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Abstract
Molecular structure is often considered as emerging from the decoherence effect of the environment. Electrons are part of 
the environment of the nuclei in a molecule. In this work, their contribution to the classical-like geometrical relationships 
often observed between nuclei in molecular systems is investigated. Reduced density matrix (RDM) elements are evaluated 
from electron-nucleus wave functions. The computational results show that the electrons play a role in the localization of the 
nuclei around specific geometries. Although the electronic environment alone cannot explain molecular symmetry-broken 
isomers, it can contribute to their dynamical stability by reducing off-diagonal RDM elements.
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1 Introduction

The usual approach for reconstructing or recognizing 
molecular structural elements from a wave function fol-
lows the observation of Claverie and Diner [1] that classical 
structures can be identified with nuclear configurations for 
which appropriately defined density functions have maxima. 
Within such a view, based on Born’s probabilistic interpreta-
tion of the square modulus of the wave function, molecules 
do exhibit clear structural features as demonstrated by accu-
rate calculation of their full, i.e., “all-particle” wave func-
tions, in the sense that inter-nuclei geometrical parameter 
densities are peaked at definite values [2, 3]. However, when 
identical nuclei are present, the averaging over the permuta-
tional symmetry group spoils the relevance of these features 
for retrieving a classical molecular structure, as noticed in 
many instances [4].

Decoherence effects by the environment [5] are often 
invoked to explain why molecule behaves as near classi-
cal objects with structural features related to those maximal 
density configurations that chemists can use without having 
usually to worry about any quantum mechanical interference 
phenomena. In this article, we focus on these “classical-like” 
structure (a precise definition will be proposed in Sect. 2.3), 
and refer the reader interested in quantum nuclear effects in 
molecules to a few recent reviews [6–9]. The environment 
of a molecular system has undoubtedly some decoherence 
effects and something to do with the localization of the 
system in a state with “quasi-classical” characteristics. But 
when we are thinking about molecules, it is hard to imag-
ine a completely generic environment. How to formulate in 
mathematical expressions such a general, i.e., nonspecific 
environment? There have been proposals to consider the 
photon vacuum field as an ubiquitously present environ-
ment, responsible for the stability of isolated, chiral mole-
cules [10–12]. However, it has been shown that the proposed 
mechanism was only valid at zero temperature [13]. In the 
early years of the development of decoherence ideas in con-
nection with the molecular structure problem, Claverie and 
Jona-Lasinio [14, 15] used external random noise to simu-
late localization in a double potential well (which is a typical 
toy model for the ammonia “umbrella” inversion and parity 
breaking in chiral molecules [16, 17]). However, the reac-
tion field mechanism of these authors is a collective effect, 
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difficult to use convincingly for quasi-isolated molecules, 
as can be found in astrophysical conditions, where densities 
of one molecule per cubic centimeters or less, are observed. 
Davies argued that, for a collection of identical molecules (at 
least two), there exist metastable approximate eigenstates in 
the form of a tensor product of one and the same molecular 
state, which are both close to the genuine eigenstates of the 
whole collection of molecules, and symmetry-broken with 
respect to the individual molecule’s symmetry group [18]. 
However, it remains to justify why the whole system would 
be in such an approximate product state rather than in a true 
eigenstate. The spin-boson model can encompass a variety 
of environments, such as the electromagnetic radiation field, 
as long as they can be represented by a set of model har-
monic oscillators within some simplifying hypotheses [19]. 
Hornberger and co-workers simulated the stabilization of 
chiral molecules upon collisions [20–22] and studied the 
orientational decoherence of molecules and nanoparticles 
[23, 24]. Recent realistic decoherence simulations dem-
onstrate that different environment models have different 
decoherence properties that affect different degrees of free-
dom differently [25]. These simulations are very interest-
ing, because the systematic and accurate calculation of the 
decoherence times for a variety of molecular processes, in 
interaction with a series of “standard” environment models, 
could be useful for controlling decoherence in real systems 
and designing better quantum computers (using molecular 
qubits).

