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Abstract
A pseudo-diagonalization (PD) algorithm based on the annihilation of the occupied-virtual Kohn-Sham matrix elements is 
developed in the framework of auxiliary density functional theory (ADFT). The working equations are presented, and their 
parallel implementation in deMon2k is discussed. To avoid any matrix diagonalization in the PD ADFT self-consistent field 
(SCF) calculations, the pseudo-diagonalization of the Kohn-Sham matrix is accompanied by the iterative density fitting 
with the MINRES approach. In order to explore the sparsity of the ADFT Kohn-Sham matrix, localized molecular orbitals 
(LMOs) are used. Our analysis of the PD ADFT SCF shows that the LMOs remain localized throughout the SCF. Surpris-
ingly, we found this behavior not only for naturally localizable systems such as alkane chains and water clusters but also for 
less localizable systems such as fullerenes and hydrogen saturated graphene sheets. Despite the very different extensions of 
the converged molecular orbitals in PD and Roothaan-Hall ADFT SCF calculations, both methods yield, within the given 
SCF tolerance, nearly identical converged SCF energies.

Keywords deMon2k · ADFT · Pseudo-diagonalization · Linear scaling · Density fitting

1 Introduction

First-principle electronic structure calculations, with par-
ticular emphasis on density functional theory (DFT), have 
revolutionized molecular structure determination in chemis-
try over the last three decades. The accuracy and reliability 
of first-principle electronic structure optimized geometrical 
parameters have reached a similar level as corresponding 
single crystal X-ray diffraction data [1]. However, a severe 
restriction for first-principle methods is still system size. 
The structure determination of small proteins and enzymes 
with first-principle electronic structure methods remains 

challenging or even impossible. To overcome these limita-
tions, the variational fitting of the Coulomb and Fock poten-
tials has been proposed in the literature [2–16]. A compu-
tationally particularly efficient implementation of density 
fitting in the framework of DFT is realized by auxiliary 
density functional theory [17] (ADFT). In parallel ADFT 
calculations of molecular systems with several thousands 
of atoms, the computational demand is dominated by lin-
ear algebra tasks associated with the density fitting and the 
self-consistent field (SCF) calculation [18]. For the density 
fitting, we recently proposed a Krylov subspace method that 
eliminates the corresponding computational and random 
access memory (RAM) bottlenecks [19]. As a result, the 
ADFT Kohn-Sham matrix transformation and diagonaliza-
tion in the SCF remains as the critical linear algebra bot-
tleneck in large-scale parallel ADFT calculations. A pos-
sible solution to this problem is given by so-called linear 
scaling methods [20], mainly developed in the context of 
semi-empirical quantum chemistry programs. Typical exam-
ples are the density matrix minimization (DMM) [21–24], 
the Fermi operator expansion [25, 26], conjugate gradient 
density matrix search [27] (CGDMS), Chebyshev expan-
sion method [28] (CEM), purification of density matrix 
[29] (PDM) and pseudo-diagonalization [30, 31](PD). In 
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this work, we will focus on the PD algorithm. It is based on 
the annihilation of the occupied-virtual Kohn-Sham or Fock 
matrix elements, which is a necessary and sufficient condi-
tion for a stationary SCF solution. In order to obtain a linear 
scaling approach, localized molecular orbitals (LMOs) must 
be used in PD SCF implementations. We note that this not 
only reduces the scaling of the computational demand but 
also, if appropriate sparse matrix storage is used, the scaling 
of RAM demand. In fact, within the framework of semi-
empirical methods it has been shown by Stewart and others 
[27, 30–32] that LMOs in PD SCF iterations grow only to 
around 100 atoms independent of systems size. Thus, not 
only the computational demand but also the RAM demand 
becomes linear scaling with system size.

These literature reports have motivated us to implement 
a PD SCF algorithm in the framework of ADFT. Because 
our goal is to use PD for the solution of the Roothaan-Hall 
(RH)-type ADFT Kohn-Sham equation systems, the focus of 
this study lies on the PD ADFT SCF convergence behavior 
and the propagation of the LMOs within the correspond-
ing iterations. To this end, we have implemented a parallel 
PD ADFT SCF using LMOs in a developer version of the 
deMon2k program [33]. The initial LMOs are obtained by 
the localization of the start density tight-binding MOs. The 
article is organized as follows. In Section 2, the theoretical 
background of our PD ADFT SCF is outlined alongside with 
implementation details. The computational details are given 
in the next section. In Section 4, the propagation of LMOs 
during PD ADFT SCF iterations is analyzed. Furthermore, 
the PD and RH single-point SCF calculations are compared 
for selected fullerenes, hydrogen-saturated graphene sheets 
and diamond blocks. Final conclusions are given in the last 
section.

