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Abstract
This article analyzes the electronic factors governing bond length alternation (BLA) in linear polyenes. The impact of the 
various effects is illustrated on small all-trans polyenes, namely butadiene, hexatriene and octatetraene prototype molecules. 
It is well known that self-consistent-field single determinant treatments overestimate the bond length alternation and the 
paper aims to identify physical effects of correlation which correct this defect. The question is addressed using an orthogonal 
valence bond-type formalism in which the wave function is expressed in terms of strongly localized bonding and antibond-
ing molecular orbitals. This paper shows that dynamic polarization effects of π orbitals accounted for in the full-π complete 
active space wave function significantly reduce bond alternation. These effects are brought by single excitations applied on 
the inter-bond charge transfer determinants. The dynamic polarization of σ bonds, of either CC or CH character, is analyzed 
afterward by either enlarging the active space or by adding the 1hole-1particle excitations. It is shown that these effects also 
decrease the BLA and increase the coefficients of the charge transfer determinants. Moreover, the relation with dynamic 
polarization of ligand-to-metal and metal-to-ligand charge transfer (LMCT and MLCT, respectively) components in magnetic 
transition-metal compounds is discussed.

Keywords Bond length alternation · Linear polyenes · Dynamic polarization · Correlation effects

1 Introduction

The bond length alternation (BLA) in linear polyenes is a 
well-known phenomenon, a rather basic problem in Quan-
tum Chemistry, and it has been studied using a wide vari-
ety of theoretical methods [1–7]. The understanding of the 
electronic factors that govern its magnitude still deserves 
attention. The simplest description of these π-electron sys-
tems consists in double bonds connected by single bonds, 
according to the Lewis qualitative picture [8]. It is known 
that the contrast between short and long bonds decreases 
with the polyene size: while the CC bond is very short in 

ethylene, the assumed double bonds are significantly longer 
in larger polyenes [9].

The most natural and routinely used theoretical entrance 
to the problem starts from the self-consistent field (SCF) 
optimization of a Slater determinant. Linear polyenes 
cannot be considered as highly correlated systems, and 
they have a large gap at the Fermi level, especially the 
small polyenes studied hereafter. Starting from the SCF 
solution seems therefore a relevant strategy. However, 
the SCF approximation systematically overestimates the 
BLA [10]. Electron correlation has therefore an important 
effect on a property of the weakly correlated ground state. 
Indeed, complete active space self-consistent field (CAS-
SCF) calculations involving all π electrons in all π valence 
molecular orbitals (MOs) predict a reduced value of the 
BLA [5]. Using a strongly localized bond MO formula-
tion, reference [5] attributed the decrease of the BLA from 
SCF to CASSCF to a decrease of the effective energy of 
the charge transfer (CT) components. The present paper 
follows a similar strategy but proceeds to both analytical 
derivations and exhibits the role of σ bond electrons and 
analyses of the coefficients of the wave function at various 
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levels of treatment. It will be shown that the decrease of 
BLA obtained when using multi-determinantal methods 
must be attributed to an increased electron delocalization 
between the electron pairs located on double bonds and 
a decrease of the effective energy of inter-bond charge 
transfer components of the wave function.

The BLA is indeed governed by the magnitude of 
the charge transfer coefficients between adjacent dou-
ble bonds, but these coefficients are strongly affected by 
dynamic polarization, involving both π and σ bonds. The 
dynamic polarization is brought by single excitations on 
the inter-bond CT determinants. We will show how these 
excitations stabilize the effective energies of the CT deter-
minants. The single determinant SCF method treats part 
of the inter-bond delocalization owing to the molecular 
orbital optimization, but it underestimates its magnitude 
as this correlation effect is missing. The dynamic polariza-
tion is indeed a correlation effect, and it takes into account 
the fluctuation of the electric field, a phenomenon which 
cannot be taken into account in SCF treatments, since 
mean-field methods only capture static polarization. In the 
SCF solution the delocalization is ruled by the Brillouin’s 
theorem, which kills the interaction between the reference 
and the singly excited determinants. As shown on different 
problems, the way to correct the delocalization of SCF 
MOs is complex, requiring to introduce 2hole-1particle or 
1hole-2particle excitations [11]. Our strategy differs from 
the standard one which starts from the SCF solution and 
then introduces double excitations. We start from a Lewis-
type reference function free from any inter-bond delo-
calization. To build this function, we determine strongly 
localized (on the double bonds) bonding and antibond-
ing MOs from unitary transformations of the canonical 
CASSCF ones. The Lewis-type reference belongs to the π 
active space. We then treat delocalization and correlation 
on an equal footing, by using a method proposed by one 
of us and coworkers in the context of a semi-empirical 
Hamiltonian, namely the perturbative configuration inter-
action from localized orbitals (PCILO) method [12–14]. 
One may note that this method is here employed in the 
ab initio context, as already done for the evaluation of the 
cyclic-delocalization energy (or aromatic contribution to 
the energy of benzene [15] and in reference [5].

The aims of this article are (i) to show the origin of the 
error of the single determinant SCF procedure, (ii) to under-
stand the mechanisms responsible for the improvement of 
the valence full-π CASSCF method, (iii) to highlight the 
role of dynamic polarization taking place in the inter-bond 
charge transfer components and finally (iv) to construe the 
distinct effects of  σ and π electrons. Analytical deriva-
tions and numerical calculations, respectively, presented 
in Sects. 2 and 3 are here joined to demonstrate the role 
of dynamic polarization on the BLA structural impact. 

The smallest all-trans polyenes butadiene, hexatriene and 
octatetraene have been chosen to numerically illustrate this 
demonstration.

2  Analytical development

2.1  Motivating features

Let us present abruptly, in Table 1, the impact of electron 
correlation on the BLA of the studied polyenes. The BLA 
is here defined as the difference between the long and short 
bond lengths (see Sect. 3.1 for computational details). The 
results reported have been obtained at different levels of 
treatments, namely SCF, CASSCF of the π electrons in the 
π valence MOs (full-π valence CAS), and post-CAS treat-
ment introducing the 1hole-1particle excitations on the top 
of this CAS.