In the present work, we prefer to confine ourself to the 
sole molecular system: we are seeking the furthermost 
point, one can reach in resolving the molecular structure 
conundrum [26–28], without explicitly considering any 
specific kind of environment. By molecular structure, we 
understand the relative localization of the nuclei in the three-
dimensional space. However, a molecule consists of not only 
nuclei but also of electrons. So, it is appropriate to ask to 
which extent the electrons play a role in the localization 
of the nuclei by their continuous monitoring. The idea is 
that nuclei are constantly “measured” by electrons through 
their Coulomb interactions. Models such as that of Ref. [29], 
found an initial decoherence time due to electrons of the 
order of a few femtoseconds, that is much faster than the 
characteristic timescale for nuclear ro-vibrational motion. 
However, using only two electronic basis functions obtained 
as eigenfunctions of a clamped nuclei Hamiltonian, as in 
[29], would be questionable for a real molecular system. 
Time propagation of an initial pure state would lead to the 
ground state of the system, as in Monte Carlo simulation, 
and such a state should be decomposed on a complete, infi-
nite dimensional basis set of electronic states. The purpose 
of this work is to study the localization and decoherence 
effects of the electrons on the nuclei, by using accurate elec-
tron-nucleus, molecular wave functions. By decoherence, we 

mean essentially here, the suppression of off-diagonal matrix 
elements of the reduced density matrix for the nuclei alone.

The article is organized as follows: In the next section, 
we introduce the concept of “pointer states,” define what we 
mean by a “classical-like” molecular structure and present 
the notion of “purity” of the reduced density matrix (RDM), 
for the nuclei of a molecule, the electrons, considered as 
the environment of the latter, being traced out. Since this 
electronic environment corresponds only to a finite set of 
degrees of freedom, we cannot expect superselection rules to 
emerge, but we are curious about what kind of conclusions 
can be drawn within this setup. This is investigated in the 
third section, before concluding in the last section.

2  Theoretical tools to quantify 
the classicality of molecular structure

Let us first define in a very pedestrian way, the basic theo-
retical tools, we will rely on in the rest of the paper.

2.1  Pointer states

When measuring a property of a quantum system, the needle 
of an (idealized) measuring device points to one of the pos-
sible outcome values. In a satisfactory theory of quantum 
measurement, an experimental setup, although macroscopic, 
should be amenable to a quantum treatment. Hence, the idea 
is to associate a quantum state to every position of the nee-
dle. These states were termed “pointer state” by Zurek [30], 
and their apparent classical behavior was assumed to be due 
to the decoherence effect of the environment.

At present, in decoherence theory, the concept of “pointer 
states” has been extended to a wider context, where there is 
not necessarily a bona fide experimental setup. The envi-
ronment of a quantum system is assumed for all practical 
purposes, to break the unitary invariance of the quantum 
mechanical representation of the system, by selecting a 
special basis in which the “coherences,” i.e., the nondiago-
nal elements of the density matrix, decrease exponentially 
with time. The “pointer states” are defined as the pure states 
belonging to the basis set selected by the environment, the 
latter constantly destructing their superposition.

There is no general theory to determine the pointer states 
of a quantum system in a given environment. For each 
microscopic environment modeling, one has to tackle the 
task of finding the proper pointer states [22, 30]. However, 
in many cases, such as macroscopic objects which appear 
perfectly localized in space, the representation selected by 
the environment is the so-called direct representation, the 
pointer states corresponding to Dirac distributions in con-
figuration space.



Theoretical Chemistry Accounts (2021) 140:159 

1 3

Page 3 of 9 159

2.2  Reduced density and transition operator 
matrices for nuclear degrees of freedom (DOFs)

2.2.1  Pure states

Let ��⟩ be a molecular, normalized wave function in Dirac 
ket notation. The associated (pure state) density operator, 
��⟩⟨� � , will be denoted as �̂� . The representation selected by 
an environment being often the “direct representation,” let us 
consider it first to express the density operator matrix. In the 
direct representation, denoting collectively by � the electronic 
DOFs coordinates and by � the nuclear ones, we have,

To study the nuclear structure, we integrate out the elec-
tronic degrees of freedom that are considered as the environ-
ment for the nuclei. The resulting reduced density matrix 
operator for the nuclear motion is

so that,

If the wave function assumes a Born–Oppenheimer (BO) 
form, �BO(�,�) = �e(�,�)�N(�) , then Eq. (3) becomes

that is to say, the interference amplitude between pointer 
states ��⟩ and ��′

⟩ for the nuclear system depends 
upon the overlap of the BO electronic functions, 
∫ d��� � ∗

e
(���,��)�e(�

��,�).
In the case of Refs. [29, 31, 32] an all-particle wave 

function is written in a tensor product basis as, 
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orthonormal). Then Eq. (3) reads