2  Theoretical background

ADFT as implemented in deMon2k possesses a linear scal-
ing for the calculation of energies and Kohn-Sham matrix 
elements when employing the local density approximation 
(LDA) or the generalized gradient approximation (GGA). 
Take for example an ADFT Kohn-Sham matrix element 
given by:

In Eq. 1, H�v denotes an element of the core Hamiltonian 
that possesses a formal quadratic scaling. However, if inte-
gral screening due to the atomic orbital overlap is intro-
duced, the number of non-vanishing H�� elements increases 
linearly with system size. The three-center electron repulsion 
integral (ERI),

(1)K𝜇𝜈 = H𝜇𝜈 +
�

k̄

⟨𝜇𝜈‖k̄⟩(xk̄ + zk̄),

introduces a formal cubic scaling into the calculation of the 
ADFT Kohn-Sham matrix elements. However, with overlap 
integral screening and the double asymptotic ERI expan-
sion [34] the calculation of this term becomes linear scal-
ing with system size, too. Furthermore, the Coulomb, xk̄ , 
and exchange correlation, zk̄ , fitting coefficients are linear 
scaling by construction. Thus, the LDA and GGA ADFT 
Kohn-Sham matrix calculation scales linearly with increas-
ing system size. However, cubic scaling linear algebra tasks 
in the form of matrix multiplication and diagonalization 
appear due to density fitting and RH type SCF iterations. 
To overcome these bottlenecks, we have recently developed 
a Krylov subspace method in form of MINRES [35] for the 
density fitting in our research group and implemented it in 
deMon2k [19]. This has eliminated cubic scaling linear alge-
bra tasks in the density fitting. Therefore, only the Kohn-
Sham matrix transformation and diagonalization remain as 
cubic scaling bottlenecks for ADFT SCF iterations. Here, 
the transformation refers to multiplication of the Kohn-
Sham matrix with S−1∕2 in deMon2k. Although extremely 
well optimized and parallelized linear algebra algorithms 
for matrix multiplications and diagonalization are available 
in deMon2k through LAPACK and ScaLAPACK routines, 
we observe ultimately a cubic scaling with system size. To 
overcome this scaling bottleneck, we have implemented 
the pseudo-diagonalization of the molecular orbital (MO) 
Kohn-Sham matrix using LMOs. As was outlined by Stewart 
and Pulay in the context of Hartree-Fock SCF calculations, 
a necessary and sufficient condition for SCF convergence, 
based on Brillouin’s theorem [36], is that all molecular 
orbital Fock matrix elements connecting occupied and vir-
tual (L)MOs are zero [30, 31]. As our results show, this 
condition yields in the here implemented form of PD within 
ADFT convergence to ground states that are indistinguish-
able, within the given SCF tolerance, from corresponding 
RH calculations. The necessary ADFT Kohn-Sham matrix 
elements in MO representation are given by:

In Eq. 3, occ and vir refer to occupied and virtual (L)MOs, 
respectively. Our PD implementation annihilates the occu-
pied-virtual block of the (L)MO ADFT Kohn-Sham matrix. 
To this end, we apply MO rotations analog to Jacobi rota-
tions to the (L)MO ADFT Kohn-Sham matrix:

In Eq. 4, R is an orthogonal (L)MO rotation matrix and 
the superscripts I and I + 1 denote rotation indices. These 

(2)⟨𝜇𝜈‖k̄⟩ = ∬
𝜇(�1)𝜈(�1)k̄(�2)

��1 − �2�
d�1d�2,

(3)Kov =
∑

�,�

C�oK��C�v ∀ o ∈ occ ∧ v ∈ vir

(4)K
I+1 = R

T
K

I
R
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elementary rotations are collected into a swap, which 
rotates all Kov matrix elements above a certain threshold. 
The rotation matrix of a swap is the product of all elemen-
tary rotation matrices that belong to the swap. A description 
of an elementary rotation of the MO Kohn-Sham matrix 
is described in the supporting information (SI). The cor-
responding rotations of the (L)MOs are given by: 

 Here the sine and cosine functions are evaluated as [37]: 

 with

Eqs. 5,  6 and 7 are the working equations implemented in 
deMon2k for elementary rotations in the PD procedure. The 
superscript I + 1 in Eqs. 5 denotes a rotated (L)MO vector. 
A swap is finished when all elementary rotations are applied 
to all Kia matrix elements above a certain threshold. For the 
corresponding threshold definition see section 2.1. In gen-
eral, the complete annihilation of the Kov matrix will usually 
require many swaps. However, for SCF convergence it is 
sufficient to diminish the absolute values of the Kia matrix 
elements successively in each SCF step. In our implementa-
tion, we are performing 2 swaps in each SCF cycle. At SCF 
convergence, the converged occupied and virtual (L)MOs 
are decoupled, i.e., the corresponding Kia matrix elements 
are below the convergence threshold. Here we analyze the 
SCF convergence behavior of this approach in the frame-
work of ADFT. To this end, we compare converged SCF 
energies and numbers of SCF cycles between the outlined 
PD approach and conventional RH calculations. Further-
more, we monitor the spread of the localized MOs in the 
PD ADFT SCF.

