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Abstract
The [3+2] cycloaddition (32CA) reaction of N-methyl-C-(4-hydroxylphenyl) nitrone 1 and maleic anhydride 2 has been 
investigated using molecular electron density theory (MEDT) at the MPWB95/6-311++G(d,p) computational level. This 
32CA reaction undergoes two stereo- and stereoisomeric reaction paths to form two different products 3 and 4. An electron 
localization function (ELF) study predicts that the N-methyl-C-(4-hydroxylphenyl) nitrone 1 has a zwitterionic character 
and it takes place through a one-step mechanism, with activation enthalpies in between 17.48 and 23.41 kJ  mol−1 in the 
gas phase. The CDFT indices are used to forecast the global electron density flux from the strong nucleophilic N-methyl-
C-(4-hydroxylphenyl) nitrone 1 to the electrophilic maleic anhydride 2. These exergonic 32CA reactions have negative 
Gibbs free energy along the endo and exo stereochemical routes. The endo stereochemical process is favored over the exo 
stereochemical pathway due to the increased thermodynamic stability of the cycloadduct. Bonding evolution theory (BET) 
predictions for the endo and exo routes indicate a one-step process with early transition states, which is consistent with the 
ELF topological investigation at the transition states.
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1 Introduction

The study of heterocycle synthesis is quite common in the 
area of organic chemistry and necessitates a specific synthetic 
approach. Heterocycles are important parts of the process of 
making important biological molecules, such as vitamin B6 
[1]. The [3+2] cycloaddition (32CA) reaction is a very com-
mon class of reactions that have been the subject of various 
research, most notably by Huisgen, who did a thorough analy-
sis of the probable interactions between dipole and dipolaro-
phile, which enabled a better understanding of these reactions 
[2, 3]. The 32CA reactions were identified a few years after the 
structure of diazoacetic acid esters was established by the reac-
tion of diazomethane with acrylic esters [3]. They have been 
the subject of multiple reviews since research in this sector 

is quite interesting. The 32CA reactions, in particular, are an 
effective way of producing 5-membered heterocycles [4–8]. 
In recent decades, the function of heterocyclic compounds has 
grown in importance, resulting in an astounding number of 
new classes of compounds with at least one heterocycle in 
their structure. Heterocycles are significant not only for their 
richness and exceptional variety, but also for their use in bio-
logical, medical, and therapeutic disciplines (vitamins, hor-
mones, antibiotics, and so on), as well as in the industrial and 
technical sectors (for example, corrosion inhibitors, dyes, sta-
bilizing agents, insecticides, herbicides, etc.) [9–12]. Although 
the utility of 32CA reactions in organic synthesis is no longer 
debatable, research in this area is focused on improving the 
chemical reactions to produce regulated regio- and stereo-
chemical products. To accomplish this, it seems that the use 
of a chiral Lewis acid catalyst is the most efficient and cost-
effective technique for lowering the activation energy of a par-
ticular 32CA reaction in order to generate the primary product 
at a high yield. Numerous experimental and theoretical studies 
on this subject are available in the literature [13–15].
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Computational chemistry has become an important tool 
for analyzing experimentally reported reactivity and selec-
tivity results by building a detailed picture of how chemical 
events work over the last 2 decades [16]. Despite the grow-
ing number of modern applications of computational science 
in chemistry, the fundamental theories of organic chemistry 
had remained stagnant for the last 40 years, until Domingo 
proposed the Molecular Electron Density Theory (MEDT) 
in 2016, recognizing the critical role of electron density 
changes in molecular reactivity [17–19]. MEDT has suc-
cessfully analyzed the experimental results of many 32CA 
reactions during the previous 4 years [5, 15, 18, 20–23]. 
MEDT has recently been used to analyze the experimental 
results of strain-promoted and catalyzed 32CA reactions and 
the reported chemo-, regio-, and stereoselective production 
of spiroisoxazolines [5, 15, 22, 24–27]. The three-atom com-
ponents (TACs) that play a role in the 32CA reactions are 
classified into pseudodiradical, pseudo(mono)radical, carbe-
noid, and zwitterionic types based on their electronic struc-
ture. This allows them to participate in the pdr-type, pmr-
type, cb-type, and zw-types of the 32CA reaction [18, 20]. 
32CA reactions with pdr-type 32CA have a lower energy 
barrier and are easier to do than 32CA reactions with zw-
type 32CA, which have a higher energy barrier that needs to 
be broken down by electrophilic–nucleophilic contact [26].