This shows that all electronic functions contribute to the 
interference amplitude between pointer states ��⟩ and ��′

⟩ 
through 

∑

i

�
∗
i,I
�i,J , which is nothing but the reduced density 

matrix element in the 
(

�
I
N

)

I
 basis:

as can be seen by comparing Eq. (5) with the change of 
representation formula:

We note in passing, that, would the pointer state basis be a 
general one, such as �nuc ∶=

(

�
I
N

)

I
 , instead of (��⟩)

�
 , the 

corresponding reduced density matrix elements could be 
easily derived owing to this transformation.

Remark 1 One can define reduced transition matrices (RTM) 
in a similar fashion. Let ��1⟩⟨�2� be the transition operator 
from molecular state �2 to �1 , the reduced transition matrix 
elements in the direct representation are,
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one has more simply,

Time dependence has only been implicit, so far. If �1 and 
�2 , are stationary eigenstates of the total Hamiltonian 
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associated with eigenvalues E1 and E2 , the RTM will oscil-
late as e−

i(E1−E2)⋅t

ℏ  , while the RDM of a stationary state will be 
time independent.

2.2.2  Ensemble states

In this work, we will be dealing with eigensolutions of the 
time-independent Schrödinger equation. When such a solu-
tion is degenerate, a density matrix must be used. When no 
particular component has been selected by the experimen-
tal setting (in the case of an experiment) or by the natural 
physico-chemical conditions (in the case of observations 
of a remote medium), it is common practice to represent a 
degenerate eigenstate by a generic density operator that is 
a convex combination of degenerate pure states having all 
the same probability. (This amounts to assume a Boltzmann 
distribution, since all pure states have the same energy). 
More explicitly, the density operator is taken to be the sum 
with equal weights of the pure state density operators of an 
orthonormal set of degenerate eigenfunctions (��i⟩)i∈{1,…,n},

the normalization factor, 1
n
 , insuring that Tr[�̂�] = 1 . This 

permits to treat all components on an equal footing, and to 
retrieve correct line strengths in spectroscopy, for instance.

Such an operator can be reduced by tracing out electronic 
DOFs as for a pure state density operator

where

It is of interest to distinguish two extreme cases. In the first 
case, the reduced pure state operators, �̂�i

nuc
 , are all equal to 

one and the same operator denoted by, say, �̂�0
nuc

:

This can be the case for an electron spin multiplet, if the 
electronic spin is not coupled to the nuclear (whether spatial 
or spin) angular momenta (or if the coupling is neglected). 
That is to say, the initial ��

i
⟩ ’s are orthogonal electron spin 

components, and after tracing over the electron spin DOFs, 
they produce identical functions of the nuclear variables. 
Then, in such a limit case, the nuclear RDM has a single 
term, �̂�nuc = �̂�

0
nuc

 , as for a nondegenerate molecular state.
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(14)∀i, �̂�
i
nuc

= �̂�
0

nuc
.

In the second case, the reduced pure state operators, �̂�i
nuc

 , 
are still orthogonal, in the sense that,

so that

This last inequality implies that �̂�nuc is still an ensemble 
state, sum of no less than n pure state operators. This will be 
the case of a nuclear spin multiplet, not coupled to electronic 
(whether spatial or spin) angular momenta, for which the 
tracing out of electronic DOFs will not alter orthogonality.

In the general case, the expression of the reduced density 
operator �̂�nuc can be simplified into a linear combination of 
a number k < n of reduced density operators derived from 
molecular pure states, if and only if linear dependencies 
between the �̂�i

nuc
 ’s occur.

Remark 2 The �i being all stationary eigenstates of the 
total Hamiltonian associated with the same eigenvalue, the 
ensemble state density operator �̂� and its reduced density 
operator �̂�nuc will be time independent.

Remark 3 For a molecule in a general environment, the 
definition of the reduced density matrix operator for the 
nuclear motion, �̂�nuc , is formally identical. We only need 
to start from the total wave function of the molecule plus 
its environment and to integrate out both the electronic and 
environmental DOFs.