2.1  Practical implementation

Following the algorithmic outline in the previous section, we 
now need to define thresholds for the rotation of Kia matrix 
elements. A straightforward brute force approach is to cal-
culate the rotation angles for all Kia matrix elements and 

(5a)�
I+1
i

=�I
i
cos � − �

I
a
sin �

(5b)�
I+1
a

=�I
i
sin � + �

I
a
cos �

(6a)cos � =

√
1

2
+ �

(6b)sin � = − sgn(KI
ia
)

√
1

2
− �

(7)
� =

1√
4 +

(
4K

I
ia

K
I
aa
−KI

ii

)2

sort them from largest to smallest. According to this list, the 
matrix elements are annihilated in the first swap. The same 
procedure is applied for the second swap in the same SCF 
iteration. This approach is computationally very demanding 
due to the sorting of the Kia matrix elements at the beginning 
of each swap and large number of rotations. The sorting can 
be avoided by defining a fixed threshold for the rotational 
angle [38]. This reduces the number of necessary rotations, 
too, according to the selected threshold. Nevertheless, the 
rotation angles must be still calculated. To avoid this draw-
back, we define here thresholds directly via the Kia matrix 
elements. The following two threshold definitions are tested 
in this work: 

1. In the adaptative threshold definition, the maximum 
absolute value of the Kia matrix elements in a SCF itera-
tion is determined. Then the threshold � for the LMO 
rotations in the 2 swaps of this SCF cycle is defined as: 

 All Kia matrix elements above � are annihilated. We 
present results for � = 0.04 and � = 0.4 in this work.

2. In the fixed threshold definition, � is calculated in each 
SCF cycle, NSCF , according to: 

 Only those Kia are annihilated in the 2 swaps of the 
given SCF cycle that are above this threshold. For large 
molecules, the fixed threshold approach is particularly 
attractive because the search for the maximum |Kia| ele-
ment in each SCF cycle is avoided.

2.2  PD ADFT SCF Algorithm

We need a set of initial localized orbitals for our LMO-based 
PD ADFT. To this end, we localize the SCF start density 
MOs with a two-step localization procedure [14] consisting 
of a pivoted Cholesky decomposition of the density matrix 
[39] followed by a Foster-Boys MO localization [40, 41]. At 
this point, it is important to note that during the PD ADFT 
SCF no other MO localization is applied. The SCF proceeds 
the standard route, except for the Kohn-Sham matrix orthog-
onalization and successive diagonalization. Instead, the cal-
culated Kohn-Sham matrix in atomic orbital representation 
of the current SCF step, which possesses a sparse matrix 
structure, is transformed with the available LMO coefficients 
from the previous SCF cycle into molecular orbital represen-
tation. Because LMOs are used, this matrix remains sparse, 
as Stewart pointed out first [31]. This is a marked differ-
ence to the orthogonalization transformation in RH ADFT 
SCF calculations. This sparsity also reduces the number of 

(8)� = �|Kia|max

(9)� = 10e−(NSCF+4)
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rotations needed to diminish the Kov matrix elements. The 
pseudocode of our PD algorithm is depicted in Fig. 1.

According to the threshold definition, the pseudo-diag-
onalization in Fig. 1 starts either with the search for the 
largest absolute |Kia| matrix element and the correspond-
ing threshold definition given by Eq. 8 or with the fixed 
threshold given by Eq. 9. Then, the diagonal elements of 
the Kohn-Sham matrix in MO representation are calculated 
since they are needed for the � calculation in Eq. 7. In Fig. 1, 
superscript I denotes quantities that change with elemen-
tary rotations, whereas superscript J denotes quantities that 
change with swaps. Quantities without superscript are SCF 
cycle specific. As the pseudocode in Fig. 1 shows, each of 
the 2 swaps in a SCF cycle contains loops over the virtual 
and occupied orbitals. Once a virtual orbital is addressed, 
a parallel matrix-vector multiplication for the calculation 
of XJ

�a
 is performed. An example of this multiplication is 

depicted in Fig. 2, where a 5 × 5 Kohn-Sham matrix is dis-
tributed over 3 threads. In Fig. 2, the rows of the Kohn-Sham 
matrix elements in atomic orbital representation are distrib-
uted over the threads and the CI

�a
 LMO coefficient vector is 

sent completely to each of the 3 threads. Then, each thread 

multiplies its partial K�� block with the CI
�a

 vector and the 
results are obtained in the XJ

�a
 block vector on each thread as 

can be seen from Fig. 2. These XJ
�a

 vectors have the dimen-
sion of the number of basis functions distributed to a thread 
and remain unchanged in the following loop over occupied 
LMOs.

