-
cals from the atmosphere. As OH radicals are considered 
the atmosphere's detergent, the reaction of 4H2P with OH 
radicals plays a significant role in determining atmospheric 
lifetime. So the atmospheric lifetime of 4H2P (τeff) can be 
calculated by assuming that it is removed from the atmos-
phere primarily by reaction with OH radicals and is given as:

where τeff ≈ �OH =
(

kOH × [OH]
)−1

, where �OH is the lifetime 
of 4H2P with OH radicals, kOH is the rate coefficient of 4H2P 
with OH radicals, equal to 3.70 ×  10–11  cm3  molecule−1  s−1, 
and [OH] concentration = 2.0 ×  106 molecules  cm−3 [76]. By 
utilizing all these values, the calculated lifetime for 4H2P 
is 3.75 h.

5  Conclusions

This work comprises the first mechanistic and chemical 
kinetic study of the 4H2P + OH reaction using density 
functional theory and canonical variational transition state 
theory. We have constructed the potential energy diagram of 
the titled reaction at the CCSD(T)/cc-pVTZ//BH&HLYP/
cc-pVTZ level. All five pathways are exothermic and spon-
taneous as all have negative 

(

ΔH
◦

298.15

)

 and 
(

ΔG
◦

298.15

)

 val-
ues. The energy barrier for reaction pathway 3 is minimum 
among five possible pathways, so it is expected to have faster 
rate coefficients than other reaction pathways. In the temper-
ature range of 210–350 K, rate coefficients were computed 
using canonical variational transition state theory (CVT) 
with small-curvature tunneling (SCT) correction. For all 
five reaction pathways, it is found that the tunneling effect 
exists significantly over the whole temperature range. The 
overall rate coefficient of the 4H2P + OH reaction at 298 K 
is calculated to be 3.70 ×  10–11   cm3  molecule−1  s−1. The 
calculated atmospheric lifetime of tested molecule 4H2P is 
very short (3.75 h). Both energetic and kinetic calculations 
reveal that the attack of OH radical occurs predominantly 
at the –CH position of the tested 4H2P molecule. Based on 
the thermodynamic study, it is also proposed that the hydro-
gen abstraction from the –CH group of the 4H2P molecule 
(reaction pathway 3) is the most favorable pathway to occur. 
The branching ratio study indicated that reaction pathway 3 
has the maximum contribution to the overall rate coefficient 
as the branching ratio for reaction pathway 3 (85.30%) is 
the highest among other reaction pathways. Hence, it is the 
major reaction pathway. We hope our theoretical study of 
the titled reaction will provide helpful information for future 
experimental studies.

(5)
1

τeff
=

1

�OH
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