2.3  Classical‑like molecular structure

We will say that a property of a quantum system is “clas-
sical-like,” to distinguish it from “truly quantum” or from 
“chaotic,” if the outcomes of its measurement have a narrow 
distribution, compatible with what one would expect for a 
plausible experimental uncertainty distribution of a classical 
property measurement.

This implies two constraints on the reduced density oper-
ator of the system after tracing out the environment degrees-
of-freedom: (i) In the “pointer state” basis representation 
where the RDM is diagonal, all the significant eigenvalues 
(which give the probabilities to obtain the corresponding 
eigenstates) must correspond to eigenstates which give 
expectation values for the property falling within a nar-
row distribution. (ii) Decoherence must rapidly lead to the 
decay of any superposition of pointer states (related to the 
environment monitoring) back to the mixture of (i), after a 
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perturbation of the system such as the measurement of the 
property of interest (which would project the system to a 
pointer state associated with the property measuring device, 
so a priori to a superposition of environment-selected 
pointer states).

2.4  Purity

If there are fewer pointer states with a significant probability, 
then it is easier to fulfill condition (i). The limit case, where 
one pointer state has probability close to one, and therefore 
all the others have a probability close to zero, is the most 
favorable to deal with, because then one can assume that the 
environment will select this pointer state and one has just to 
verify that the property has a narrow distribution of possible 
measurement outcomes for that pointer state.

The “purity” of an RDM is a number which provides a 
sufficient condition to demonstrate that the RDM is domi-
nated by a single state. The purity concept is widely used in 
quantum information theory [33]. It can be used as both an 
entanglement and a decoherence assessment tool [34]. It is 
defined for the nuclear motion reduced density operator as

We easily see that, when the molecular state is nondegener-
ate, or when Eq. (14) is satisfied, P can take values between 
1, when a pointer state has probability one and all the others 
zero, and 1

Ndim

 , when all pointer states are equiprobable. In 
case of a n-degenerate eigenstate leading to inequality (16), 
the maximum value for P is 1

n
 , and it is achieved when each 

�̂�
i

nuc
 is dominated by a single pointer state.

Note that P does not depend upon the basis set, so it can 
be evaluated even if the pointer state basis has not been 
determined. A value close to one implies that one eigenvalue 
of �̂�nuc dominates all the others. The associated eigenstate 
can be considered as the dominant pointer state.

In the BO approach, for example, the purity of �̂�nuc is 
exactly 1 in the nondegenerate case, since only the �N 
appearing in Eq. (4) is populated. Such a state, at least the 
vibrational ground state of semi-rigid molecules (assuming 
separability of the rotational and translational DOFs), is 
well-localized in the neighborhood of the so-called equilib-
rium geometry of the system. So, a molecular structure is 
recovered in this sense. However, it is often pointed out that 
recovering molecular structure from the BO approach is not 
a great achievement, since it is put in from the start.

2.5  Environment classes defined by pointer states

We have seen that, in decoherence theory, there is a set of 
pointer states (defined up to unitary transformations within 

(17)P = Tr[�̂�2
nuc

] .

equiprobable subsets) for every environment. Here we con-
sider the inverse mapping. We select a set of orthonormal 
states, S , of an isolated quantum system and define the class, 
E , of environments for which we get the S-set of pointer 
states. That is to say, the off-diagonal elements of the nuclear 
RDM in the set S representation, �̂�nuc (see Remark 2) decays 
exponentially with time.

In the following, we will extend this definition to a set, S , 
of (non-normalizable) Dirac distributions over the nuclear 
configuration space and assume that its associated envi-
ronment class, E , is nonempty. Note, however that E may 
contain more than a unique environment: for example, col-
lisions by different types of particles may result in the same 
localization effect for a system in a bath of an appropriate 
colliding particle density.

3  Decoherence by the electronic 
environment

In this section, we consider a stationary eigenstate of the 
total system (electrons plus nuclei) Hamiltonian and study 
the decoherence effect of the electrons on nuclear motion. 
The density operator of such an eigenstate, and therefore its 
reduced density matrices, being time independent, we do not 
aim at the determination of isomer lifetimes.