In order to calculate the Kia matrix elements, a dot prod-
uct between the XJ

�a
 and the CI

�i
 LMO coefficient vector must 

be calculated. To this end, the CI
�i

 vector is distributed by 
rows over the threads according to the XJ

�a
 distribution given 

in Fig. 2. The scalar dot product of these two vectors is cal-
culated in parallel. If the absolute value of the resulting Kia 
matrix element is above the threshold � , the rotation between 
the ith occupied LMO and the ath virtual LMO coefficient 
vector is performed. Equations 5,  6 and 7 (See SI for details) 
are needed for this rotation of the CI

�i
 and CI

�a
 LMO coeffi-

cient vectors. Note that the occupied MO coefficients are 
used for the calculation of the next KI

ia
 element according to 

line 12 in Fig. 1. This distinguishes our algorithm from the 
implementations described in [30] and [31]. The use of 
LMOs significantly reduces the number of rotations because 
the Kov matrix is sparse.

3  Computational details

The results presented here were obtained with a modified 
6.1.2 version of the deMon2k program [42]. In the ADFT 
calculations, the variational fitting of the Coulomb poten-
tial [8, 43] was used and the numerical calculations of the 
exchange-correlation energy and potential were performed 
with the fitted density. Therefore, no four-center ERIs nor 
quadratic scaling density evaluations on the grid are needed. 
The three-center ERIs were recalculated twice in each SCF 
step (direct SCF) utilizing the double asymptotic expansion 
for long-range ERIs [34]. As a result, the calculation of the 
ADFT energy and Kohn-Sham matrix becomes linear scal-
ing with respect to system size already for moderate large 
molecules with a few hundred atoms. To avoid cubic scaling 
linear algebra operations in the density fitting, the MINRES 
approach was used [19]. The calculations are performed 
with the PBE [44] GGA and PBE0 [45, 46] hybrid func-
tionals. For the linear combination of Gaussian-type orbital 
(LCGTO) approximation the DZVP [47] and aug-cc-pVTZ 
[48] basis sets with Cartesian orbitals are employed. If not 
otherwise stated, the GEN-A2* auxiliary function set was 
used for the variational density fitting. In the validation cal-
culations listed in Tables 1, 2 and SI-1, the RH and PD SCF 
convergence thresholds were set to 10−6 and 10−5 a.u. for the 
total energy and the variational density fitting, respectively. 
For the calculations in Table 3, the default deMon2k SCF 
convergence thresholds of 10−5 and 5 × 10−4 a.u. for the total 

Fig. 1  Pseudo-diagonalization algorithm for ADFT SCF calculations

Fig. 2  A 5 × 5 example for the K�� and CI

�a
 block distribution over 3 

threads and the distributed construction of the XJ

�a
 vectors in parallel 

calculations
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energy and density fitting were used. All calculations were 
performed in parallel on 24  Intel®  Xeon® CPU E5-2650 v4 
@ 2.20GHz cores.

To analyze the LMO propagation during PD ADFT 
SCF iterations, we calculate the square root of the orbital 
variance:

Table 1  Comparison of RH and PD ADFT single-point energies [a.u.] and SCF cycles

 The occupied and virtual maximum (L)MO spreads (OMS and VMS) for the start density (Guess) and converged MOs are given, too. The data 
refer to PBE/DZVP/GEN-A2* calculations

Molecules Guess RH PD(0.04) PD(0.4) PD(fixed)

Alkane chains
C
6
H

14
Energy: −236.769791796 −236.769791792 −236.769791744 −236.769791797
Cycles: 12 14 21 18
OMS: 1.839 6.089 1.634 1.631 1.632
VMS: 3.392 7.129 3.391 3.392 3.392

C
10
H

22
Energy: −393.822314194 −393.822314291 −393.822314154 −393.822314292
Cycles: 11 15 20 17
OMS: 1.839 10.884 1.635 1.632 1.632
VMS: 3.532 11.617 3.518 3.522 3.524

C
18
H

30
Energy: −707.927304494 −707.927304503 −707.927203529 −707.927304495
Cycles: 12 15 20 16
OMS: 1.839 19.750 1.634 1.632 1.632
VMS: 3.589 21.025 3.579 3.580 3.582

C
22
H

46
Energy: −864.979792516 −864.979792542 −864.979792134 −864.979792538
Cycles: 12 16 24 18
OMS: 1.839 23.165 1.635 1.632 1.632
VMS: 3.588 25.361 3.582 3.582 3.581