One sees that the correlation reduces the BLA value by 
about 35%. This is the phenomenon we want to address in 
the present work.

2.2  Strongly Localized approach

For a sake of simplicity, we shall restrict the following pres-
entation to the simplest system of four π orbitals housing 
four electrons, i.e., butadiene. Since the key delocalization 
process takes place in the π electronic system, the CAS(4,4)
SCF calculation involving the four π electrons in the four 
valence π MOs provides an appropriate ground state wave 
function and an optimal mono-electronic π valence space. 
The space spanned by the 4 optimized active MOs and the 
CASSCF function are of course invariant under unitary 
transforms among the space of active MOs. Using the DoLo 
procedure, [16, 17] strongly localized bond MOs (SLMOs), 
noted 1 (between atoms A and B), 2 (between atoms C and 
D), and their antibonding counterparts 1 ∗ and 2 ∗ have been 
generated. They are linear combinations of the atom-sup-
ported orthogonal orbitals (OAOs) noted a, b, c, d, respec-
tively, centered on atoms A, B, C and D. The SLMOs are 
related to the OAOs by the following relations

Table 1  Optimal BLA (in Å) of the three studied polyenes at SCF, 
full-π valence CASSCF and CASSCF + single excitations

Molecule SCF Full-π valence 
CASSCF

CAS-
SCF + 1hole-
1particle

Butadiene 0.147 0.114 0.099
Hexatriene 0.140 0.108 0.093
Octatetraene 0.137 0.105 0.089
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which are bonding, and their antibonding counterparts

Such orbitals are depicted in Fig. 1. This strategy pro-
vides a Lewis-type zero-order function as recently dis-
cussed in references [5, 15]. It is worth noting that these 
SLMOs are different from the single determinant SCF 
localized ones which exhibit large delocalization tails 
from one bond to the other. Orthogonalization tails of 
SLMOs on atoms belonging to the next bond are of weak 
amplitude.

The Lewis picture corresponds to a strongly localized 
closed-shell determinant that will be used as reference:

where the i’s are the doubly occupied σ MOs and the I’s 
are π SLMOs. One should note that thanks to the demix-
ing between bonding and antibonding active orbitals, the 
SLMOs are much more localized than the SCF MOs, which 
are obtained by rotation between the SCF occupied MOs and 
the SCF unoccupied MOs separately. A Fock operator can 
be defined in this set of MOs

where h is the mono-electronic operator, J and K are, respec-
tively, the Coulomb and exchange operators. The energy of 
the reference is:

(1)
1 = (a + b)∕

√
2

2 = (c + d)∕
√
2

(2)
1∗ = (a − b)∕

√
2

2∗ = (c − d)∕
√
2

(3)Φ0 =
|||Πi

ii.Π
I
II
|||

(4)F0 = h +
∑

i

2J
i
− K

i
+
∑

I

2J
I
− K

I

where H is the Born-Oppenheimer Hamiltonian.

2.3  First‑order interacting space and first‑order 
wave function

The CAS function can be expressed as a linear combi-
nation of the reference and excited determinants |K > , 
obtained from Φ0 by different excitations.

Due to the bi-electronic character of the Hamiltonian, 
only singly and doubly excited determinants have to be 
considered in the expression of the total energy, provided 
that the coefficients are exact. From the eigen-equation 
relative to Φ0, the energy writes:

Among the various contributions to the energy, the π 
delocalization energy may be defined, according to Eq. (7) 
as

The on-bond single excitations have a negligible effect 
since the bonds are nonpolar. If the bond MO I is defined 
on the two OAOs a and b,

The singly excited determinants that play an important 
role are the inter-bond charge transfer determinants, such 
as:

that interacts with the reference through

In larger polyenes this hopping integral between 
SLMOs is very small except between adjacent MOs. The 
delocalization energy will be given by:

The matrix element is fixed, and correlation effects 
change the coefficients of the CT determinants.

At the first order of the Möller–Plesset perturbation 
theory, the coefficients of these CT determinants are:

(5)E0 = ⟨Φ0
��H��Φ0⟩.

(6)Ψ0 = C0Φ0 +
�

K≠0
�K⟩C

K

(7)E = E0 + (
�

K≠0
⟨0�H�K⟩C

K
)∕C0

(8)Edeloc = (
�

I,J∗
⟨0�H��ΦI→J∗

⟩C
I→J∗

)∕C0

(9)⟨Φ0
��H��Φ1→1∗⟩ = (F

aa
− F

bb
)∕2 ≈ 0.

(10)Φ
I→J∗

= a
+
J∗
a
I
Φ0

(11)⟨Φ0
��H��ΦI→J∗

⟩ = F
IJ∗

(12)Edeloc =
�

I,J∗

⟨Φ0
��H��ΦI→J∗

⟩C
I→J∗

≅ (F
IJ∗
)C

I→J∗

Fig. 1  π bonding and antibonding SLMOs, determined from the set 
of CAS(4,4)SCF MOs for butadiene
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In full generality the Möller–Plesset second-order delo-
calization energy is given by

Equation (14) suggests that the delocalization energy (in 
absolute value) increases when the BLA decreases, since 
this geometry variation, shortening the BC bond and length-
ening the AB and CD bonds, increases the numerator and 
decreases the denominator. If one uses an Epstein Nesbet 
zero-order Hamiltonian, the denominator introduces an 
important hole-particle attraction integral JIJ

∗ (and a negli-
gible inter-bond exchange integral KIJ

∗),

The most important double excitations are:
(i) intra-bond double excitations II → I∗I∗ , contributing 

by

where K
II∗

 is an exchange integral, K
II∗

= (J
aa
− J

ab
)∕2, if a 

and b are the two OAOs spanning the bond I. This excita-
tion tends to lengthen the double bonds as the magnitude 
of the numerator increases, while that of the denominator 
decreases with the distance between the centers. In this sense 
these excitations may contribute to reduce the BLA and their 
impact has to be numerically checked.