We will assess the decoherence effect in two complemen-
tary ways. First, we will consider the electrons as the sole 
environment of the nuclei. In this context, the pointer states 
of interest for the molecular structure problem, are the eigen-
states of �̂�nuc . They can be readily obtained and analyzed. 
Second, we will study �̂�nuc in a representation over a set of 
Dirac distributions in the nuclear configuration space. Such 
a set could constitute pointer states selected by an exter-
nal environment that localizes the nuclei in space. We will 
assess the contribution of the electronic environment to the 
suppression of interferences between these potential pointer 
states.

Numerical examples are presented for the H2 isotopo-
logues, using accurate electron-nucleus wave functions. A 
complementary analysis, in which the nuclear reduced den-
sity matrix is analyzed for a broader range of systems, is 
presented in Ref. [35].

3.1  Purity of �̂
nuc

 for H
2
 isotopologues

In this section, we consider a translation-free system and 
separate also the rotational DOFs in a way that only results in 
an effective, J-dependent term in the potential energy of the 
internal coordinate [31]. Nuclear spin DOFs were not explic-
itly considered in our calculations, although they can prove 
important to take into account, when studying localization 
issues [36]. However, they cannot be ignored in building 
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degenerate eigenspaces fulfilling the constraints imposed by 
Pauli spin-statistics theorem [37]. More precisely, for even 
J-values only nuclear spin singlets are allowed, so that the 
eigenspace is only (2J + 1)2-degenerate, whereas for odd 
J-values only nuclear spin triplets are allowed, so that the 
eigenspace is 3 × (2J + 1)2-degenerate. To treat all degen-
erate components on an equal footing, an ensemble density 
operator is necessary, as explained in Sect. 2.2.2, resulting 
in a sum of nuclear RDM satisfying relations (15). How-
ever, we will consider that this operator has been further 
reduced by tracing over the orientational coordinates (i.e., 
Euler angles) and nuclear spin coordinates. After this reduc-
tion, we reach a situation corresponding to Eq. (14), since 
within our treatment of diatomic systems, the part depend-
ing upon Euler angles is factored out, leaving just an extra 
term in the internuclear potential which depends upon the 
angular momentum quantum number. So, maximal purity 
will be 1 as in a nondegenerate case. The RDM becomes 
just the operator, �̂�nuc , that is obtained by ignoring all nuclear 
coordinates except the internuclear distance. So the nuclear 
configuration � and �′ appearing in Eq. (3) needs only to be 
specified by internuclear distances.

In Electron-Nucleus Full Configuration Interaction (EN-
FCI) calculations [31, 32] a basis set of electronic states, 
obtained at one and the same clamped nuclei configuration, 
is used to build direct product, electron-nucleus basis sets. In 
Ref. [31, 32], the basis set was not complete, but uses typi-
cally tens of thousands of electronic states for H2 , so many 
more than in Ref. [29]. Computing the vibrational reduced 
density matrix by tracing out the electronic degrees of free-
dom, or the electronic reduced density matrix by tracing out 
the vibrational degrees of freedom, we find that the approxi-
mate (J = 0)-ground state basis function has a population of 
about 99% for H2 , while the largest coherence between the 
approximate ground state and excited states basis functions 
is on the order of a few percents. For the second excited 
state, the approximate first excited vibrational basis function 
has a population of about 97% for H2.

Let us focus now on the representation-free purity of 
the RDM for the vibrational DOF, �̂�nuc (identical to that 
for the electrons by an extension of Carlson and Keller 
duality [38] since the electronic DOFs and the vibrational 
DOF are two complementary sets, i.e., form a partition 
of the set of DOFs), is reported in Table 1 for selected, 
molecular eigenstates, obtained with the calculation 
described in Ref. [31]. The purity values are sufficiently 
converged to address the changes with respect to rota-
tional and vibrational excitation and isotopic substitution. 
The entries in italics correspond to a priori less accu-
rate, approximate molecular states. (Note that the label 
“ 1�+

g
0 → 1 ” in Tab. VI of [31] was referring to the transi-

tion X1
�

+
g
→ B1

�
+
u

).