C
30
H

62
Energy: −1179.084764024 −1179.084764056 −1179.084758838 −1179.084764050
Cycles: 12 16 18 18
OMS: 1.839 26.862 1.634 1.632 1.632
VMS: 3.588 34.611 3.583 3.583 3.582

Water clusters
W4 Energy: −305.496421041 −305.496421037 −305.4964020697 −305.496421040

Cycles: 11 13 20 16
OMS: 1.532 4.019 1.439 1.440 1.440
VMS: 2.967 5.892 2.982 2.981 2.981

W8 Energy: −611.025551767 −611.025551747 −611.025549007 −611.025551763
Cycles: 12 13 23 17
OMS: 1.535 5.043 1.468 1.467 1.467
VMS: 2.878 6.849 2.899 2.895 2.895

W12 Energy: −916.551057990 −916.551057950 −916.551047029 −916.551057977
Cycles: 12 13 23 17
OMS: 1.534 6.766 1.466 1.466 1.466
VMS: 2.907 8.124 2.924 2.925 2.924

W16 Energy: −1222.078509475 −1222.078509406 −1222.078489173 −1222.078509466
Cycles: 12 13 23 18
OMS: 1.534 8.748 1.467 1.467 1.467
VMS: 2.930 10.384 2.949 2.947 2.947

W20 Energy: −1527.611386887 −1527.611386846 −1527.611363924 −1527.611386884
Cycles: 12 14 26 18
OMS: 1.535 8.575 1.471 1.472 1.471
VMS: 2.927 9.186 2.945 2.943 2.943
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Table 2  Comparison of RH and PD ADFT single-point energies [a.u.] and SCF cycles

 The occupied and virtual maximum (L)MO spreads (OMS and VMS) for the start density (Guess) and converged MOs are given, too. The data 
refer to PBE0/DZVP/GEN-A2* calculations

Molecules Guess RH PD(0.04) PD(0.4) PD(fixed)

Alkane chains
C
6
H

14
Energy: −236.818729918 −236.818729922 −236.818729906 −236.818731110
Cycles: 11 14 19 18
OMS: 1.839 6.089 1.626 1.624 1.624
VMS: 3.391 7.130 3.390 3.390 3.391

C
10
H

22
Energy: −393.901908544 −393.901908552 −393.901908929 −393.901909146
Cycles: 14 12 19 19
OMS: 1.839 10.881 1.626 1.624 1.624
VMS: 3.533 11.622 3.518 3.521 3.523

C
18
H

30
Energy: −708.068232190 −708.068231623 −708.06823641 −708.068233560
Cycles: 13 13 17 20
OMS: 1.839 19.491 1.626 1.624 1.624
VMS: 3.588 21.047 3.579 3.579 3.579

C
22
H

46
Energy: −865.151388271 −865.151388312 −865.151388757 −865.151388284
Cycles: 13 13 20 20
OMS: 1.839 24.839 1.626 1.625 1.625
VMS: 3.588 25.198 3.581 3.581 3.581

C
30
H

62
Energy: −1179.317697803 −1179.317698458 −1179.317697996 −1179.317697814
Cycles: 13 13 22 22
OMS: 1.839 26.152 1.626 1.624 1.624
VMS: 3.588 34.653 3.582 3.582 3.581

Water clusters
W4 Energy: −305.494287188 −305.494287188 −305.494287342 −305.494287280

Cycles: 11 13 19 16
OMS: 1.532 4.023 1.424 1.425 1.425
VMS: 2.967 5.950 2.981 2.980 2.980

W8 Energy: −611.018872562 −611.018872894 −611.018873607 −611.018872855
Cycles: 12 14 23 17
OMS: 1.535 5.041 1.449 1.449 1.449
VMS: 2.878 6.893 2.896 2.893 2.893

W12 Energy: −916.540788005 −916.540788556 −916.540789653 −916.540788445
Cycles: 12 14 18 18
OMS: 1.534 6.738 1.449 1.448 1.449
VMS: 2.907 8.129 2.922 2.921 2.921

W16 Energy: −1222.064440477 −1222.064436994 −1222.064425310 −1222.064436626
Cycles: 12 14 22 18
OMS: 1.534 8.716 1.449 1.449 1.449
VMS: 2.930 10.394 2.946 2.944 2.944

W20 Energy: −1527.594505389 −1527.594506095 −1527.594483553 −1527.594505519
Cycles: 12 14 24 19
OMS: 1.535 8.336 1.454 1.455 1.454
VMS: 2.927 9.654 2.943 2.942 2.942
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Here the Qi and D2

i
 are defined as [49, 50]:

In the literature [50], �i is introduced as the spread of the 
orbital i, and closely related to the so-called Boys localiza-
tion function [40, 41]. Therefore, we use �i to monitor the 
spread of the (L)MOs during the SCF. To this end, we cal-
culated the occupied and virtual molecular orbital maximum 
spreads, denoted by OMS and VMS, respectively, in each 
SCF step.