The MEDT study is presented in five Sects. 3.1 to 3.5, in 
this research work.

(I) in Sect. 3.1, the electron localization function (ELF) 
at the ground state structures of reagents N-methyl-C-
(4-hydroxylphenyl) nitrone 1 and maleic anhydride 2 is 
topologically analyzed so that they can be represented in 
terms of their electronic structure and subsequently evalu-
ated for their reactivity in 32CA reactions [28, 29]. (II) In 
Sect. 3.2, reactivity indices described within the conceptual 
density functional theory (CDFT) are examined in order to 
understand the polarity of the 32CA reactions [30, 31]. (III) 
In Sect. 3.3., the potential energy surfaces (PES) along the 
possible stereoisomeric channels of the 32CA reactions are 
investigated in predicting the energy profiles, and the global 
electron density transfer (GEDT) at the transition states 
(TSs) is determined [32, 33]. (IV) Sect. 3.4 analyzes the 
ELF of the discovered TSs. (V) In Sect. 3.5, the combination 
of ELF and Thom’s disaster, as well as Krokidis’ proposed 
bonding evolution theory (BET), is used to structure the 
process for electron density changes along stereoisomeric 
routes [28, 29, 34, 35].

2  Computational methods

Berny analytical gradient optimization was used to optimize 
the stationary points along the potential energy surface of 
the 32CA reactions at the MPWB95/6-311++G (d,p) level 

[36, 37]. The use of the MPWB95 functional as a reliable 
and accurate approach has been shown in the investigation 
of various recent 32CA reactions [6, 7, 38].

Calculations of the imaginary frequencies at the optimal 
TSs revealed the existence of one imaginary frequency, 
whereas the absence of imaginary frequencies was proven 
for the local minimum. Calculations of the intrinsic reaction 
coordinate (IRC) using the Gonzalez–Schlegel integration 
technique were used to validate the lowest energy reaction 
pathway between reactants and products through the identi-
fied TSs [39, 40].

The effects of the solvent on toluene were investigated 
using a polarizable continuum model (PCM) and the self-
consistent reaction field (SCRF) method [41–45]. The CDFT 
indies are determined using the equation discussed in Ref-
erence [30, 31]. At the TSs of each responding framework, 
natural population analysis (NPA) was used to come up with 
the global electron density theory (GEDT):

where q signifies atomic charges, the total of charges on all 
atoms in the studied framework indicates the GEDT, and the 
positive sign of GEDT indicates global electronic flux from 
that framework to another [33].

Multiwfn software [46] is used to perform the topologi-
cal analysis of the ELF at the reagents, TSs, and IRC sites, 
as well as the computation of the surfaces are shown using 
UCSF Chimera software [47]. All computations were per-
formed using the Gaussian 16 software [48].

3  Results and discussion

3.1  Analysis of the ELF topology 
of the N‑methyl‑C‑(4‑hydroxylphenyl) nitrone 1 
and maleic anhydride 2

A good connection has been established between the elec-
tronic structure of three atom compounds (TACs) and their 
reactivity in 32CA reactions by using the MEDT theory [17, 
18, 20].

The ELF of the ground state structures of chemicals 1 
and 2 is investigated in this study to characterize their elec-
tronic structures and reactivity in 32CA reactions. The ELF 
valence basin populations of N-methyl-C-(4-hydroxylphe-
nyl) nitrone 1 and maleic anhydride 2 are listed in Table 1, 
along with their ELF localization.

