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Abstract
Dopamine (D2) receptor has emerged as a potent drug target for the diagnosis and treatment of Parkinson’s disease (PD). 
Radiolabelled imaging such as positron emission tomography (PET) has been recognized as an important tool in medicinal 
chemistry useful for the early diagnosis of PD. The present study explores quantitative structure—activity relationship 
analysis of 34 PET imaging agents targeted toward dopamine D2 receptor. The dataset division into training and test sets 
was done using Euclidean distance division method, while the feature selection was done by double cross-validation-genetic 
algorithm method. Finally, a five-descriptor partial least squares regression model was derived after carrying out the best 
subset selection applied on the significant descriptors. The developed model showed robustness in terms of statistical param-
eters. Finally, the structural information derived from the model descriptors gives an insight for the development of new 
candidate D2-PET imaging for the use in PD.
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1  Introduction

Parkinson’s disease (PD) is considered as the second most 
common progressive neurodegenerative disorder associated 
with a selective degeneration of the dopaminergic neurons 
in the substantia nigra pars compacta and loss of projecting 
nerve fibers in the striatum. It is estimated that more than 
10 million people are living with PD worldwide and the 
occurrence of PD increases with age [1]. About four percent 
of people with PD are diagnosed before 50 years of age, 
and men are more prone to this disease than women (about 
1.5 times more) [1]. The neurons involved in this disease 
control the motor movements like resting tremor, muscular 

rigidity, bradykinesia, and postural imbalance [2]. Patients 
with this disease also experience a combination of non-
motor symptoms like sleep disturbances, dementia, fatigue, 
anxiety, depression, apathy, cognitive impairment, olfactory 
dysfunction, pain, sweating and constipation [3].

Neuroimaging studies are non-invasive methods which 
help in providing an in vivo image of the nigrostriatal dopa-
minergic system and further assessment of the extent of neu-
ronal loss associated with PD. Radioactive tracers that selec-
tively bind with dopamine receptors are involved in positron 
emission tomography (PET) imaging and lately single pho-
ton emission computed tomography (SPECT) imaging for 
research and clinical purposes [4]. PET imaging is a power-
ful analytical tool which is able to detect in vivo changes in 
the brain function [5]. PET imaging involves quantification 
of brain metabolism, abundance of a receptor and its bind-
ing in different neurotransmitter systems, and alterations in 
blood flow in specific region in the brain [5]. PET imaging is 
considered better than SPECT imaging in terms of accuracy 
and its regional distributions [6]. Heiss and Hilker (2003) 
[7] studied that the radiotracer 18F-fluorodopa (FDOPA) is 
capable of measuring dopamine deficiency, both its syn-
thesis and storage at the pre-synaptic striatal nerve end-
ings, thus allowing FDOPA-PET in the diagnosis of PD in 
early disease stages. Wu et al. [8] characterized the clinical 
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features and associated cerebral glucose metabolism pattern 
of cognitive impairments in (PD) using 18F-fluorodeoxyglu-
cose (18F-FDG) PET imaging. Glaab et al. integrated blood 
metabolomics data with PET imaging information which 
gave better diagnostic discrimination power in understand-
ing cellular processes, including oxidative stress response 
and inflammation [9].

There is a continuous search of new compounds with 
improved properties and lowered toxicity which takes enor-
mous human resource and cost into its requirement. Thus, 
theoretical approaches are gaining more importance among 
the pharmaceutical and chemical industries enabling logi-
cal design of pharmaceutical agents. Currently, quantitative 
structure-activity relationship (QSAR) has gained great 
interest in the process of modern drug discovery and design 
[10, 11]. The study attempts to build a relationship between 
the chemical properties with a well-defined endpoint as the 
compounds’ activity (QSAR) or property (QSPR) or toxicity 
(QSTR). QSAR acts as an effective tool in the prediction of 
biological response (activity/property/toxicity) of existing 
chemical compounds.

In the present study, we have developed a QSAR model 
with two-dimensional (2D) molecular descriptors to explore 
the correlations of the molecular structure of a series of 
PET tracers against the binding affinity of dopamine (D2) 
receptor.

2 � Materials and methods

2.1 � Dataset

Dopamine (D2) receptor binding affinity (Ki) data of 34 PET 
imaging agents were taken from different literature as men-
tioned in Table 1. The experimental binding affinity for all 
the compounds was measured using the same assay protocol, 
i.e., rat striatal homogenate (RSH) assay method. This datum 
was applied in the development of a 2D-QSAR model to 
determine the essential structural features required for good 
binding to the D2 receptor. The binding affinity (Ki) values 
for the PET imaging agents were converted to their negative 
logarithm (pKi) form and then used for modeling. The com-
pounds were represented using the MarvinSketch software 
[12] with proper aromatization and addition of hydrogen 
bond as necessary.