4  Results

4.1  LMO propagation analysis

In order to analyze the SCF convergence and the (L)MO 
propagation during SCF iterations, we performed single-
point energy calculations of small alkane chains with 6, 10, 
18, 22 and 30 carbon atoms as well as of water clusters with 
4, 8, 12, 16, 20 and 38 H2O molecules ( W4 to W38 ). We 
chose these systems as typical examples for MO localizable 
covalent bonded molecules and molecular assemblies.

Tables  1 and 2 show results from these calculations 
for the more compact DZVP basis set using the PBE and 
PBE0 functionals. Table SI−1 in the supporting information 
shows the corresponding results for the more extended aug-
cc-pVTZ basis with the PBE functional. For each system, 
the converged SCF energy (a.u.) along with the number of 
SCF cycles is listed. The OMS and VMS entries denote the 
occupied maximum spread and virtual maximum spread, 

(10)�i =

√
Qi − D2

i

(11)
Qi ≡⟨i�x2�i⟩ + ⟨i�y2�i⟩ + ⟨i�z2�i⟩
D2

i
≡⟨i�x�i⟩2 + ⟨i�y�i⟩2 + ⟨i�z�i⟩2

respectively, for the converged (L)MOs except for the col-
umn Guess. Here OMS and VMS refer to the maximum 
spreads of the tight-binding start MOs after localization. 
The studied SCF methods in Tables 1 and 2 as well as SI-1 
are the standard RH ADFT method (RH), the adaptative 
threshold pseudo-diagonalization (PD) ADFT method with 
� = 0.04 and � = 0.4 as well as the fixed sequential thresh-
old PD ADFT method, PD(fixed).

The following general trends can be observed from 
these three tables. The occupied tight-binding start density 
MOs can be well localized for all systems independently of 
the used basis set and functional. In the RH SCF calcula-
tions, this MO localization is lost for all systems at SCF 
convergence. In fact, it is already lost in the first SCF step. 
Moreover, Tables 1, 2 and SI-1 show that the OMS values 
increase with system size in RH SCF calculations. This is 
well documented in the literature, too. RH MOs are most 
delocalized according to the Heisenberg uncertainty princi-
ple [51]. Therefore, RH SCF calculations delocalize valence 
MOs even for molecules or molecular assemblies that are 
intuitively localizable such as the here presented alkanes and 
water clusters. For the PD SCF, the situation is different. For 
all presented calculations in Tables 1, 2 and SI-1, the OMS 
and VMS values of the converged PD SCF MOs are very 
similar to the initial localized start density values. In general, 
we observe during PD ADFT SCF iterations only moderate 
relaxations of the initial localized tight-binding start density 
MOs. Although certain LMOs might increase slightly their 
extension, all MOs remain localized until SCF convergence 
in PD ADFT SCF calculations. Despite this marked differ-
ence in MO localization, the converged PD ADFT SCF ener-
gies show fair to excellent agreement with the corresponding 
RH ADFT SCF energies. Closer inspection of Tables 1, 2 
and SI-1 reveals that the converged energies of the adapta-
tive threshold PD SCF calculations with � = 0.04 and the 
fixed sequence threshold PD SCF calculations are within 

Table 3  Comparison of 
single-point energies [a.u.] 
for the test systems of Fig. 5 
obtained from RH and PD 
ADFT SCF calculations. The 
number of basis, N

bas
 , and 

auxiliary functions, N
aux

 , of 
the test systems are given, too. 
Calculations were performed 
with the PBE/DZVP/GEN-A2 
level of theory

Molecule N
bas

N
aux

RH total energy PD total energy Difference

Fullerenes cages
C
60

900 2040 −2284.014377540 −2284.014375292 2.25×10−6

C
180

2700 6120 −6853.414681986 −6853.414679122 2.86×10−6

C
540

8100 18360 −20564.423675460 −20564.423701759 2.63×10−5

Saturated graphene sheets
C
42
H

16
710 1492 −1608.952883823 −1608.952853235 3.06×10−5

C
80
H

22
1310 2808 −3059.633102793 −3059.633047900 5.49×10−5

C
150

H
30

2400 5220 −5730.242861455 −5730.242585527 2.76×10−4

Saturated diamond-like structures
C
54
H

54
1080 2052 −2088.748322827 −2088.748394032 7.12×10−5

C
200

H
130

3650 7320 −7694.314209492 −7694.314115211 9.43×10−5

C
360

H
192

6360 13008 −13824.682874267 −13824.682924041 4.98×10−5
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the used SCF convergence threshold of 10−6 a.u., in excellent 
agreement with the corresponding RH converged results. 
Because the fixed threshold PD SCF needs usually signifi-
cantly more SCF cycles for convergence than the � = 0.04 
adaptative PD SCF, we used the latter one for all following 
calculations.