The domains are shown in Fig. 1. The Lewis structures 
of the reagents are provided based on their ELF valence 
populations and are shown in Fig. 2.

GEDT (f ) =
∑

q∈f

q
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The ELF of N-methyl-C-(4-hydroxylphenyl) nitrone 1 
includes two monosynaptic basins, V (O1) and Vʹ (O1), 
that integrate 5.91 e, two disynaptic basin, V (C3, N2) and 
Vʹ (N2, C3) that integrate 3.75 e, and one disynaptic basin, 

V (N2, O1), that integrates 1.48 e, which corresponds to the 
non-bonding electron density on O1 oxygen, the underpopu-
lated C3–N2 double bond, and the underpopulated N2–O1 
single bond, respectively.

The ELF of maleic anhydride 2 reveals two disynaptic 
basins for the C4–C5 bonding region, with a total integrat-
ing population of 3.28 e, corresponds to the underpopulated 
C4–C5 double bond.

After analyzing the reagents’ bonding patterns, the atomic 
charge distributions of N-methyl-C-(4-hydroxylphenyl) 
nitrone 1 and maleic anhydride 2 were determined by NPA 
(Fig. 2) [49, 50]. Oxygen atom O1 of N-methyl-C-(4-hy-
droxylphenyl) nitrone 1 is negatively charged (-0.565 e), 
and N2 nitrogen is positively charged (0.093 e), while C3 
carbon atom shows charge of 0.021 e; this shows charge 
separation in the nitrone, although it is not consistent with 
the charges predicted by Lewis’s bonding model. Although 
the N-methyl-C-(4-hydroxylphenyl) nitrone 1 is classed 

Table 1  MPWB95/6-
311++G(d,p) calculated most 
significant ELF valence basin 
populations at 1 and 2 

ELF valence basin populations 
are given in average number of 
electrons, e

1 2

V(O1) 3.02 –
Vʹ (O1) 2.89 –
V (N2, O1) 1.48 –
V (N2, C3) 1.88 –
Vʹ (N2, C3) 1.87 –
V (C4, C5) – 1.64
Vʹ (C4, C5) – 1.64

Fig. 1  MPWB95/6-311++G(d,p) ELF localization domains repre-
sented at an isosurface value of ELF = 0.82 of N-methyl-C-(4-hydrox-
ylphenyl) nitrone 1 and maleic anhydride 2. Green colored ones are 

the disynaptic basins, blue color represents the protonated basins, red 
color is used to represent the monosynaptic basins. The attractor posi-
tions are represented as black spheres
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as a zwitterionic TAC based on ELF analysis, this term 
does not refer to the nitrones’ dipolar electronic structure. 
Instead of that, it denotes the specific bonding pattern (in the 
absence of charges) of Huisgen’s resonance Lewis structure 
for "1,3-dipoles" [51]. Carbon atoms C4 and C5 in maleic 
anhydride 2 have negative charge values of − 0.239 and 
− 0.239, respectively.

3.2  Analysis of the CDFT indices 
of N‑methyl‑C‑(4‑hydroxylphenyl) nitrone 1 
and maleic anhydride 2

The concept of "Conceptual DFT," which began with Parr’s 
pioneering work, has been used in a number of investiga-
tions to determine the chemical reactivity of structures 
involved in 32CA reactions [30]. The CDFT indices, which 
are specified inside the conceptual DFT, have a well-estab-
lished literature and [31, 52–55] give a first understanding 
of molecular reactivity by addressing the chemical behavior 
of the reactants [31]. Domingo developed standard scales for 
nucleophilicity and electrophilicity indices at the B3LYP/6-
31G(d) level, which was used for the CDFT study in this 
paper [56, 57]. Consequently, the CDFT indices, electronic 
chemical potential, μ, chemical hardness, ɳ, electrophilicity, 
ω, and nucleophilicity, N, at the ground state of N-methyl-
C-(4-hydroxylphenyl) nitrone 1 and maleic anhydride 2 are 
listed in Table 2 [58–61].

