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Abstract
The two hydroxyl groups of the 4′,7-dihydroxyfurano-3,2′-flavylium cation (1), a synthetic analog of the aurone pigments of 
plants, have been shown to have different relative acidities in the ground state  (S0) and the lowest excited singlet state  (S1). 
In the ground state, the 4′-OH group is slightly more acidic, while in the excited state, the molecule is strongly photoacidic 
and deprotonation occurs preferentially from the 7-OH group. In order to compare the relative acidities of these two OH 
groups via quantum chemical methodology, a common reference state was employed in which an explicit water molecule 
was hydrogen-bonded to each of the OH groups of 1. The relative acidities of the two OH groups were then inferred from 
the differential change in energy along the coordinate for proton transfer to the explicit water molecule via time-dependent 
density functional calculations (B3-LYP with Grimme’s D3 dispersion correction; TZVP basis set; and PCM to simulate an 
aqueous environment). The calculated acidity changes confirm the experimentally observed inversion in the relative acidities 
between  S0 and  S1. The enhanced photoacidity of  S1 was also mirrored in the natural transition orbitals and the decrease in 
the negative change on the oxygen atoms of the OH groups. Employing a common reference state with an explicit water as 
the proton acceptor should thus serve as a convenient strategy for exploring the relative ground- and excited-state acidities 
of the OH groups of natural or synthetic dyes, especially when the values are not readily accessible through experiment.
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1 Introduction

Anthocyanins are the primary natural pigments responsible 
for most of the red, blue and purple colors of flowers, fruits 
and leaves [1–3]. Anthocyanin and many of their synthetic 
flavylium cation analogs have a complex pH-dependent 
chemistry [1–8]. Thus, at strongly acidic pH, the exclusive 

form is the visibly colored flavylium cation form. At pH val-
ues above ca. pH 3, attack of water on the flavylium cation 
can result in formation of the near colorless hemiketal form 
that can then undergo ring-opening tautomerism to the cor-
responding near colorless chalcones. In hydroxyflavylium 
cations, deprotonation to form the neutral conjugate base 
form of the flavylium cation contributes an additional equi-
librium to the multiequilibrium system. In the lowest excited 
singlet state, natural anthocyanins and synthetic hydroxyfla-
vylium and pyranoflavylium cations are strong photoacids, 
undergoing ultrafast adiabatic excited-state proton transfer 
(ESPT) to water on a picosecond time scale [8–10].

Among the molecular ancestors of anthocyanins, the 
aurones, which are responsible for the yellow color of some 
flowers, possess an additional furan ring in their molecu-
lar structure (Scheme 1). Recently, synthetic furanoflavy-
lium analogs of aurones have been shown to exhibit similar 
multistate equilibria to those of anthocyanins and synthetic 
flavylium cations [11, 12]. Particularly interesting are the 
acid–base properties of the ground and lowest excited singlet 
states of the 4′,7-dihydroxyfurano-3,2′-flavylium cation (1) 
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in aqueous solution. Thus, unlike the analogous 4′,7-dihy-
droxyflavylium cation (2), in which the 7-hydroxy group is 
ca. 1 pK unit more acidic than the 4′-OH group in the ground 
state, compound 1 was found to deprotonate preferentially 
at the 4′-OH group in the ground state (Scheme 1). In con-
trast, in the lowest excited singlet state, the ESPT to water 
occurred preferentially from the 7-OH group [11].

Given the complexity of much of the chemistry of these 
natural plant pigments and their synthetic analogs, there is a 
growing interest in the development of computational quan-
tum chemical methodological approaches for the rationaliza-
tion and prediction of the ground and excited state properties 
of dyes or pigments related to anthocyanins, pyranoantho-
cyanins and their synthetic analogs [13–19]. Knowledge of 
this type is particularly important for tailoring or adapting 
the structure in order to optimize the color, stability and 
properties for a given potential application. In the present 
work, we report a straightforward and expeditious quantum 
chemical approach for comparing the relative acidities of 
OH groups of pigments of this type in both the ground and 
singlet excited state. The approach is tested by calculations 
on compound 1 that verify both the strongly enhanced acid-
ity of the excited state and the experimentally observed [12] 
inversion in the ground- and excited-state acidities of the 
4′-OH and 7-OH groups of the furanoflavylium cation 1.

2  Computational details

Density functional theory (DFT) was used for the charac-
terization of stationary points and potential energy curve 
pathways of the proton detachment from the hydroxyl groups 
of the compounds in both the ground  (S0) and first excited 
singlet  (S1) states. For the DFT calculations, the widely 

used the hybrid exchange-correlation functional B3-LYP 
[20] was employed with the D3 dispersion correction of 
Grimme [21]. The basis set TZVP [22, 23] was used in all 
calculations. The Gaussian09 [24] program suite was used 
to perform the calculations. The non-specific effects of the 
polar solvent environment were simulated using the polariz-
able continuum model (PCM) [25, 26] implemented using 
the self-consistent reaction field (SCRF) [25, 27] approach 
in Gaussian09. The wave function analysis program Theo-
DORE [28, 29] was used for the natural transition orbital 
(NTO) [30] analysis.