To gain more insight into the presented OMS and VMS 
values, we plot the (L)MOs of selected systems. Figure 3 
plots the OMS and VMS (L)MOs of C60H122 for the local-
ized tight-binding guess, the converged RH ADFT SCF 
and the converged PD(0.04) ADFT SCF. The OMS for the 
localized tight-binding is 1.839. This value increases for the 
converged RH ADFT SCF to 51.719, whereas it decreases 
for the converged PD(0.04) ADFT to 1.634. The plots in 
Fig. 3 show the corresponding localization and delocali-
zation of the (L)MOs. For the VMS, similar situations are 

found. Note that the large VMS value for the converged RH 
ADFT SCF (lower graph, middle chain) of 68.680 arises 
from a canonical MO that is localized at the ends of the 
chain. Figure 4 shows the same plots for a water cluster of 
50 H2O molecules. The tight-binding OMS LMO (top left) 
is localized on one water molecule. As a result, the localized 
tight-binding OMS value is only 1.530. Again this localiza-
tion is destroyed in the RH ADFT SCF, and the converged 
canonical OMS MO, with an OMS value of 9.781, is delo-
calized over several H2O molecules (Fig. 4, top middle). On 
the other hand, the PD ADFT SCF conserves the localiza-
tion of the start density tight-binding LMOs. As a result, 
the PD(0.04) ADFT SCF converged LMO is localized on 
one H2O molecule (Fig. 4, top right) with an OMS value of 
only 1.510. The VMS MOs, Fig. 4 bottom, show the same 
qualitative trend but are slightly more delocalized.

Fig. 3  Plot of OMS (upper 
3 chains) and VMS (lower 3 
chains) (L)MOs of C

60
H

122
 . 

Each graph shows from top to 
bottom the OMS/VMS guess 
LMO, the RH converged OMS/
VMS canonical MO and the 
PD converged OMS/VMS 
LMO. The calculations were 
performed with the PBE/DZVP/
GEN-A2* level of theory

Fig. 4  Plot of OMS (top) and 
VMS (bottom) (L)MOs of a 
water cluster with 50 H

2
O mol-

ecules. Each graph shows from 
left to right the OMS/VMS 
LMOs of the tight-binding start 
density, the converged canonical 
OMS/VMS MOs of the RH 
ADFT SCF and the converged 
OMS/VMS LMOs of the PD 
ADFT SCF. Calculations were 
performed with the PBE/DZVP/
GEN-A2* level of theory
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4.2  Single‑point energy calculations

After the calculations of simple naturally localizable test 
systems have shown that the PD(0.04) ADFT SCF algorithm 
with LMOs proposed here converges to the same results as 
corresponding RH ADFT SCF calculations, we now turn to 
the study of more challenging molecules. To this end, we 
performed single-point energy calculations of the C60 , C180 
and C540 fullerenes, of hydrogen saturated graphene sheets 
with 42, 80 and 150 carbon atoms and of hydrogen saturated 
diamond-like structures with 54, 200 and 360 carbon atoms. 
The structures of these test systems are shown in Fig. 5.

Table 3 compares the converged SCF energies for RH and 
PD(0.04) ADFT SCF calculations. For these calculations, 
we used the PBE/DZVP/GEN-A2 level of theory and the 
default deMon2k convergence thresholds typically used in 
production runs. As Table 3 shows, the converged RH and 
PD(0.04) SCF energies agree in the range of 10−4 a.u. for 
all systems. The largest deviation of around 2.8×10−4 a.u. 
between the RH and PD(0.04) converged energies was found 
for the C150H30 graphene sheet. Because further tightening 
of the PD(0.04) SCF convergence did not reduce this dif-
ference, we account it to restrictions in our PD algorithm, 
in particular to the swap restriction per SCF cycle. This 
assumption is further supported by the fact that the con-
verged RH energies in Table 3 are always lower than the 
corresponding PD(0.04) energies. Thus, for larger molecules 
more than 2 swaps per SCF cycle might be needed in the PD 
ADFT SCF method. Another interesting detail from Table 3 
is the convergence of C60 . It was pointed out in the literature 
that this fullerene converges with a PD SCF implementation 

to an excited state [32]. Table 3 shows that this problem 
does not occur in the here presented PD(0.04) ADFT SCF. 
Altogether, the study of the here presented carbon systems 
shows that PD(0.04) ADFT SCF calculations converge to the 
same result as corresponding RH ADFT SCF calculations.