The electronic chemical potential of N-methyl-C-(4-hy-
droxylphenyl) nitrone 1 = − 3.61 eV is greater than that of 
maleic anhydride 2 = − 6.25 eV (1), suggesting that dur-
ing the 32CA reaction, the electron density will flux from 

N-methyl-C-(4-hydroxylphenyl) nitrone 1 and maleic anhy-
dride 2 [31, 58].

The electrophilicity ω index and the nucleophilicity N 
index of N-methyl-C-(4-hydroxylphenyl) nitrone 1 are 1.08 
and 2.88 eV, respectively; according to the scales used, it is a 
moderate electrophile and a strong nucleophile, respectively. 
[56, 57, 60, 61]. The maleic anhydride 2 with electrophilicty 
indices ω = 2.61 eV is classified as strong electrophiles and 
with nucleophilicity indices N = 0.50 eV as weak nucleo-
philes. Consequently, maleic anhydride 2 will behave as 
an electrophile in these zw-type 32CA reactions, whereas 
N-methyl-C-(4-hydroxylphenyl) nitrone 1 will behave as a 
nucleophile, in accordance with their electronic chemical 
potentials μ.

3.3  Analysis of the energy profile 
associated with the 32CA reactions 
of N‑methyl‑C‑(4‑hydroxylphenyl) nitrone 1 
and maleic anhydride 2

The analysis of the energy profile may provide some inter-
esting results.

(i) The 32CA reaction of N-methyl-C-(4-hydroxyl-
phenyl) nitrone 1 and maleic anhydride 2 shows that the 
reaction has negative free energy ranging from − 29.92 to 
− 58.79 kJ   mol−1, confirming kinetic control and hence 
irreversibility.

(ii) The activation enthalpy of TS-ex is 5.12, 7.66, 1.42, 
10.64, and 10.99 kJ  mol−1 lower than that of TS-en in the 
gas phase, toluene, benzene, THF, and DCM, respectively 
[62] (Scheme 1).

(iii) TS-ex has an activation enthalpy of 17.48 kJ  mol−1 
in the gas phase, which increases to 28.19 kJ   mol−1 in 
DCM, 27.84 kJ  mol−1 in THF, 23.33 kJ  mol−1 in benzene, 
and 23.59 kJ  mol−1 in toluene, indicating a 10.71 kJ  mol−1 
increase from gas phase to DCM. Thus, the reaction is ener-
getically possible in low-polar solvents.

The GEDT at the TSs was determined to determine their 
polarity and is presented in Table 3. The found TSs have 
a GEDT between 0.18 and 0.35 e, which is typical of a 
forward electron density flux [63] (FEDF), suggesting the 
32CA reaction is polar.

Fig. 2  MPWB95/6-311++G(d,p) calculated natural atomic charges, 
in average number of electrons e, of N-methyl-C-(4-hydroxylphenyl) 
nitrone 1 and maleic anhydride 2. Positive charges are colored in blue 
and negative charges in red

Table 2  B3LYP/6-31G(d) CDFT indices N-methyl-C-(4-hydroxylphenyl) nitrone 1 and maleic anhydride 2. μ, η, ω and N represent electronic 
chemical potential, chemical hardness, electrophilicity and nucleophilicity indices, respectively, and are expressed in eV

Μ η ω N

1  − 3.61 6.00 1.08 2.88
2  − 6.25 7.47 2.61 0.50
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Figure 3 shows the gas phase geometries of TS-ex and 
TS-en. At TS-ex, the distance between C3 and C4 inter-
acting centers is 0.599 Å times greater than the distance 
between C5 and O1 interacting centers, whereas in TS-en, 
the distance between the C3 and C4 interacting centers is 

0.317 more than the distance between the C5 and O1 inter-
acting centers, showing that TS-ex has a greater degree of 
asynchronicity than TS-en. The inclusion of the solvents has 
no effect on the distance between the C3 and C4 interacting 
centers, which is 2.369 Å in TS-ex and 2.173 Å in TS-en, 