2.2 � Molecular descriptors

QSAR models were developed using a selected class of two-
dimensional molecular descriptors. The descriptors were 
E-state indices, connectivity, constitutional, functional, 2D 
atom pairs, ring, atom-centered fragments, and molecular 
property descriptors. These descriptors were calculated 

Table 1   Dataset compounds with their observed binding affinity (in 
pKi)

Com-
pound no

Structure pKi Refer-
ence

1 2.321 [13]

2 4.420 [14]

3* 2.652 [14]

4 2.752 [14]

5 2.262 [15]

6 2.684 [13]

7* 3.951 [14]
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Table 1   (continued)

Com-
pound no

Structure pKi Refer-
ence

8 2.932 [13]

9 3.401 [13]

10 1.460 [16]

11 1.839 [16]

12 4.658 [17]

13 4.097 [17]

Table 1   (continued)

Com-
pound no

Structure pKi Refer-
ence

14 4.770 [14]

15 4.824 [18]

16 4.036 [18]

17 5.276 [14]

18 5.921 [18]

19* 3.428 [15]

20 3.108 [15]
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using Dragon 7 [22] descriptor calculator. A total of 403 
Dragon descriptors were calculated. Before the development 
of the QSAR model, the data were curated [23] by removing 
intercorrelated (|r|> 0.95), constant (variance < 0.0001), and 
other noisy and redundant data by using data pretreatment 
software developed in our laboratory and available from 
https​://dtcla​b.webs.com/softw​are-tools​. After data pretreat-
ment, the number of descriptors was reduced to 179.

Table 1   (continued)

Com-
pound no

Structure pKi Refer-
ence

21 2.807 [15]

22* 3.114 [19]

23 3.824 [20]

24 3.959 [20]

25* 5.046 [20]

26* 4.367 [20]

27 3.523 [20]

28* 5.602 [20]

Table 1   (continued)

Com-
pound no

Structure pKi Refer-
ence

29 5.721 [20]

30 4.975 [20]

31 4.833 [20]

32 5.699 [20]

33 2.886 [20]

34 2.507 [21]

Compounds marked with "*" are test set compounds

https://dtclab.webs.com/software-tools
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2.3 � Dataset splitting

Splitting of the dataset into training and test sets is a vital 
step in QSAR modeling, and it enables the development of 
a robust and well-validated model. Data division must be 
done in such a way that the points representing both training 
and test set are well scattered within the whole descriptor 
space defined by the entire dataset. The training set is used 
for model development and the test set for model valida-
tion. The division of the dataset was executed by one of the 
most extensively used methods, Euclidean distance division 
method, where the Euclidean distances for all of the com-
pounds in the dataset are calculated and the compounds are 
then sorted, based on the Euclidean distance [24].

2.4 � Variable selection and model development

The main aim of the present study is to develop a well-
validated QSAR model to understand the binding of PET 
imaging agents toward dopamine (D2) receptor for the diag-
nosis of Parkinson’s disease. Critical selection of statistically 
significant descriptors ensures improvement in the quality 
of the model. Prior to development of the QSAR model, we 
have extracted a number of significant descriptors using dou-
ble cross-validation-genetic algorithm (DCV-GA) approach 
applied on the training set compounds [25–27]. Finally, a 
partial least squares (PLS) [28] regression model was gener-
ated using descriptors selected from the best subset selection 
(BSS).

Double cross-validation (DCV) is an attractive statis-
tical design which combines both model generation and 
model assessment with the aim to produce better models 
[25, 29]. Sometimes the fixed composition of a training 
set can lead to biased descriptor selection. DCV method 
helps in better descriptor selection by dividing the training 
set into ‘n’ calibration and validation sets. This results in 
diverse compositions of the modeling set, thus removing 
any bias in descriptor selection. DCV technique consists 
of two nested cross-validation loops commonly known as 
internal and external cross-validation loops. In the external 
loop, the data objects are split randomly into disjoint subsets 
known as training set compounds and test set compounds. 
The training set compounds are involved in the internal loop 
for the purpose of model development and model selection, 
and the test set is used solely for the intention of checking 
model predictivity. Further, in the internal loop, the train-
ing set compounds are repetitively split into calibration 
(construction) and validation sets by employing the k-fold 
cross-validation technique (here, k = 10) [29] and produc-
ing k iterations to construct calibration and validation sets. 