After we have established the correct SCF convergence 
of the PD algorithm for the more challenging carbon sys-
tems depicted in Fig. 5, we now turn to the analysis of 
the (L)MO propagation in these systems. To this end, 
we plot in Fig. 6 the OMS and VMS (L)MOs of the C60 
fullerene, the hydrogen-saturated C42H16 graphene sheet 
and the hydrogen-saturated C54H54 diamond−like struc-
ture. Already visual inspection of Fig. 6 shows that the 
tight−binding start density LMOs of C60 (Fig. 6 top, left) 
and of C42H16 (Fig. 6 middle, left) are more extended 
than the ones of the C60H122 alkane chain in Fig. 3 or 
the ones of the water cluster in Fig. 4. This is confirmed 
by the corresponding OMS/VMS values for these LMOs 
of 2.478/4.390 for the fullerene and 2.531/6.001 for the 
graphene sheet, respectively. Thus, the here used locali-
zation procedure yields for these � delocalized systems 
LMOs with larger extension than for saturated molecules, 
including the C54H54 diamond-like structure depicted at 
the bottom of Fig. 6 (Guess OMS/VMS is 2.279/3.882). 
We note that these findings are in agreement with previ-
ous studies [16, 52]. With the RH ADFT SCF, this locali-
zation is destroyed (Fig. 6 top and middle, center). The 
resulting OMS/VMS values for the converged canonical 
MOs are 7.048/9.387 for the fullerene and 10.386/12.423 
for the graphene sheet, respectively. On the other hand, 
the converged PD(0.04) ADFT SCF MOs are localized 

Fig. 5  Structures of test sys-
tems for single-point energy 
calculations listed in Table 3. 
The graphs show fullerene 
cages (top), saturated graphene 
sheets (middle) and saturated 
diamond-like structures (bot-
tom)
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(Fig. 6 top and middle, right) with OMS/VMS values of 
2.478/4.388 for the fullerene and 2.460/6.000 for the gra-
phene sheet. This demonstrates that the here presented 
PD ADFT SCF algorithm conserves MO localization in 
molecules with delocalized � systems, albeit with LMOs 

of larger extension. The (L)MOs of the diamond-like 
C54H54 system depicted at the bottom of Fig. 6 are very 
similar to those for the C60H122 alkane shown in Fig. 3. 
Also the corresponding OMS/VMS values of 2.279/3.882, 
13.099/12.779 and 2.165/3.886 for the LMOs of the tight-
binding start-density, the converged canonical MOs of the 

Fig. 6  Plot of OMS (upper 
structures) and VMS (lower 
structures) (L)MOs of the C

60
 

fullerene (top), the C
42
H

16
 

graphene sheet (middle) and the 
C
54
H

54
 diamond-like structure 

(bottom). Each graph shows 
from left to right the OMS/
VMS LMOs of the tight-bind-
ing start density, the converged 
canonical OMS/VMS MOs 
of the RH ADFT SCF and the 
converged OMS/VMS LMOs of 
the PD ADFT SCF. Calcula-
tions were performed with the 
PBE/DZVP/GEN-A2* level of 
theory
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RH ADFT SCF and the converged LMOs of the PD(0.04) 
ADFT SCF, respectively, are similar to corresponding 
data for alkane chains in Table 1.

5  Conclusions

A parallel pseudo-diagonalization (PD) algorithm was 
implemented in the framework of ADFT. Our test calcula-
tions show that the ADFT SCF with the PD converges for 
all systems to the same result as the standard Roothaan-Hall 
ADFT SCF implementation. For the C150H30 saturated gra-
phene sheet, we found the largest difference in the converged 
SCF energies in the range of 2.8×10−4 atomic units. Our 
analysis indicates that this difference is due to the limited 
number of swaps permitted in the here proposed PD imple-
mentation. Certainly, there is room for improvement of this 
algorithm, Nevertheless, we experienced no SCF conver-
gence problems in the PD ADFT SCF for the here studied 
systems. At least for C60 , this is different to previous stud-
ies. We attribute this to the use of our PD in the framework 
of a MinMax SCF [53] that drives the ADFT SCF conver-
gence through the Coulomb fitting coefficients instead of the 
molecular orbital (MO) coefficients.

Another interesting result of this study arises from the 
monitoring of the localized MO coefficients in the ADFT 
SCF employing PD. For all systems we found that the exten-
sion of the localized MOs remains stable during the PD 
ADFT SCF. Thus, relocalization between SCF steps [54] 
was not performed. This opens up the possibility of sparse 
matrix storage in PD ADFT SCF, which is currently under 
investigation in out laboratory.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00214- 021- 02850-w.
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