Scheme 1  Studied stereoisomeric paths for the 32CA reactions of N-methyl-C-(4-hydroxylphenyl) nitrone 1 with maleic anhydride 2 

Table 3  MPWB95/6-311++G(d,p) relative energies (ΔE), enthalpies 
(ΔH), Gibbs free energies (ΔG) and GEDT (average electron popula-
tion, computed as the difference between the total electronic popula-

tions of the two reacting counterparts in the transition state) of TSs 
and products for the 32CA reactions of N-methyl-C-(4-hydroxylphe-
nyl) nitrone 1 and maleic anhydride 2 

TS Solvent ΔE/kJ  mol−1 ΔH/kJ  mol−1 ΔG/kJ  mol−1 GEDT Product ΔE/kJ  mol−1 ΔH/kJ  mol−1 ΔG/kJ  mol−1

TS-ex Gas phase 19.27 17.48 75.97 0.33 3  − 110.09  − 113.75  − 50.55
TS-en Gas phase 24.39 23.41 77.34 0.35 4  − 115.57  − 118.82  − 58.80
TS-ex Toluene 25.14 23.59 80.53 0.21 3  − 99.11  − 102.68  − 39.31
TS-en Toluene 32.80 32.02 85.36 0.18 4  − 102.85  − 105.85  − 47.58
TS-ex Benzene 30.99 23.33 80.33 0.21 3  − 99.55  − 103.12  − 39.77
TS-en Benzene 32.41 31.62 85.00 0.18 4  − 103.38  − 106.40  − 48.03
TS-ex THF 29.40 27.84 84.21 0.22 3  − 91.79  − 95.49  − 31.27
TS-en THF 40.04 39.27 92.02 0.18 4  − 93.30  − 98.82  − 30.99
TS-ex DCM 29.77 28.19 84.69 0.22 3  − 91.16  − 94.88  − 30.52
TS-en DCM 40.76 39.98 92.68 0.19 4  − 92.39  − 97.93  − 29.92

Fig. 3  MPWB95/6-311++G(d,p) optimized gas phase TSs
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and also the distance between the C5 and O1 interacting 
centers, which is 1.770 Å in TS-ex and 1.856 Å in TS-en.

3.4  Topological analysis of the ELF at the TSs

The topological examination of the ELFs at the TSs ena-
bles the determination of their electronic structure and 
the extent to which bonds are formed. The ELF localiza-
tion domains and basin attractor sites for gas phase TSs 
associated with the 32CA reaction are given in Fig. 4. The 
ELF of TS-ex indicates the presence of V(O1) and V′(O1) 
monosynaptic basins with a total population of 5.76 e, 
while the ELF of TS-en shows the presence of V(O1) and 
V′(O1) with a total population of 5.73 e related with the 
non-bonding electron density on O1 oxygen. The ELF of 
TS-ex and TS-en shows the presence of V(C3, N2) and 

V′(C3, N2) disynaptic basins integrating a total population 
of 5.16 e associated with the C3–N2 bonding region, as 
well as the V(N2) monosynaptic basin integrating 1.45 e 
and 1.36 e associated with the non-bonding electron den-
sity at N2 nitrogen at TS-ex and TS-en, respectively. Note 
that the C3–N2 bonding region has been depopulated from 
3.75 e at N-methyl-C-(4-hydroxylphenyl) nitrone 1 to 2.63 
and 2.53 e at TS-ex and TS-en, respectively, indicating the 
rupture of the C3–N2 double bond at the TSs to create the 
non-bonding electron density at N2 nitrogen. The V (N2, 
O1) disynaptic basin depopulates from 1.48 e at N-methyl-
C-(4-hydroxylphenyl) nitrone 1 to 1.20 and 1.23 e, respec-
tively, at TS-ex and TS-en. Thus, the electron density in 
the V (N2) monosynaptic basin is mostly derived from 
the C3–N2 bonding region. The ELF of TS-ex and TS-
en demonstrates the existence of a V (C3) monosynaptic 
basin integrating 0.39 and 0.23 e, respectively, which is 
related to the creation of a pseudoradical center at C3. 