The first observation is that all purity numbers are close, 
but not equal, to one, so that all the corresponding molecular 
eigenstates are reasonably, but not perfectly pure. There are 
two clear tendencies. Firstly, following every row, we note 
that purity numbers increase. This is not surprising: it is 
related to the decrease of the De Broglie wave length with 
increasing nuclear mass, and the corresponding increase in 
state localization, illustrated in Fig. 3 of Ref. [32]. Secondly, 
across every column, purity tends to decrease with vibra-
tional and rotational excitation for an electronic state and for 
successive approximate electronic states of a given approxi-
mate ro-vibrational state. For example, for H2 , the purity is 
0.983 for the lowest ro-vibrational states of the first singlet, 
electronic, excited state, B1

�
+
u
� = 0, J = 0 and J = 1 , while 

it is 0.989 for states X1
�

+
g
� = 0, J = 0 and J = 1.

The purity values from our �̂�nuc are quite different to 
what is found in the simple dynamical model, reduced to 
the first two electronic states of Ref. [29]. The purity of 
�̂�nuc for low-lying molecular eigenstates is always found to 
be high. So, the outcome of nuclear position measurements 
will be distributed according to the module square of the 
most populated eigenstate of �̂�nuc with high probability. The 
larger the mass of the system, the larger the probability and 
the localization of the density. So, the pointer states for the 
electronic environment alone, that is to say, the eigenstates 
of �̂�nuc , will tend to Dirac distributions only at the infinite 

Table 1  Purity of �̂�nuc for selected electron-nucleus eigenstates

The convergence of the values in italics has not been well established, 
and they are not used in making any conclusion in the text. J is the 
rotational angular momentum quantum number, � an approximate 
vibrational quantum number, and the first label of each row desig-
nates the approximate label for the electronic state

States H2 D2 T2

X
1
�

+
g
� = 0, J = 0 0.988841 0.992048 0.993479

X
1
�

+
g
� = 0, J = 1 0.988830 0.992044 0.993476

X
1
�

+
g
� = 0, J = 2 0.988807 0.992036 0.993472

X
1
�

+
g
� = 0, J = 3 0.988773 0.992024 0.993466

X
1
�

+
g
� = 0, J = 4 0.988728 0.992009 0.993458

X
1
�

+
g
� = 1, J = 0 0.966507 0.976131 0.980428

X
1
�

+
g
� = 1, J = 1 0.966473 0.976120 0.980420

X
1
�

+
g
� = 1, J = 2 0.966406 0.976097 0.980409

X
1
�

+
g
� = 1, J = 3 0.966306 0.976062 0.980390

X
1
�

+
g
� = 1, J = 4 0.966173 0.976016 0.980365

X
1
�

+
g
� = 2, J = 0 0.944993 0.960590 0.967589

X
1
�

+
g
� = 2, J = 1 0.944935 0.960571 0.967579

X
1
�

+
g
� = 2, J = 2 0.944822 0.960535 0.967558

X
1
�

+
g
� = 2, J = 3 0.944655 0.960480 0.967527

X
1
�

+
g
� = 2, J = 4 0.944440 0.960408 0.967486

B
1
�

+
u
� = 0, J = 0 0.983095 0.987301 0.989288

B
1
�

+
u
� = 0, J = 1 0.983104 0.987308 0.989119
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mass limit. The (J = 0)-pointer states of the main isotopo-
logue are depicted in Fig. 1. They are very similar to the 
vibrational eigenstates (not shown in the figure) one would 
obtain in the BO approach.

The analysis can be generalized to polyatomic molecules. 
One can obtain a nuclear motion RDM by tracing out the 
electronic DOFs. In molecular systems with multiple large-
amplitude motions, it is not always possible to separate out 
the rotational motion from the other nuclear degrees of free-
dom [39]. The present discussion does not consider these 
special systems for which a classical-like structure is hardly 
relevant.

To conclude this section, the purity of the nuclear reduced 
density matrix is a representation-free measure that allows 
to determine whether the electron-nucleus wave function is 
dominated by a single state for nuclear internal DOFs. If the 
purity is close to one, as we saw for the example of molecu-
lar hydrogen (and isotopologues), then, the nuclear structure 
is well characterized by the nuclear density of the dominant 
state. If the latter density has a single, narrow maximum, 
then a “classical-like” molecular structure emerges, since 
according to Born’s probabilistic interpretation, repeatedly 
probing the nuclei relative positions, will consistently find 
values around the sharp maximum. So, the electronic envi-
ronment seems able to explain at least partially the classical-
like internal structure of semi-rigid molecules.