(ii) inter-bond double excitations IJ → I∗J∗ may have 
important amplitudes if I and J are on neighbor bonds. They 
involve 3 types of determinants, namely.

• IJ → I∗J∗ , which contribute by 2(II∗, JJ∗)C
IJ→I∗J∗

  where the bi-electronic integral is a dipole–dipole 
interaction (II∗, JJ∗).

• IJ → J∗I∗ is a crossed excitation and involves a very 
weak interaction (IJ∗, JI∗) with the reference,

• IJ → I∗J∗ (same spin excitations) which interacts with 
the reference through (II∗, JJ∗) − (IJ∗, JI∗)

The sum of these contributions may be called inter-bond 
correlation. The total energy involving only the π energy 
corrections may be written as:

(13)
C
I→J∗

= ⟨Φ
0
��H��ΦI→J∗

⟩∕(⟨Φ
0
��H��Φ0

⟩
− ⟨Φ

I→J∗
��H��ΦI→J∗

⟩) = F
IJ∗
∕(F

II
− F

J∗J∗
)

(14)E
(2)MP
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=
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I,J∗

F
2
IJ∗
∕(F

II
− F

J∗J∗
)

(15)E
(2)EN

deloc
=
∑

I,J∗

(F
IJ∗
)2∕(F

II
− F

J∗J∗
+ J

IJ∗
)

(16)EIntra - bond =
∑

I

K
II∗
C
II→I∗I∗

≈
∑

I

K
2
II∗

2
(
F
II
− F

I∗I∗

)

(17)E = E0 + Edeloc. + EIntra - bond + EInter - bond

It is relevant to identify the physical content of the SCF 
single determinant wave function

where the localized MOs I’ have delocalization tails from 
one bond to the other, contrarily to the Lewis reference. 
Due to the single determinant constraint of the HF-SCF 
method, the energy minimization of this function only pro-
ceeds through orbitals delocalization in order to satisfy the 
Brillouin’s theorem [18, 19]. This delocalization cancels 
the interactions between the SCF determinant and its singly 
-excited determinants. If one starts from the strongly local-
ized function Φ0 to go to the SCF function Φ�

0
 , the energy 

stabilization can be assimilated to the perturbative contribu-
tion of the inter-bond CT determinants (Eqs. 14 and 15). As 
it will be shown in the following, doubly excited determi-
nants will stabilize these charge transfer components and 
qualitatively change their contribution to the correlated wave 
function.

2.4  Dynamic polarization of CT components.

It is important to consider the interaction between a CT 
determinant ��ΦI→J∗

⟩ and the determinant obtained from it 
by a single excitation k → l∗,a+

l∗
a
k
��ΦI→J∗

⟩ . Hereafter, the 
orbitals k and l may be indifferently of π or of σ symmetry. 
��ΦI→J∗

⟩ defines a new Fock operator FIJ∗ , which differs from 
the Fock operator of the reference by the following relation

if one neglects the less important exchange operators. FIJ∗ 
takes into account the modification of the electric field cre-
ated by the I → J∗ excitation

A special attention may be paid to the excitations giving 
the largest interactions. If one works with localized bond 
MOs and their antibonding counterpart, the matrix element 
⟨l∗�F0�k⟩ is zero if the k and l MOs are not of the same σ/π 
symmetry. The important corrections concern the bonding 
to antibonding excitations on the same bond, since the kk∗ 
distribution defines a strong on-bond dipole. Then the matrix 
element

represents the interaction between the transition dipole kk∗ 
and the dipole J∗J∗-II. From the determinant a+

k∗
a
k
Φ

I→J∗
 one 

may return to Φ
I→J∗

 , with the same interaction,

(18)Φ
�

0
=
|||||

∏

i

ii.
∏

I

I
�
I
�
|||||

F
IJ∗ = F0 − J

I
+ J

J∗

�
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a
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and one gets a third-order correction to the coefficient of 
this determinant

One may sum the contributions from the various MOs k 
and write

One may write the third-order corrected coefficient of the 
CT determinant as

or, replacing 1 + d by (1-d)−1.

An elementary algebraic derivation leads to the modified 
expression of the CT coefficient

This is more than a mathematical approximation, and one 
may demonstrate that it is the result of a converging series of 
contributions consisting in back and forth movements from 
the CT determinant to the polarizing doubly excited determi-
nants. One finally sees that the contribution of the dynamic 
polarization contribution results in the decrease of the effec-
tive energies of the CT determinants, and more precisely as 
an increase of the hole-particle attraction:

These analytical derivations can receive a graphical rep-
resentation in terms of Feynman diagrams (see Fig. 2).

3  Numerical results at SCF, CASSCF 
and post‑CAS levels and discussion

3.1  Computational details

In a first subsection, we will focus on butadiene for which 
we will present a detailed analysis of the results. In a 
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second subsection, our interpretation will be extended to 
hexatriene and octatetraene larger polyenes. Ideal planar 
geometries have been considered, the CH bond length 
being 1.085  Å, and all angles between close C–C–C 
and C–C–H atoms have been kept equal to 120°. In hex-
atriene and octatetraene all short (long) bond lengths 
are kept identical. Ground state energies and wave func-
tions as functions of BLA have been calculated imposing 
the constraint that the sum of the short and long bond 
lengths takes the reasonable value of (2x 1.4 Å), i.e., 
l(C=C) + l(C–C) = 2.8 Å. The BLA is defined as the dif-
ference between long and short bond lengths which vary 
symmetrically around 1.4 Å. Using nonlinear regression 
(cubic spline) of the energy curves, the optimal BLA, i.e., 
the BLA at the energy minimum, has been determined at 
different levels of correlation. The corresponding wave 
functions have then been analyzed at these precise points 
to provide insights on the factors governing the BLA. For 
the largest molecules the various levels of correlation that 
have been studied are: (i) strongly localized Lewis deter-
minant (built from unitary transformations of the active 
π CASSCF orbitals), (ii) single reference SCF Φ�

0
 , (iii) 

CASSCF (involving all π electrons in all π orbitals) and 
(iv) CAS + S in which all singly excited determinants on 
the top of the CAS have been added to the configuration 
interaction. In the simplest case of butadiene, we have 
also studied the Lewis ( Φ0 ) reference plus double excita-
tions ( Φ0 +  Dπ) and plus single and double ones ( Φ0 +  SDπ) 
remaining in the π active space, the CAS(4,4) + SD and 
the CAS(10,10) where all valence σ and π orbitals located 
on the carbon–carbon bonds and their electrons have been 
added to the active space, and finally the CAS(10,10) + S. 
Calculations have been performed using the MOLCAS 7.8 
[20–22] and CASDI [23, 24] codes. Relativistic correla-
tion consistent atomic natural orbitals (ANO-RCC [25]) 
basis sets were used for all atoms; for C a (14s9p4d) set is 

Fig. 2  Diagrammatic representation of the effect of the single excita-
tions on the effective energy of CT determinants
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contracted to [3s2p1d] and for H a (8s4p) set is contracted 
to [2s1p].

3.2  Butadiene

3.2.1  Dramatic impact of correlation on BLA

Table S1 reports the ground state energies for different BLA 
computed using strongly localized MOs for the reference Φ0

(Lewis),Φ0 +  Dπ,Φ0 +  SDπ, Φ�
0
(SCF), Φ�

0
 + SD, the CAS(4,4)

SCF, CAS(4,4) + S, CAS(4,4) + SD, CAS(10,10)SCF and 
CAS(10,10) + S levels. Table 2 reports the BLA (in Å) at 
the minimum of energy of these various levels of calcula-
tions. The Lewis function Φ0 exhibits a very strong BLA 
(0.200 Å). The SCF function incorporates the delocalization 
through MO mixings (essentially due to interactions between 
the reference and the singly excited determinants) inducing a 
reduction of the BLA to 0.147 Å. If one adds only the double 
excitations to the Lewis reference Φ0 , labeled Φ0 +  Dπ in 
Table 2, the BLA is reduced (0.171 Å), which shows that 
the intra-bond π double excitations on the Lewis function are 
partly responsible for the BLA reduction. Moreover, adding 
the singles to this space ( Φ0 + SD) the BLA is submitted to 
a major reduction and falls to 0.133 Å.

The CAS(4,4)SCF energy is minimal (-155.084717 a.u.) 
for a significantly smaller BLA of 0.114 Å. When adding 
the 1 h-1p excitations to the CAS, i.e., at the CAS + S level, 
the minimal energy is E = −155.169375 a.u. and the BLA 
is further decreased to 0.099 Å. The BLA obtained by add-
ing single and double excitations (CAS + SD) is in between 
(0.109 Å). However, this last value may suffer from size-
consistency defect as the norm of the CAS components of 
the wave function is reduced to 0.86 instead of 0.95 for the 
CAS + S. Indeed, the Davidson correction applied to the 
CAS + SD results decreases the BLA to 0.103 Å.

Augmenting the active space to the σCC valence MOs, 
CAS(10,10), gives a further reduction of the BLA (0.097 Å), 
with a minimal energy of -155.162200 a.u. Adding the sin-
gle excitations on the top of this wave function leads to an 
additional reduction of the BLA (0.084 Å). The role of the 
σ bonds will be analyzed in Sect. 3.3.

3.2.2  Physics in the π valence space

3.2.2.1 Leading contributions Table  3 reports the coef-
ficients in intermediate normalization, i.e., divided by  C0, 
of the largest (or having a qualitative role in the researched 
factors) determinants in the various calculated wave func-
tions, i.e., (i) the coefficient of the 4 inter-bond charge 
transfer singly excited determinants such  as �1 → �

∗
2
 , noted 

 CCT, (ii) the coefficient of intra-bond doubly excited deter-
minant such as �1�1 → �

∗
1
�
∗
1
 and noted  CINTRA , and (iii) the 

coefficients of the inter-bond doubly excited determinant 
noted  CINTER. Among these determinants, we could distin-
guish those resulting from excitations such as �1�2 → �

∗
1
�
∗
2
 , 

i.e., keeping the same spin on the double bond from those 
involving different spins such that �1�2 → �

∗
2
�
∗
1
 . Table  3 

only reports the largest coefficients  CINTER that have the 
same spins on each double bond. One may note that as for 
a sake of comparison with further calculations we have also 
reported the values (in bold) obtained for the optimal BLA 
(0.099 Å) obtained at the CAS(4,4) + S level. Detailed anal-
yses reported hereafter have been performed for this value 
of the BLA.

A first observation concerns the evolution of these coef-
ficients as a function of the BLA. As expected from equa-
tions 12, 13 and 16, all coefficients increase when the BLA 
decreases.

It is worth analyzing the coefficients of the determinants 
in the CAS(4,4) calculations. The largest excited coeffi-
cients (Table 3) are those of intra-bond double excitations, 
followed by those of the CT components. One may notice 
that the sensitivity to the BLA is larger for the CT compo-
nents than for the intra-bond double excitations. Going from 
BLA = 0.16 to 0.08 Å, the CT coefficients increase by 13%, 
while those of the double excitations only increase by 7%.