Fig. 4  MPWB95/6-311G++(d,p) ELF localization domains and the basin attractor positions of gas phase TSs TS-ex and TS-en. Protonated 
basins are shown in blue, monosynaptic basins in red, disynaptic basins in green and the attractor positions in magenta color (Iso value = 0.83)
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There is one disynaptic basin integrating 2.65 e and 2.77 
e in the ELF of TS-ex and TS-en that are related to the 
C4–C5 bonding region. Note, the C4–C5 bonding region 
depopulates from 3.28 e in maleic anhydride 2 to 2.65 e 
and 2.77 e at the TSs, resulting in the formation of the 
pseudoradical center at C4, as shown by the appearance 
of the monosynaptic basin V (C4) integrating 0.13 e and 
0.40 e at TS-ex and TS-en, respectively (Table 4).

3.5  Mechanistic implications 
along the stereoisomeric channels of 32CA 
reaction of N‑methyl‑C‑(4‑hydroxylphenyl) 
nitrone 1 and maleic anhydride 2 from bonding 
evolution theory (BET) study

Krokoidis developed the bonding evolution theory (BET) by 
examining consecutive bonding alterations using the ELF 
topological analysis and the Thoms catastrophe theory, gives 
mechanistic implications along a reaction route [28, 29, 34, 
35]. For the 32CA reaction of N-methyl-C-(4-hydroxylphe-
nyl) nitrone 1 and maleic anhydride 2, comprehensive BET 

research has been conducted to determine the bonding pat-
tern along the exo and endo stereoisomeric routes.

Table 5 shows the ELF basin populations at the reacting 
centers for the 32CA reaction of N-methyl-C-(4-hydroxyl-
phenyl) nitrone 1 and maleic anhydride 2 along the stereoi-
someric route in TS-ex. The study of ELF basins enables the 
identification of six topological phases: I, II, III, IV, V, and 
VI, denoted by the beginning points P1-I, P2-I, P3-I, P4-I, 
p5-I and P6-I, respectively (See Table 5).

The ELF structure of the starting point P1 exhibits a 
pattern of bonding that is identical to that of the specific 
compounds (see Table 1). At P2-I, (d (C3–C4) = 2.485 Å, d 
(O1–C5) = 1.918 Å, the monosynaptic basin V (N2) associ-
ated with the N2 nitrogen lone pair integrates 1.03 e. This is 
accomplished by obtaining electron density from the C3–N2 
bonding region, which has depopulated from 3.75 e at P1-I 
to 2.88 e at P2-I. Phase III is defined by the establishment 
of pseudoradical centers at C3 and C5 at P3-I, which results 
in the production of monosynaptic basins V(C3) and V(C5) 
integrating 0.39 e and 0.13 e, respectively. Note that the 
C3–N2 bonding region depopulates from 2.88 to 2.63 e at 
P2-I, and the C4–C5 bonding region depopulates from 3.12 
to 2.65 e at P3-I. TS-ex in found in Phase III transition 
structure. Note that the formation of the O1–C5 and C3–C4 
single bonds has not yet commenced at the TS-ex. In phase 
IV, initial C3–C4 single bond formation begins, as shown by 
the development of disynaptic basin V (C3, C4) integrating 
1.12 e, at the C3–C4 distance of 2.236 Å, as shown by the 
development of disynaptic basin V (C3, C4). Also, in the 
same phase as characterized by IRC point P4-I, the second 
O1–C5 single bond formation occurs at the O1–C5 distance 
of 1.636 Å, as shown by the development of disynaptic 
basin V (O1, C5) integrating 1.00 e. Finally, the molecular 

Table 4  MPWB95/6-
311++G(d,p) calculated most 
significant ELF valence basin 
populations at the TSs