Initially, the ground-state structures of the isolated sys-
tems were fully optimized by means of the B3-LYP/TZVP 
approach. The first singlet excited state of the furanoflavy-
lium was optimized using TD-DFT with the same functional 
taking the corresponding optimized geometry of  S0 as the 
starting point for the  S1 calculations. The potential curves 
for proton transfer to a single water molecule were computed 
in the polar environment by stepwise elongation of the O–H 
bond of the hydroxyl group of interest in 0.1 Å increments 
using the same method employed for the calculation of the 
stationary points. All structures were reoptimized using 
water as a polar environment with the dielectric constant 
of 78.39. The theoretical absorption spectrum was calcu-
lated from the vertical excitation energies (Ei) for the first 
10 excited states and the corresponding oscillator strengths 
(fi) employing, as in previous work [18, 19], as a sum of 
superimposed Gaussian functions centered on each Ei [31]:

where Δ½ is the spectral bandwidth (full width at half maxi-
mum) in eV, assumed to be 0.36 eV, and ε(�̄� ) is the molar 
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absorption coefficient in units of  M−1  cm−1. The published 
absorption spectrum [12] was digitized with the online 
application WebPlot Digitizer [32].

3  Results and discussion

The starting point for our calculations on the furanoflavy-
lium cation 1 was the adoption of a common reference state 
for the two OH groups of the molecule. This reference state 
was constructed by hydrogen bonding each of the two OH 
groups to an explicit water of hydration, followed by minimi-
zation of the geometry in a continuum aqueous-like medium 
(Fig. 1). In addition to creating a common initial reference 
state against which to compare the acidity of the two OH 
groups, the specific water molecules served as discreet pro-
ton acceptors, found to be necessary in prior computational 
studies to reproduce experimental acidity trends. Employing 
a single discrete water molecule as the proton acceptor rather 
than a larger water cluster proved, in preliminary calcula-
tions, to be a necessary expedient due to complications in 
maintaining entirely equivalent water clusters hydrogen-
bonded to the two OH groups during geometry optimization.

The B3-LYP/TZVP energies for the 10 lowest excited 
singlet states of the furanoflavylium cation 1 with the 
two discrete water molecules in a PCM aqueous environ-
ment (Table 1) were employed to construct the theoretical 
absorption spectrum. As shown in Fig. 2, the theoretical 
spectrum based on overlapping Gaussians with a bandwidth 
of 0.36 eV agrees satisfactorily with the experimental spec-
trum reported in water at pH 1 [12] over virtually the entire 
UV–visible spectrum. The hole (occupied) and particle (vir-
tual) components of the natural transition orbitals (NTOs) 
[30] associated with the transition to the first excited singlet 
state  (S1), depicted in Fig. 3, are dominated by the HOMO 
and LUMO, respectively, as is generally the case for flavy-
lium cations.

By employing a common reference state for the two 
OH groups, the relative acidities of the two OH groups of 
the molecule can be rather straightforwardly inferred by 

comparing the relative change in the energy of the mole-
cule upon increasing the O–H distance of either the hydrated 
4′-OH group or the hydrated 7-OH group, derived from TD-
DFT calculations on the system. Figure 4 shows the differ-
ence between the two OH groups, as the relative change in 
energy in dimensionless units (= ΔE(in eV)/0.059 V), in the 
ground state and in the lowest excited state of compound 1 
when only the 4′-OH bond or only the 7-OH bond was selec-
tively stretched. All structures were reoptimized for each 
fixed O–H distance, using water as a polar environment. 
In the ground state, this difference should asymptotically 
approach ΔpKa, i.e., the differences between the pKas of the 
two OH groups upon complete proton transfer to water, and, 
for the excited singlet state, the value of ΔpKa* for ESPT.