The coefficients of the inter-bond double excitations are 
reported in Tables 3 and S2. From the analysis of the inter-
actions with the reference, reported in section II, one might 
expect that the largest coefficient would concern the deter-
minant Φ

12→1∗2
∗ obtained from the reference through the 

�1�2 → �
∗
1
�
∗
2
 excitation since it interacts with the reference 

through a strong dipole–dipole interaction (π1π1∗,π2π2∗ ). 
Oppositely the determinants Φ

12→2∗1
∗ obtained from the 

reference through the �1�2 → �
∗
2
�
∗
1
 excitations only inter-

act with the reference through the very small (π1π2∗,π2π1∗ ) 

Table 2  Butadiene: optimized BLA (in Å) obtained at different levels of calculations (see text). The ground state energy + 155 a.u. at the mini-
mum is given in parenthesis

Level of calculation Φ
0

Φ
0
 +  Dπ Φ

0
 +  SDπ Φ

0
 ’ (SCF) Φ

0
’ + SD

Optimal BLA (energy) 0.200 (+ .006004) 0.171 (− .047527) 0.133 (− .078481) 0.147 (− .030711) 0.131 (− 0.547608)
Level of calculation CAS(4,4) CAS(4,4) + S CAS(4,4) + SD CAS(10,10) CAS(10,10) + S
Optimal BLA (energy) 0.114 (− .084717) 0.099 (− .169375) 0.109 (− .575264) 0.097 (− .162200) 0.084 (− .279843)
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integral, interaction between two weak product (or overlap) 
distributions. Surprisingly the largest coefficient concerns 
the �1�2 → �

∗
2
�
∗
1
 excitations. The reason is that these deter-

minants may also be obtained from the reference through 
the products of two CT single excitations π1π2∗ of α spin 
and π2π1∗ of β spin. The second-order contribution to the 
coefficient of this determinant, involving the sequence 
Φ0 → Φ1→2∗ (or Φ2→1∗

) → Φ
12→2∗1∗

 , is larger than the 
first-order one. The second-order coefficient of Φ

12→2∗1∗
 

can be evaluated as C
Inter

= −2C
CT
F
12∗

∕2ΔE(�
1
→ �

∗
1
)(3)

= −C
CT
F
12∗

∕ΔE(�
1
→ �

∗
1
)(3). since the doubly excited 

determinant consists in the product of two intra-bond 
triplets, as recalled by the superscript (3) in the above 
equation. Comparatively one should remember that 
C
CT

≈ −F12∗∕ΔE(�1 → �
∗
2
) so that the coefficient of 

the doubly excited determinant may be estimated to be 
C
2
CT
ΔE(�1 → �

∗
2
)∕ΔE(�1 → �

∗
1
)(3) . Now one should remem-

ber that the excitation energy to the π intra-bond to π ∗ triplet 
state is about 4 eV, while the inter-bond CT excitation is 
close to 9 eV, which results in a significant enhancement of 
the coefficient of Φ

12→2∗1∗
 . And consistently the variation 

of the amplitude of these excitations when decreasing the 
BLA is approximately the square of the variation of CT coef-
ficients (31% for the variation of the  CINTER/C0 when going 
from 0.16 to 0.08 Å BLA and 27% for the variation of the 
square of the CT coefficients for the CAS(4,4) + S).

3.2.2.2 Interpretation: role of  dynamic polarization 
on  inter‑bond CT components in  the  π valence space Our 
purpose is to understand which are the doubly excited deter-
minants responsible for the increase of the coefficients of 
the inter-bond CT determinants (πi→πj∗ CT). The coef-
ficients of the intra-bond doubly excited determinants are 
indeed large, but their interactions with the π→π∗ CT imply 
weak inter-bond overlap distributions, for instance

The largest interactions with the CT determinants involve 
the doubly excited determinants which are obtained by an 
intra-bond single excitation on the top of the CT determi-
nant, such as |||core.2

∗122∗
||| obtained by a �2→�2

∗ excitation 
on |||core.2

∗122
||| . This determinant is doubly excited with 

respect to Φ0 and interacts with it, but the interaction

implies the negligible 12∗ distribution. On the contrary the 
interaction between the doubly excited determinant and the 
CT determinant is large, since it consists in the interaction 
between a transition dipole and a dipole

(19)
⟨|||core.2

∗122
|||
|||H

|||
|||core.1

∗1∗22
|||
⟩
= (2∗1∗, 11∗) ≈ 0

(20)
����core.2

∗122∗
���
���H

��Φ0⟩ = (12∗, 22∗)
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The operator J2
∗—J1 represents the deviation of the elec-

tric field created by the CT distribution (AB)+ (CD)− from 
the mean field. In the integral ⟨2�J2∗ − J1�2∗⟩ the first opera-
tor does not contribute, due to local symmetry reasons, 
since the distribution 22∗ is antisymmetric with respect to 
the center of this bond, while J2

∗ is symmetric. One may 
develop the other integral in terms of atomic bi-electronic 
integrals and one obtains

which is a positive and large quantity. The physical role of 
this excited determinant is to polarize the π2 bond between 
atoms C and D in the direction of the hole created on bond 
AB by the charge transfer excitation from AB to CD. This 
interaction increases the charge on atom C and decreases 
that on D.

Of course the π bond 1 between atoms A and B is also 
subject to a polarization effect in the CT state, and the pro-
cess passes through the interaction between the CT determi-
nant and a π1→π1∗excitation on |||core.2

∗122
||| , leading to the 

determinant |||core.2
∗1∗22

||| . The interaction is

the same operator J2
∗—J1 is now acting on the 11∗ dipolar 

distribution. The contribution passes through the J2
∗ opera-

tor, and

the same quantity as for the polarization of the CD bond. 
Now the singly occupied π orbital of the AB bond is polar-
ized toward the atom A by the field created by the negatively 
charged CD bond. One may write the mixing between the 
1→2∗ CT determinant |||core.2

∗122
||| and the doubly excited 

determinant |||core.2
∗1∗22

||| as a relaxation of the MO 1 in the 
CT determinant, leading to |||core.2

∗1
��
22
||| , with

(21)
����core.2

∗122
���
���H

���
���core.2

∗122∗
���
�
= ⟨2�J2∗ − J1�2∗⟩

(22)⟨2�J1�2∗⟩ = (J
bc
− J

ad
)∕4

(23)
����core.2

∗122
���
���H

���
���core.2

∗1∗22
���
�
= ⟨1�J2∗ − J1�1∗⟩

(24)⟨1�J2∗ �1∗⟩ = −(Jbc − Jad)∕4

the denominator being an excitation energy from the refer-
ence to the doubly excited determinant. The numerator is 
negative, the mixing coefficient between 1 and 1 ∗ is posi-
tive, and thanks to our definition of 1 ∗ the coefficient of 
 I” is increased on A and decreased on B. In the 1→2∗ CT 
component the electron remaining on bond 1 is polarized 
in direction of atom A, far from the negatively charged CD 
bond. This is of course a dynamic process, impossible to be 
kept in a static treatment. These mechanisms fall as special 
cases in our general development about dynamic polariza-
tion of CT components, they dress the energy of the 1→2∗ 
CT determinant by the excitations k→k∗ = 1 → 1∗ and by 
k→k∗ = 2→2∗.