The calibration objects are used to derive different mod-
els by altering the tuning parameter(s) of the model (i.e., 
the descriptors), whereas the validation objects are used to 
guess the models’ error. The model with the lowest cross-
validated error is selected. The test compounds in the outer 
loop are employed to assess the predictive performance of 
the selected model.

In the current study, descriptor selection in the DCV plat-
form was done using genetic algorithm (GA) approach. GA is 
a model optimization approach with an algorithm inspired by 
the theory of evolution [26]. GA has five basic steps: (i) coding 
of variables; (ii) initiation of population; (iii) evaluation of the 
response; (iv) reproduction; and (v) mutation. Steps (iii) to (v) 
are repeated until a termination criterion is reached. The crite-
rion can be based on a lack of improvement in the response or 
simply on a maximum number of generations or on the total 
time allowed for the elaboration.

2.5 � Statistical validation metrics

Validation of the robustness and predictive ability of the 
developed models is a very crucial step in a QSAR study. A 
meticulous examination of the statistical quality of the devel-
oped model has been done to judge the robustness in terms of 
reliability and predictivity measures using various internal and 
external validation parameters. For determining the quality 
of the developed model, statistical parameters like determina-
tion coefficient R2 and explained variance R2

a
 were calculated. 

Other parameters including internal predictivity parameters 
such as predicted residual sum of squares (PRESS) and leave-
one-out cross-validated correlation coefficient (Q2

LOO) were 
also calculated along with external predictivity parameters 
like R2

pred or Q2
F1

 , Q2
F2

 , and concordance correlation coefficient 
(CCC) [30]. Further, we have also calculated r2

m
 metrics (i.e., −

r2
m
 and Δ r2

m
 ) for both training and test set compounds [31]. 

Validation using mean absolute error (MAE)-based criteria for 
both external and internal validation was done [32]. The Q2

ext

-based criteria do not always interpret the correct prediction 
quality because of the impact of the response range as well 
as the distribution of the values of the response in both the 
training and test set compounds; so MAE was calculated to 
check the average error [32]. Figure 1 shows the flowchart of 
the present work methodology.

3 � Results and discussion

3.1 � Modeling binding affinity of PET tracers 
toward dopamine (D2) receptor

The final PLS model of three latent variables (LVs) consisted 
of five descriptors that explains the binding properties of the 
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PET radioligands toward dopamine receptor. The final model 
is given below:

pKi = 4.512 − 0.184 × SaaCH − 1.554 × B08[C − S] + 0.060 × SsF

− 2.350 × B10[N − F] + 1.425 × B10[C − O]

3.2 � Mechanistic interpretation

The variable importance plot (VIP) (Fig. 2) gives an idea 
about the influence of the individual descriptors on the 
model and thereby on the binding affinity [33]. The order of 
importance of the descriptors was found as follows: SaaCH, 
B10[N–F], B10[C–O], SsF, and B08[C–S]. The VIP gives 
an understanding that descriptors SaaCH and B10[N–F] are 
highly influential due to their VIP scores being more than 
one. The regression coefficient plot (not shown) provides a 
basic understanding about the contribution of the individual 
descriptor on the model [28]. It is seen that the descriptors 
SaaCH, B08[C–S], and B10[N–F] negatively contributes to 
the response, while the descriptors SsF and B10[C–O] posi-
tively contribute to the response. The details of the descrip-
tors and their contributions are given in Table 2 and also 
explained below in detail. The observed vs predicted scatter 
plot is shown in Fig. 3.

The E-state indices descriptor SaaCH gives idea on 
the sum of the atom-type E-state values for aromatic –CH 
groups. From the regression coefficient of the descriptor, 
it can be inferred that aromaticity hinders the binding of 
the PET compounds to the D2 receptor as in compounds 
8 (SaaCH = 18.392) (Fig. 4), 10 (SaaCH = 16.63), and 11 
(SaaCH = 14.214). These compounds are aromatic and have 
high SaaCH values, and they have lower binding affinity val-
ues (pKi = 2.931, 1.460, and 1.839). Further, in compounds 
like 29 and 32, aromaticity is less as compared to the pre-
viously mentioned compounds, thus having lower values 
for the descriptor (SaaCH = 3.583 and 1.640, respectively). 
These compounds have better binding affinity (compound 
29 (pKi = 5.700) and compound 32 (pKi = 5.721)) toward 
dopamine receptor.

ntraining = 27,R2 = 0.731,R2
adj

= 0.696,Q2 = 0.623, r2
m(LOO)