However, such an approach cannot explain the nonob-
servation of the superposition of parity-broken enantiom-
ers, nor the breaking of molecular orientational symmetry, 
because a system of electrons plus nuclei having only a 
finite number of DOFs cannot partition the Hilbert space 
into superselection sectors [40, 41], as a consequence of the 
Stone-Von Neumann theorem [42, 43]. A natural explanation 
to limit the dynamical instability due to superpositions, and 

so to induce effective superselection rules, is to introduce an 
external environment such as in Ref. [21] for parity breaking 
in chiral molecules or Ref. [23] for orientational symmetry-
breaking. In the next section, we stay in the framework of an 
isolated molecular system; however, we study the RDM in 
a representation of plausible, localized states in the nuclear 
configuration space that can be selected as pointer states by 
an external environment.

3.2  Interference damping of rotational pointer 
states

So, let us consider a set of perfectly localized states, S . 
Assuming that their associated environment class, E , is non-
empty, they could constitute a set of pointer states for our 
system, that is to say, the RDM (reduced for electron plus 
environment DOFs, see remark 3) would be diagonal when 
represented in this set. In contrast, the RDM (reduced for 
electron DOFs only) of the isolated molecule is expected 
to have nonzero nondiagonal elements. The deviation from 
zero of the latter will tell us, how far the elements of set S 
are from the pointer state status.

To evaluate in this way the contribution of the electronic 
subsystem to nuclear position decoherence, we take the same 
example of H2 isotopologues. The study will be limited to 
the ground rovibronic eigenstate with zero total angular 
momentum of the isolated system. Its reduced density opera-
tor �̂�nuc will be further reduced to the one-nucleus density, 
�̂�0,n , with respect to the center of mass [44, 45].

The molecular wave function is spherically symmetric, 
and only the relative angular difference between two pointer 
states matters. Then, fixing the internuclear distance between 
the two nuclei and a plane, P , containing them, allows us 
to restrict the set, S to a set of configuration-centered delta 

Fig. 1  Dominant pointer states 
(in arbitrary units) of the two 
lowest “electronic” singlet states 
of H2 as a function of the inter-
nuclear distance q (in Bohr). 
The Kratzer potential curve 
[31], V in cm−1 , of the vibra-
tional Hamiltonian whose low-
est eigenfunctions were used as 
the nuclear motion basis set, is 
also shown. The vertical align-
ment of the pointer states with 
respect to the minimum of the 
potential curve and with respect 
to each other, is arbitrary
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distributions corresponding to nuclear positions rotated 
around the center-of-mass within P . Each of these states 
can be specified by a single angle parameter, � . Assigning 
the zero angle to some reference position, state ��

�
⟩ ∈ S will 

be related to ��0⟩ , the state corresponding to this reference 
nuclear configuration, by �𝜉

𝜗
⟩ = �Ô

𝜗
𝜉0⟩ where Ô

𝜗
 is the rota-

tion operator in plane P of angle � around the center of 
mass. We study orientational decoherence due to the elec-
trons by calculating the damping of cross-terms between 
these states, 𝜌0,n(R, Ô𝜗

R) ∶= ⟨𝜉0��̂�0,n�𝜉𝜗⟩ , as a function of 
their angular distance, see Fig. 2.

The ground-state wave function of the four-particle sys-
tems was computed using an explicitly correlated Gauss-
ian basis set and the QUANTEN computer program [46] 
(see also Refs. [2, 3] relevant for this work). The aim was 
to get RDM matrix elements for the ground state of these 
systems with zero total angular momentum ( N = 0 ), natu-
ral parity ( p = +1 ), and zero spin for the pair of electrons, 
and of positive particles. We managed to converge the 
corresponding energies within 1%, and we have checked 
that it was sufficient to obtain converged curves for the 
different H2 isotopologues within the resolution of Fig. 2, 
where the one-nucleus reduced density matrix elements, 
𝜌0,n(R, Ô𝜗

R) ∶= ⟨𝜉0��̂�0,n�𝜉𝜗⟩ , are displayed. For the sake 
of simplicity, we have fixed plane P to define the angle � 
and the pointer states ��

�
⟩ . However, thanks to the spherical 

symmetry, we may as well consider that the coordinates of 
the two nuclei are at antipodal points of a sphere centered 
around their midpoint.