3.3  Polarization of σ bond electrons

Dynamic polarization of CT components also concerns the σ 
bonds, their electrons also feel the fluctuation of the electric 
field created by the delocalization of the π electrons. Indeed, 
one can see in Table 3 that the CAS + S increases the coef-
ficient of the inter-bond CT determinants by 14%. As a con-
sequence, the off-diagonal density matrix elements between 
orbitals b and c are increased, resulting in an enhancement of 
the π bond index of the assumed single bond and therefore 
in a reduction of the BLA. In contrary the coefficients of 
the intra-bond doubly excited determinants decrease. This 
increase of the CT coefficients decreases when the BLA is 
reduced.

In a second approach one enlarges the active space of 
CASSCF treatment to the three σ CC bonding MOs and their 
valence antibonding counterparts. This iterative procedure 
starts from the localized orbitals, and the resulting additional 
active MOs are strongly localized on bond AB for σ1 and 
σ1∗ , on bond CD for σ2 and σ2∗ , and on bond BC for σc and 
σc∗ . The optimal BLA for the CAS(10,10)SCF in Table 2, 
is 0.097 Å, i.e., very close to that of the CAS(4,4) + S. 
This enlarged CASSCF treatment only runs on processes 
involving valence σ CC  MOs, while the CAS(4,4) + S and 

(25)1�� = 1 −
⟨1�J2∗ �1∗⟩
ΔE

11→2∗1∗

1∗

Table 4  Butadiene: optimal BLA value in Å for different sets of 
kept MOs (all the others were frozen or deleted) and different level 
of excitations, using CAS(4/4)SCF MO. In all cases, the active space 

contains the 4 π orbitals. Numbers below the BLA are the difference 
to the BLA obtained at the CAS(4,4)SCF level

CI CAS(4,4) SCF σCC and σCC∗ only σCH and σCH∗ only All valence MOs Non-valence π ∗ All MOs

 + S  + SD  + SDT  + S  + SD  + SDT  + S  + SD  + SDT  + S  + SD  + S

BLA (Å) 0.114 0.103 0.097 0.096 0.113 0.115 0.115 0.104 0.102 0.099 0.110 0.114 0.099
ΔBLA(Å) 0.000  − 0.011  − 0.017  − 0.018  − 0.001  + 0.001  + 0.001  − 0.010  − 0.012  − 0.015  − 0.004 0.000  − 0.015
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CAS(4,4) + SD consider all inactive MOs, including the 
σ CH bond MOs which run on semi-active double excita-
tions, and in CAS(4,4) + SD on inactive double excitations 
which are not considered in the CAS(4,4) + S treatment.

In order to analyze the effect of the different σ orbitals, 
calculations with either frozen σCH (+ core) or σCC MOs 
have been performed. According to the results presented in 
Table 4, the impact of σCH (+ core) MOs is very limited. 
Table S2 that shows the variation of the most important coef-
ficients for BLA = 0.099 confirms this result.

As the σCC are responsible for the main effects of the 
dynamic polarization acting on the π electrons, a further 
analysis will consist in introducing these MOs in the active 
space, which leads to a CAS(10,10)SCF. Among the vari-
ous excitations, we will distinguish the single and double 
excitations by proceeding through different calculations. 
Starting from the CAS(10,10)SCF MOs, strongly localized 
π and σ MOs will be generated through unitary transforms. 
Then CAS(4,4) + 1h-1p and CAS(4,4) + 2h-2p calculations 
will be performed. Comparisons between the coefficients 
of the most important determinants can be performed from 
the results appearing in Table 5. The main conclusions are 
the following:

• The largest coefficients out of the minimal CAS are the 
intra-bond closed-shell excitations, (σi→σi∗)2 (lines 5 
and 6), and the double excitations coupling transition 
dipoles in both the σ and π systems in the same double 
bond (σi→σi∗).(πi→πi∗ ) (line 7, 9 and 10). They all tend 
to stretch the double bonds.

• Since our σ bond MOs are now strongly localized, the 
inter-bond σ CT determinants have important coeffi-
cients, (0.036, line 8).

• The doubly excited determinants which are obtained by 
an intra-bond single (σi→σi∗ ) excitation on the top of the 
π CT determinants, responsible for the dynamic polariza-
tion of these π CT determinants (lines 13 and 15) have 
important coefficients; the largest one, 0.015, concerns 
the single excitation on the central σ bond, σc→σc∗ , act-
ing on π CT determinant, and obtained from the reference 
by the (σc→σc∗).(πi→πj∗ ) excitations. This is an expected 
result since the central CC bond is in the very middle of 
the (AB)+ (CD)− dipole.

• Interestingly, one may notice the occurrence of deter-
minants (line 19) which introduce the response of the 
π electrons to the fluctuation of the σ population, intro-
duced by the σ CT components between adjacent bonds. 