= 0.507,Δr2
m(LOO)

= 0.159,MAE(train)

= 0.528, SD(train) = 0.550, PRESS = 15.392

ntest = 7,Q2
F1

= 0.687,Q2
F2

= 0.664, r2
m(test)

= 0.742,Δr2
m(test)

= 0.116,

MAE(test) = 0.505, SD(test) = 0.280, CCC(Test) = 0.812

Fig. 1   Flowchart of the present work methodology

Fig. 2   Variable importance plot of the PLS model

Table 2   Descriptor meaning and their contribution

Serial no Descriptor Descriptor type Contribution Discussion

1 SaaCH Atom-type E-state −ve Sum of the atom-type E-state values for aromatic –CH groups
2 B08[C-S] 2D atom pairs −ve Presence or absence of carbon and sulfur at the topological distance 8
3 SsF Atom-type E-state  +ve Sum of the atom-type E-state values for –F fragments
4 B10[N-F] 2D atom pairs −ve Presence or absence of nitrogen and fluorine at the topological distance 10
5 B10[C-O] 2D atom pairs  +ve Presence or absence of carbon and oxygen at the topological distance 10
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The next important descriptor is B10[N–F] (2D atom 
pair type), and the negative contribution implies that the 
presence of nitrogen and fluorine at the topological distance 
10 will hinder the binding affinity seen in compounds 11 
(B10[N–F] = 1; pKi = 1.838) (Fig. 4) and 33 (B10[N–F] = 1; 
pKi = 2.886). Further, the absence of this fragment will 
increase the binding affinity as observed in compounds 

29 (B10[N–F] = 0; pKi = 5.700) and 32 (B10[N–F] = 0; 
pKi = 5.721). The effect of the electronegativity of fluorine 
atom on nitrogen is a determining factor for the good binding 
which is latter explained while studying the descriptor SsF. 
The closeness between nitrogen and fluorine atom explains 
how the binding will occur.

B10[C–O] is another 2D atom pair descriptor repre-
senting the presence or absence of C–O fragment at the 
topological distance 10. The descriptor positively influ-
ences the binding affinity of the PET tracers toward dopa-
mine receptor as seen in compounds 18 (B10[C–O] = 1; 
pKi = 5.921) (Fig. 4), 29 (B10[C–O] = 1; pKi = 5.721), and 
32 (B10[C–O] = 1; pKi = 5.700). The presence of this kind 
of fragment affects the electronegativity of the compounds 
essential for binding. The absence of this fragment on the 
other hand decreases the dopamine binding affinity observed 
in compounds like 1 (pKi = 2.321) and 5 (pKi = 2.262).

The E-state values for the descriptor SsF depend on the 
number of fluorine atoms present in a PET tracer molecule. 
From the regression coefficient, it can be understood that 
with increasing fluorine atoms the binding affinity also 
increases as observed in 18 (SsF = 14.107; pKi = 5.921), 32 
(SsF = 12.490; pKi = 5.698) (Fig. 4), and 31(SsF = 13.108; 
pKi = 4.833). The electronegative fluorine atom is presumed 
to decrease electron charge density on nitrogen atoms. This 

Fig. 3   Observed versus predicted pKi plot

Fig. 4   Descriptors appearing in the PLS model and their contribution
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reduces nitrogen basicity and its prospect to get protonated 
at physiological pH which is a basic requirement for good 
binding to dopamine receptors [34].

The least important descriptor is B08[C–S], which is also 
a 2D atom pair descriptor and gives an idea of the pres-
ence or absence of C–S fragment at a topological distance 8. 
The negative contribution suggests that the presence of this 
fragment will result in a decreased binding affinity toward 
the dopamine receptor which is observed in compounds 21 
(pKi = 2.807) and 20 (pKi = 3.107) (Fig. 4). Alternatively, 
compounds like 18 (pKi = 5.921), 29 (pKi = 5.721) and 32 
(pKi = 5.698) have no such fragment, thus having higher 
binding affinity.

From the descriptors and their contributions, we can draw 
an inference that the oxygen for B10[C–O] and fluorine for 
SsF impart an electronegative character to the PET ligands 
which plays an essential role for the good dopamine (D2) 
binding.