To understand when the interference terms get small 
and the localization of the nuclei by the electrons effi-
cient, it is convenient to return to the Born–Oppenheimer 

approximation, Eq. (4). If the overlap of the electronic wave 
function corresponding to the rotated nuclear structures is 
small, then ⟨𝜉0��̂�

[BO]

0,n
�𝜉

𝜗
⟩ is also small. More generally, inter-

ferences are damped if the electronic cloud of the molecu-
lar wave function changes significantly between the rotated 
nuclear configurations.

The results of Fig. 2 shows that for rotated H2 isotopo-
logues, the contribution of electrons to interference suppres-
sion is small, with only about 4% suppression at 90◦ . All the 
curves are parallel, showing that the relative suppression 
effect with respect to ⟨𝜉0��̂�0,n�𝜉0⟩ is almost mass-independ-
ent. In a more complete study [35], it has been found that 
the lighter Ps2 = {e+, e+, e−, e−} system retains full coher-
ence with respect to orientational changes with less than 
1% suppression at most. Conversely, one can expect a larger 
suppression effect for heavier atoms with a strong electronic 
core density, since the overlap between the electronic part 
of the wave function and that of the rotated structure would 
be smaller.

4  Conclusion

The concept of molecular structure with fixed values of 
geometrical parameters, is at odds with quantum mechan-
ics because of the uncertainty principle. Furthermore, in 
quantum mechanics, we can only ask what is the structure 
of the molecule in a given molecular state. Certainly, the 
average geometrical parameters can change drastically upon 
molecular excitation. For example, the ground-state equi-
librium geometry of HeH+ is ≈ 1.463 bohr [47], while it is 
≈ 5.53 bohr in its first excited 1�+ electronic state [48].

Then, one could argue that in the fundamental theory of 
elementary particles interacting by electromagnetic interac-
tions (quantum electrodynamics, QED), excited states are 
not stable due to spontaneous emission, so the ground state 
has a distinctive role. In the present work, we addressed the 
molecular structure problem within the standard nonrela-
tivistic quantum mechanics but without invoking the usual 
BO (nor the strictly speaking “adiabatic”) approximation. 
The molecule was described with an electron-nucleus wave 
function, and we focused on (semi-rigid) molecular sys-
tems for which a molecular structure can be attributed (in 
their ground or lowest excited states) within the BO theory. 
That is to say, the scope of the present study is restricted 
to molecules that appear classical-like to chemists (even if 
the finite-temperature chemistry that has forged their intui-
tion would require thermally averaged ensemble density 
operators, rather than those representing single Hamiltonian 
eigenstates employed in our study).

We have considered the electrons as an environment con-
tinuously probing the positions of the nuclei. From obvious 
electrostatic considerations, nuclei without electrons would 
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Fig. 2  Off-diagonal nuclear density at the internuclear distance of 
maximal diagonal density for H2 isotopologues. The curves are inter-
polated from a grid of 100 points regularly spaced
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not be bound, their wave functions would be plane waves, 
and no structure would emerge. We have used the concept 
of purity of the nuclear reduced density matrix, that is a 
representation-free measure, to analyze the pointer states, 
selected by the electronic environment alone, for the internal 
structure of the nuclei. Numerical examples were presented 
for the H2 molecule and its isotopologues within electron-
nucleus computations (without relying on the BO nor adi-
abatic approximations).

Every studied low-lying state of the dihydrogen mole-
cule was dominated by a single pointer state that has similar 
characteristics to the vibrational state of the BO theory, but 
these nuclear pointer states were obtained as eigenfunctions 
of the nuclear reduced density matrix computed from the 
electron-nucleus wave function. The procedure can, in prin-
ciple, be generalized to the electron-nucleus wavefunction of 
polyatomic molecules and provides a route to obtain nuclear 
pointer states and derive a number of features from them, 
including structural information, without invoking the BO 
nor adiabatic approximations.

Then, we have quantified the suppression of the nondiag-
onal density matrix elements due to the electronic part of the 
wave function, between perfectly localized states. We have 
found only a small suppression effect on the H2 molecule and 
its homonuclear isotopologues. However, for molecules that 
include nuclei with higher nuclear charges, we may expect 
that the stronger electron-nucleus Coulomb interaction 
would increase the damping of interference terms.
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