Table 5  Butadiene (BLA 
0.099 Å): largest coefficients of 
the singly and doubly excited 
determinants from the reference 
Φ0 and within the CAS(10,10)
SCF. This CAS involves π and 
σCC valence active MOs. π 1 and 
σ1 are relative to the AB bond, 
π2 and σ2 are relative to the 
CD bond, σc is the BC central 
bond. Columns 2 and 3 concern 
truncated CIs, limited to the 
CAS(4,4) and 1hole-1particle 
or 2hole-2particle excitations 
within the active MOs of the 
CAS(10,10)SCF

Coefficients (divided by 
 C0, except  C0)

CAS(4,4) + S inside 
σ/σ∗

CC

CAS(4,4) + SD inside 
σ/σ∗

CC

CAS(10,10)SCF

Energy in a.u  − 155.124328  − 155.160551  − 155.162198
Φ

0
0.906 0.900 0.899

π excitations
1 �

1
�
1
→ �

∗
1
�
∗

1
 − 0.182  − 0.183  − 0.183

2 π1 → π2∗ 0.157 0.155 0.155
3 �

1
�
2
→ �

∗
2
�
∗

1
 − 0.061  − 0.061  − 0.060

4 �
1
�
2
→ �

∗
1
�
∗
2

 − 0.047  − 0.046  − 0.046
σ  excitations and mixed σ, π excitations

5 �
c
�
c
→ �

∗
c
�
∗
c

–  − 0.074  − 0.076
6 �

1
�
1
→ �

∗
1
�
∗
1

–  − 0.058  − 0.059

7 �
1
�
1
→ �

∗
1
�
∗
1

0.057 0.056 0.057

8 �
1
→ �

∗
2

 − 0.036  − 0.036  − 0.037
9 �

1
�
1
→ �

∗
1
�
∗
1

0.035 0.031 0.032
10 �

1
�
1
→ �

∗
1
�
∗
1

0.022 0.025 0.025

11 �
c
�
1
→ �

∗
c
�
∗
1

 − 0.021  − 0.021  − 0.021

12 �
c
�
1
→ �

∗
1
�
∗
1

 − 0.015  − 0.016  − 0.017

13 �
c
�
1
→ �

∗
c
�
∗
2

0.015 0.015 0.015
14 �

1
�
1
→ �

∗
1
�
∗
1

–  − 0.015  − 0.015

15 �
c
�
1
→ �

∗
c
�
∗
2

0.014 0.013 0.014

16 �
1
�
c
→ �

∗
1
�
∗
c

– 0.014 0.014
17 �

1
�
1
→ �

∗
1
�
s∗

1
–  − 0.011  − 0.010

18 �
1
�
c
→ �

∗
1
�
∗
c

– 0.008 0.009
19 �

c
�
1
→ �

∗
1
�
∗
1

0.009 0.009 0.009
20 �

1
→ �

∗
c

 − 0.009  − 0.008  − 0.009
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The corresponding determinants are obtained from the 
reference by (σi→σj∗).(πk→πk∗) excitations.

One should remember that CAS(4,4)+S and 
CAS(4,4)+SD involve more excitations than the CAS 
extended to the CC bonds, and they introduce excitations 
to non-valence MOs and include the dynamic polariza-
tion of the CH bonds, which might be of the same order of 
magnitude as that of the σ CC bonds. In order to estimate 
the relative contributions of the CH versus CC bonds to the 
dynamic polarization, we have frozen the CH bonding and 
antibonding MOs as well as the core orbitals in the post-
CAS treatments. As one can see in Table S2, the ratio  CCT/
C0 increases from 0.152 to 0.166 at the CAS(4,4)+S when 
the “CH+Core” are frozen, while it raises to 0.174 when all 
the occupied MOs are allowed to contribute to the polariza-
tion. The most relevant information concerns the value of the 
BLA calculated at different levels and reported in Table 4. 
One sees that starting from the CASSCF (4,4) which gives 
a value of 0.114 for the BLA, adding the singles of the CH 
only lets this value untouched (0.113) while adding only the 
CC reduces this value to 0.103. Treating simultaneously all 
valence MOS does not change this value.

One may wonder whether the correlation implying non-
valence MOs may affect the BLA. Actually in the 1→2∗ 
CT determinant, the CD bond 2 is negatively charged and a 
relaxation of its MOs toward diffuse MOs might also con-
tribute to the stabilization of this ionic component. We have 
performed a CAS+S calculation restricting the singles to 
those involving non-valence MOs (Table 4). The impact on 
the BLA is negligible, so that we may conclude that most of 
the dynamic polarization takes place in the valence space.

3.4  Hexatriene and Octatetraene

The same methodology has been used on the next linear pol-
yenes, hexatriene and octatetraene in their all-trans confor-
mation. Tables S3 and S4 report the ground state energies for 
different BLA computed using strongly localized MOs SCF, 
CAS(Full π)SCF and CAS(Full π)) + S levels of calculations. 
The optimal BLA and most important coefficients obtained 

at different levels of calculations for hexatriene appear in 
Tables 6 and 7, those for octatetraene in Tables 8 and 9. For 
hexatriene the calculated optimal BLA values are 0.140 Å at 
the SCF level, 0.108 Å at the CAS(6,6)SCF level and reach 
the weakest BLA value, (BLA = 0.093 Å) when one adds 
the 1 h-1p excitations on the CAS(6,6). For octatetraene the 
corresponding values are 0.137 Å at the SCF level, 0.104 Å 
at the CAS(8,8)SCF level, and 0.089 Å when on adds the 
1h-1p excitations. The BLA decreases when the polyene 
length increases at all levels of treatments. While a variation 
of ~ 0.01 Å is obtained at the various levels of calculations 
presented in Table 1 between butadiene and octatetraene, the 
relative variation (difference of BLA/ mean values of BLA) 
is stronger at the CAS(full π) + S level (0.018 at SCF, 0.021 
at CAS(Full π) and 0.027 at CAS(full π) + S).