3.3 � Plot Interpretation

1	 Loading Plot— This plot gives a relationship between 
the X-variables (i.e., the descriptors) and Y-variable (i.e., 
response) [35]. In Fig. 5, five X-variables and one Y-var-
iable are shown. Generally, the plot is developed with 
the first and second components. A loading plot provides 
an insight about how much a variable contributes to a 
model and which variable provides the maximum foot-
print. For interpretation, the distance from the origin is 
taken under consideration. Descriptors which are similar 
in nature and providing similar contribution are corre-
lated and grouped together. Descriptors which are situ-

ated far away from the plot origin are supposed to have 
greater impact on the Y-response. From the loading plot 
it, is seen that descriptors SaaCH and B10[N–F] are far 
away from the plot origin supporting their higher influ-
ence also explained by the VIP. The positive or negative 
algebraic symbol is also taken under consideration in 
a PLS plot. Features explained by descriptors SsF and 
B10[C–O] are beneficial for binding because of their 
closeness to pKi in the plot. On the other hand, SaaCH, 
B10[N–F] and B08[C–S] are present in the negative side 
of the plot origin and are detrimental for good binding.

2	 Score Plot— Figure 6 shows the distribution of the 
compounds in the latent variable space as defined by 
the scores. We have plotted the scores of the first two 
components t1 and t2. The applicability domain of the 
model is designated by the ellipse, as defined by Hotel-
ling’s t2. Hotelling’s t2 defines multivariate generaliza-
tion of Student’s t test. The method offers a check for 
compounds adhering to multivariate normality [36]. 
Compounds which are situated near each other in the 
plot have similar properties, whereas compounds which 
are far from each other have dissimilar properties with 
respect to their binding affinity toward dopamine recep-
tor. As an example, we can take compounds 14, 15, 16, 
and 17 which are clubbed together as a group on the plot 
space and can be considered to be with similar proper-
ties. On the other hand, compounds 18 and 12 are com-
pletely located on the opposite side of the origin and 
far from each other and they represent heterogeneity in 
their properties. Since there are no compounds out of 
the ellipse, we can conclude that there are no outliers 
according to this method.

Fig. 5   Loading plot of the PLS model
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	   Y-Randomization Plot— Model randomization gives a 
notion about the model significance and ensures that the 
model is not an outcome of a chance correlation [37]. 
A randomized model is generated by the development 
of multiple models by shuffling or reordering different 
combinations of X-or Y-variables (here Y-variable only) 
and based on the fit of the reordered model. In the pre-
sent study, we have used 100 permutations which can 
be changed according to the choice of the user. A rand-
omized model should have very poor statistics. The R2 

and Q2 values for the random models (Y-axis) are plot-
ted against correlation coefficient between the original Y 
values and the permuted Y values (X-axis); the R2

y
 inter-

cept should not exceed 0.3, and the Q2
y
 intercept should 

not exceed 0.05. Figure 7 shows the correlation between 
original Y-vector and permuted Y-vector versus cumula-
tive R2

y
, cumulative Q2

y
 plot where R2

y
 intercept = 0.09 and 

Q2
y
 intercept = − 0.393 proving the model is robust and 

non-random.

Fig. 6   Score plot of the PLS 
model

Fig. 7   Y-randomization plot of 
the PLS model
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3	 Applicability Domain (AD)— The prediction reliabil-
ity of a particular model is dependent on its applica-
bility domain (AD) assessment. Applicability domain 
(AD) “represents a chemical space from which a 
model is derived and where a prediction is consid-
ered to be reliable” [38]. The AD evaluation was done 
using the DModX (distance to model) in the X-space 
using SIMCA 16.0.2 software available at https​://landi​
ng.umetr​ics.com/downl​oads-simca​. The AD plots are 
given in Figs. 8 and 9 and for training and test sets, 
respectively, and it is found that there are no outliers 
in case of training set, and none of the compounds are 
outside AD in case of the test set at 99% confidence level 
(D-crit = 0.009999, M-Dcrit [3] = 3.213).

4 � Conclusion

In vivo imaging targeting dopamine receptor is a subject 
of extensive studies nowadays. Dopamine plays a vital role 
in controlling the pathophysiology of Parkinson’s disease. 
Hence, it can be treated as a suitable target in controlling 
the disease. The present study aims in the development of a 
2D QSAR model of a group of 34 PET imaging agents hav-
ing affinity toward dopamine D2 receptor. The 2D QSAR 
model developed is simple and interpretable and provides 
knowledge about the basic structural features required for 
good dopamine binding. The use of simple two-dimensional 
descriptors reduces the need of time-consuming computa-
tional approaches of conformational analysis or energy 

Fig. 8   DModX applicability 
domain of the training set

Fig. 9   DModX applicability 
domain of the test set

https://landing.umetrics.com/downloads-simca
https://landing.umetrics.com/downloads-simca
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minimization; thus, the developed model may be suitable 
for the quick screening purposes.
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