TS-ex TS-en

V(O1) 2.95 2.86
Vʹ (O1) 2.81 2.87
V(N2) 1.45 1.36
V (N2, O1) 1.20 1.23
V (N2, C3) 2.63 2.53
V (C4, C5) 2.65 2.77
V(C3) 0.39 0.23
V(C4) 0.13 0.40

Table 5  ELF valence basin 
populations of the IRC 
structures P1–P6 defining 
the six phases, characterizing 
the molecular mechanism of 
the (TS-ex) reaction path of 
32CA reaction of N-methyl-C-
(4-hydroxylphenyl) nitrone 1 
and maleic anhydride 2. The 
distances of the forming bond 
distances are given in angstrom 
units, Å

Phases I II III IV V VI
Structures P1-I P2-I P3-I TS-ex P4-I P5-I P6-I 3

d(C3–C4) 2.936 2.485 2.369 2.236 2.074 1.710 1.572
d(O1–C5) 2.453 1.918 1.770 1.636 1.537 1.442 1.418
GEDT 0.09 0.20 0.19 0.02 0.08 0.15 0.19
V(O1) 3.02 2.90 2.95 2.58 2.62 2.50 2.51
Vʹ (O1) 2.89 2.89 2.81 2.49 2.44 2.43 2.37
V (C3, N2) 3.75 2.88 2.63 2.12 2.03 1.91 1.84
V (N2, O1) 1.48 1.28 1.20 1.07 1.04 1.02 1.03
V(N2) 1.03 1.45 1.99 2.14 2.23 2.28
V (C4, C5) 1.64 1.56 2.65 2.18 2.08 1.98 1.92
Vʹ (C4, C5) 1.64 1.56
V(C3) 0.39
V(C5) 0.13
V(C4)
V (O1, C5) 1.00 1.12 1.22 1.31
V (C3, C4) 1.12 1.37 1.61 1.77
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geometry is relaxed at O1–C5 and C3–C4 distances of 1.418 
and 1.572 Å, respectively, in the cycloadduct 3 (Scheme 2).

Scheme 3 shows the ELF basin populations at the react-
ing centers for the 32CA reaction of N-methyl-C-(4-hy-
droxylphenyl) nitrone 1 and maleic anhydride 2 along the 
endo stereoselective path, as well as the sequential bonding 
modifications. The identification of catastrophes using ELF 
basin analysis enables the characterization of six topological 
phases, I, II, III, IV, V, and VI, as indicated by the begin-
ning points P1-II, P2-II, P3-II, P4-II, P5-II, and P6-II, 
respectively (Scheme 3). The ELF topology of the start-
ing point P1-II, like the individual reagents, has the same 

bonding pattern as the individual reagents (see Table 1). 
(d(C3–C5) = 2.571 Å, d(O1–C4) = 2.243 Å is derived from 
the C3–N2 bonding region at P2-II, demonstrating a depop-
ulation from 3.67 e at P1-II to 3.66 e at P2-II. Phase P3-II 
is defined by the formation of monosynaptic basins V(C3), 
V(C4), and V(N2) integrating 0.21 e, 0.40 e, and 1.37 e, 
respectively, whereas phases III are defined by the forma-
tion of pseudoradical centers at C3, C4, and N2 nitrogen. 
It should be noted that the C4–C5 bonding region has been 
depopulated from 3.18 e at P2-II to 2.76 e at P3-II, while 
the C3–N2 bonding region has been depopulated from 2.48 
e at P3-II to 2.08 e at P4-II.

Scheme 2  Sequential bonding changes and most significant valence basin populations in average number of electrons e at the representative IRC 
points along the exo reaction path of the 32 CA reaction of N-methyl-C-(4-hydroxylphenyl) nitrone 1 and maleic anhydride 2 
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The initial O1–C4 single bond formation starts in phase 
IV, defined by the IRC point P4-II, at the O1–C4 distance of 
1.613 Å, as shown by the establishment of disynaptic basin 
V (O1, C4) integrating 0.89 e. Note that at the TS.