For the same bond alternation and the same level of treat-
ment the coefficients of the CT excitations between adja-
cent double bonds, reported in Tables 7 and 9 are almost 
constant, and very close or identical to those obtained for 
butadiene, with the same increase by the addition of the 
1hole-1particle excitations. The coefficients of the central 
to external bond excitations and those of the external to cen-
tral bonds are almost identical, and the side effects are ̄ very 
weak. The long-range charge transfers, 1→3∗ in both hex-
atriene and octatetraene, and 1→4∗ in octatetraene are more 
strongly affected by addition of the dynamic polarization. 
Going from CAS to CAS + S increases the coefficients of the 
CT between adjacent bonds by 20%, between second-neigh-
bor bonds by 30% and those relative to 3rd-neighbor bonds 
by 47%. Two factors may explain these trends. The first one 
may be the strength of the dipole associated to the CT, for 
instance 1→4∗ CT component implies the strong dipolar 
operator J4*—J1. Another factor contributes to this increase, 
namely the fact that the long-range CT are not essentially 
obtained by a direct jump from one bond to a remote bond, 
but by propagation of the hole or the particle, in processes 
such (1→2*)→(1→3*)→(1→4*) (particle propagation) or 
(3→4∗)→(2→4∗)→(1→4∗ ) (hole propagation). At each of 
these steps a dynamic polarization takes place and in the 
third-order contribution to the 1→4∗ coefficient each denom-
inator is lowered by the dynamic polarization, so that the 
amplitude of the effect is more and more pronounced.

Table 6  Hexatriene: optimal BLA value in Å for different MO frosts and different levels of calculations, using CAS(6/6)SCF MOs. Numbers 
below the BLA are the difference to the BLA obtained at the CAS(6,6)SCF level

CI CAS(6/6) σCC and σCC∗ only σCH and σCH∗ only All valence MO Non-valence π ∗ All MO

 + S  + SD  + SDT  + S  + SD  + S  + SD  + S  + SD  + S

BLA (Å) 0.108 0.099 0.095 0.095 0.106 0.108 0.099 0.099 0.102 0.106 0.093
ΔBLA(Å)  − 0.009  − 0.013  − 0.013  − 0.002  + 0.000  − 0.009  − 0.009  − 0.006  − 0.002  − 0.015
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4  Conclusion

This work illustrates limits of mean-field calculations and 
identifies their drawbacks on the paradigmatic problem of 
BLA of linear polyenes. In the single determinant SCF treat-
ment, a single set of doubly occupied MOs is optimized. A 
VB-type reading of this wave function is possible but (i) 
the combinations of the VB components are fixed by the 
MO delocalization and (ii) important correlation effects 
are missing, for instance the preference for neutrality or for 
the intra-atomic Hund’s rule satisfaction [26]. In a valence 
CASSCF function, the function is spanned on all possible 
orthogonal valence bond components, introducing much 
flexibility. Nevertheless, we must not forget two limitations 
of this practice (beyond the neglect of the short-range elec-
tron–electron avoidance, i.e., of the Coulomb cusp):

• The CASSCF uses a unique set of valence MOs to 
describe the various components of the CAS function, 
while each of these components would require MOs 
appropriate to its associated electric field. This remark 
has led to the so-called breathing orbital valence bond 
(BOVB) method [27], which optimizes specifically the 
valence orbitals of each VB component. In their ground 
state the linear polyenes are not highly correlated and 
the single determinant SCF function should be a good 
entrance in the wave function building, a CASSCF 
description does not seem to be required. As shown in 
the present work, the full-π valence CASSCF treatment 
incorporates part of the component-specific relaxation 
of the valence MOs, the 1hole-1particle excitations on 
the top of the leading configurations which remain in the 
CAS introduce the largest part of dynamic polarization 
effects.

• As the active space is limited to a subset of electrons and 
MOs, the numerous inactive electrons remain treated in 
a mean-field approximation. Their dynamic response to 
the fluctuation of the field created by the active electrons 
should be considered, and this can be done at a reason-
able computational cost by performing a CAS + 1hole-
1particle CI. Enlarging the CAS to its maximum tractable 
size is not the best solution, since in principle dynamic 
polarization concerns all the inactive electrons. Those 
of all σ CC and CH bonds react to the fluctuation of the 
electric field of the π electrons. It is certainly preferable 
to start from a moderate-size active space and to add the Ta
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Table 8  Octatetraene: optimal BLA value in Å obtained at different 
levels of calculations, using CAS(8/8)SCF MOs

BLA (Å) SCF CAS(8,8)SCF CAS(8,8) + S

Optimal BLA 0.137 0.105 0.089
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full response of the inactive electrons at a rather low-cost 
treatment than to enlarge the CAS.

It is interesting to note the relation of this typical organic 
chemistry problem with an apparently totally different coor-
dination chemistry one. In transition-metal binuclear mag-
netic complexes where two unpaired electrons occupy two 
atom-centered 3d type orbitals, it seems reasonable to treat 
the singlet–triplet gap starting from a CASSCF of 2 elec-
trons in 2 orbitals and then to add the configurations which, 
according to a perturbative expansion, may contribute to 
the energy gap. The classes of excitations involving either 
2h-1p or 1h-2p happen to play an unexpected important role 
[28]. It has been shown that they contribute to an increase 
of the delocalization between the metals and the ligands by 
revising the spatial extent of the magnetic orbitals [11]. The 
effect passes through the dynamic polarization of the LMCT 
determinants, which is already true in mono-radicals, such 
as  CuCl2 [29], and it is observed as well in organic radicals 
such as phenyl or diradicals as xylylenes [30].

The mean-field approximation underlying MOs 
descriptions faces severe limitations and must frequently 
be overcome by accessing correlated treatments. Under-
standing multi-configurational wave functions sometimes 
requires tedious analyzes but produces an intelligibil-
ity of the physical factors governing a property. In our 
opinion, it is much easier to understand the correlation 
effects using localized MOs or atom-supported orbitals, 
as is done in valence bond treatments, than using delocal-
ized symmetry-adapted MOs [26]. Understanding quali-
tatively the physics taking place in the valence space, 
inside a limited CAS and beyond, is not only intellectu-
ally satisfying, but it also opens the route to the concep-
tion of computational tools which remain close to the 
minimum level of treatment of the key physical effects. 
Quantum chemistry as a science is not limited to furnish-
ing numbers, it must in principle provide explanations, 
identify physical effects, predict trends, possibly laws 
[31] and produce methods. It is in this spirit that Fernand 
Spiegelman has practiced this discipline throughout his 
career. The recognition of the essentially local character 
of the electronic interactions which we exploited here is 

certainly at the basis of his fruitful developments of the 
DFTB method [32, 33].
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