The upper curve in Fig. 4 corresponds to the dimen-
sionless energy difference between stretching the 7-OH or 
the 4′-OH bond along the coordinate for proton transfer to 
water in the ground state, i.e., [E(7-OH)-E(4′-OH)]/0.059 V. 
The denominator (0.059 V) is the Nernst´s law change in 

Fig. 1  B3-LYP/TZVP optimized structure of the 4′,7-dihydroxy-3,2′ 
furanoflavylium cation 1 with two discrete water molecules in a PCM 
aqueous environment. Atom color code: green—C; red—O; grey—H

Table 1  B3-LYP/TZVP/PCM vertical excitation energies and the cor-
responding oscillator strengths for the 10 lowest excited singlet states 
of the furanoflavylium cation 1 with the two discrete water molecules 
in a PCM aqueous environment

State ΔE (eV) Oscillator strength

S1 2.824 0.8551
S2 3.336 0.1752
S3 3.588 0.0099
S4 4.071 0.0143
S5 4.768 0.1228
S6 4.880 0.0071
S7 5.181 0.0026
S8 5.349 0.4548
S9 5.410 0.1493
S10 5.533 0.0001

Fig. 2  Comparison of the B3-LYP/TZVP/PCM predicted absorption 
spectrum (red curve) with the normalized experimental spectrum [12] 
at pH 1 in water (black curve)
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potential for a unit change in the pH, which converts the 
calculated energy difference into a ΔpKa value. The positive 
trend of the curve clearly indicates that the energy increases 
more rapidly along this coordinate for the 7-OH bond than 
for the 4′-OH group, i.e., that the 4′-OH group is slightly 
more acidic of the two. Although the value of ΔpKa that can 
be inferred from the trend of the curve is not large, only ca. 
0.3–0.4 pK units, it is clearly in line with the experimental 
data pointing to the greater acidity of the 4′-OH group. In 
contrast, the lower curve, which corresponds to the analo-
gous energy difference in the lowest excited singlet state,  S1, 
shows that ESPT from the 7-OH group to water is favored 
over that from the 4′-OH group by more than 1 pK* unit. 
This approach appears to be more sensitive to differences in 
acidity than a simple comparison of a parameter such as the 
natural charges on the oxygen atoms of the two OH groups. 
Thus, for the ground state, the two natural charges on these 
oxygens are found to be the same (-0.638 e). Nonetheless, in 
line with the increased acidity of the lowest excited singlet 
state, both natural charges decrease in  S1, with the 4´-OH 
oxygen atom slightly more negative than the 7-OH oxygen 
atom (− 0.606 e vs. 0.596 e, respectively).

Figure 5 compares the changes in the calculated ground- 
and excited-singlet-state energies, relative to the energy of 

the corresponding equilibrium geometries, along the coor-
dinate for proton transfer to water for each of the two OH 
groups of the furanoflavylium cation 1. Taking the experi-
mental ground state pKa in water of 4.2 as the reference 
point, the predicted value of pKa* for ESPT from the 4′-OH 
group is of the order of 1, while the 7-OH group is predicted 
to be between ca. − 0.5 and − 1. This latter value is in rea-
sonable agreement with the experimental value of pKa* of 
ca. − 0.1 for the 7-OH group derived from the analysis of 
the pH dependence of the picosecond time-resolved fluores-
cence decay of the furanoflavylium 1.

4  Conclusions

The adoption of a common reference state with an explicit 
water molecule hydrogen-bonded to each of the two OH 
groups of the furanoflavylium cation 1 permits inferences 
about the relative acidities of the two OH groups via expedi-
tious TD-DFT calculations along the coordinate for proton 
transfer to the explicit water molecule. The calculated results 
for the relative acidities agree with the experimental finding 

Fig. 3  The NTO hole/parti-
cle pair for the  S1 state of the 
furanoflavylium cation 1 with 
two discrete water molecules 
in an aqueous environment. 
B3LYP/TZVP/PCM calcula-
tions. Isovalue =  ± 0.03 e/Bohr3

Hole NTO Particle NTO

Fig. 4  Difference in the potential energy as a function of stretch-
ing (Δx) of only the 7-OH bond compared to that stretch-
ing only the 4′-OH bond in the ground state (black curve) or 
in the lowest excited singlet state (red curve), expressed as 
[E(7 − OH) − E(4′ − OH)]/0.059V

Fig. 5  Difference between the potential energy changes in the low-
est excited singlet state (ΔE*) and in the ground state (ΔE) relative 
to the equilibrium geometry for selective stretching of either the 
4′-OH bond (black curve) or the 7-OH bond (red curve), expressed as 
4.2 − (ΔE* − ΔE)/0.059, i.e., taking the ground state pKa of 4.2 as the 
reference point
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[12] that there is an inversion in the relative acidities of the 
two OH groups in going from the ground to the excited sin-
glet state (S1). Moreover, the NTOs (Fig. 3) for the  S1 state 
clearly point to the origin of the enhanced photoacidity of 
S1 compared to the ground state. Thus, the electronic excita-
tion results in a significant shift of the electron density from 
the A and B rings and the oxygen atoms of the attached 
OH-groups into the C-ring upon electronic excitation. This 
strategy of employing a common reference state with an 
explicit water as the proton acceptor should serve as a con-
venient approach for natural or synthetic dyes with multiple 
OH groups, especially when the relative acidities are not 
readily accessible through experiment.
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