Finally, in phase V, at P5-II, the formation of the second 
C3–C5 single bond began at a C3–C5 distance of 1.632 Å, 
as shown by the development of disynaptic basin V (C3, 
C5) integrating 1.71 eV. In the cycloadduct 4, the molecu-
lar geometry is completely relaxed at O1–C4 and C3–C5 
distances of 1.413 and 1.540 Å, respectively. It is important 
to note that the creation of the second C3–C5 starts when 

the total integrating population of disynaptic basin V (O1, 
C4) reaches 1.20 e. As a result, the endo reaction route is 
projected to have a one-step, two-stage mechanism.

A comparison of the BET values for the endo and exo 
reaction paths for the 32CA reaction of N-methyl-C-(4-hy-
droxylphenyl) nitrone 1 and maleic anhydride 2 enables 
the conclusion of many significant findings. The first phase 
of the exo reaction path PI results in the creation of the 
lone pair electron density at N2 nitrogen, as well as the 
pseudoradical centers at C3 and C5, which are required 
for the creation of the new (C3–C4) and (O1–C5) bonds. 

Scheme 3  Sequential bonding changes and most significant valence basin populations in average number of electrons e at the representative IRC 
points along the endo reaction path of the 32 CA reaction of N-methyl-C-(4-hydroxylphenyl) nitrone 1 and maleic anhydride 2 
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At the beginning locations, the total integrating popula-
tion of the V(C3) and V(C5) basins is 0.39 e and 0.13 e, 
respectively, while the populations along the endo reaction 
routes PII of V(C3) and V(C4) basins are 0.21 e and 0.40 
e, respectively. These findings point to the development of 
more advanced (C3–C5) and (O1–C4) bonds at the endo 
reaction route.

As a result, GEDT at P2-I (0.20 e) and P3-I (0.19 e) 
associated with the exo reaction path increased compared to 
P2-II (0.14 e) and P3-II (0.16 e) associated with the endo 
reaction path (Table 6).

4  Conclusion

The 32CA reactions of N-methyl-C-(4-hydroxylphenyl) 
nitrone 1 and maleic anhydride 2 were investigated using 
MEDT at the MPWB95/6-311++G(d,p) level of theory. The 
ELF topological study of N-methyl-C-(4-hydroxylphenyl) 
nitrone 1 clearly shows that this TAC participates in zw-type 
32CA. The 32CA reactions of N-methyl-C-(4-hydroxylphe-
nyl) nitrone 1 and maleic anhydride 2 take occur in a one-
step mechanism. The global electronic flux from N-methyl-
C-(4-hydroxylphenyl) nitrone 1 to maleic anhydride 2 is 
predicted, since N-methyl-C-(4-hydroxylphenyl) nitrone 1 
has higher electronic chemical potential and stronger nucleo-
philicity compared to maleic anhydride 2. These exergonic 
32CA reactions have negative Gibbs free energy along the 
both stereochemical routes.

The activation enthalpy for the 32CA reaction leading 
to the exo cycloadduct 3 is lower than that along the endo 
reaction path. The geometrical characteristics show that at 

all TSs, the production of C–O or C–C single bonds has not 
yet began.

The BET study of the 32CA reaction between N-methyl-
C-(4-hydroxylphenyl) nitrone 1 and maleic anhydride 2 that 
results in the synthesis of 3 reveals the creation of non-bond-
ing N2 electron density region at the begin of the reaction 
path with a GEDT of 0.09 e. As a result, a rise in GEDT 
results in a decrease in the energy cost along the reaction 
routes. The current MEDT analysis enables us to conclude 
that the increased acceleration for the exo stereoselective 
zw-type 32CA reaction of N-methyl-C-(4-hydroxylphenyl) 
nitrone 1 and maleic anhydride 2 passing through TS-ex 
is due to the high polar character of this 32CA reaction of 
FEDF.
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