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Abstract
Experimentalists recently characterized the difficulty in isolating gaseous histidine in its neutral form. To understand the fac-
tors which stabilize neutral histidine, the intrinsic nature of the intramolecular hydrogen bonding networks in the four most 
stable histidine conformers was investigated via density functional theory combined with the local vibrational mode analysis 
originally introduced by Konkoli and Cremer, quantum theory of atoms in molecules, non-covalent interaction analysis, 
and natural bond orbital population analysis. Our results show a positive correlation between intramolecular hydrogen bond 
strength and structural stability, where the presence of the O−H⋯N� bond type is a major factor.

Keywords  Histidine · Hydrogen bonding · Local vibrational mode analysis · NBO analysis · QTAIM analysis · DLPNO-
CCSD(T)

1  Introduction

Histidine (HIS) is one of the twenty essential amino acids 
relevant to biological organisms [1] and involves innate 
processes such as tissue growth and muscle repair [2, 3]. 
HIS consists of an imidazole (Im) ring and a side chain 
with branched amine ( NH2 ) and carboxyl ( CO2H ) groups, 
which can switch from neutral ( R−NH2 and R−CO2H ) to 

zwitterionic forms ( R−NH+
3
 and R−CO−

2
 ), depending on 

physiological conditions such as pH and temperature [4]. 
Hence, HIS acts as both proton acceptor and donor in bio-
chemical reactions [5]. Additionally, Im-N ( N� ) can be de-
protonated ( � tautomer) or protonated ( � tautomer), allowing 
for inter- and intramolecular hydrogen bonds (HBs). Func-
tionality in HIS relates to its three-dimension conforma-
tion [6], which in turn depends on non-covalent interactions 
(NCIs) [7]. Experimental and theoretical studies suggest that 
the conformational preference of HIS is primarily influenced 
by the stabilizing presence of intramolecular hydrogen bonds 
(IMHBs) [8, 9], but to our best knowledge this has not been 
quantified.

HIS exists predominantly as a zwitterion, where it gains 
extra stabilization energy through interactions with polar 
environments [10]. The zwitterion exists over a wide pH 
range in liquid and solid phases [11]. Due to its high melt-
ing point, low vapor pressure, and thermal instability, neu-
tral HIS has proven difficult to isolate and experimentally 
characterize. �IIa (Fig. 1) is the most stable/common in 
nature [12, 13] and was recently isolated and characterized 
in the gas phase for the first time using laser ablation tech-
niques [14], which has opened the door for research aimed 
at better understanding the factors involved in stabilizing 
this neutral form.

In this work, we present for the first time a quantita-
tive analysis of IMHB strength in the four most stable 
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HIS conformers ( �IIa , �IIb , �IIa , and �Ia ) with the aim of 
answering the following questions: 

(i)	 Which theoretical (DFT) method gives the best descrip-
tion of IMHBs?

(ii)	 Which types of IMHBs are possible in neutral HIS?
(iii)	 How strong are the IMHBs in neutral HIS?
(iv)	 What factors stabilize neutral HIS?
(v)	 Why is �IIa more stable than �IIa ? What factors stabi-

lize �IIa?

2 � Computational methods

The major reason why IMHBs in HIS have not been quan-
tified so far has been the lack of a reliable intrinsic bond 
strength measure. Detailed information on the electronic 
structure of a molecule and its chemical bonds is encoded 
in the molecular normal vibrational modes. However, 
normal vibrational modes are generally delocalized in 
polyatomic molecules because of electronic and mass 
coupling. [15–18] Therefore, the corresponding normal 
mode frequencies and force constants are not suitable bond 
strength descriptors [19]. Konkoli, Cremer, and co-work-
ers provided a solution to this problem utilizing a mass-
decoupled analogue of Wilson’s equation of vibrational 
spectroscopy leading to local vibrational modes (LVMs) 
that are free from any mode–mode coupling [20–24]. Each 
local mode is associated with an internal coordinate qn 
(e.g., bond length r) which drives the local vibration and 
a corresponding local mode frequency �a and local mode 
force constant ka . Zou and co-workers demonstrated that 
there is a one-to-one relationship between the local and 
normal vibrational modes, that can be verified by an adi-
abatic connection scheme (ACS), providing the physical 
fundament for the LMVs.[25] Zou and Cremer further 
proved that the local stretching force constant ka is directly 
related to the intrinsic strength of a bond, which qualifies 
ka as unique quantitative bond strength measure based on 
vibrational spectroscopy.[26] So far, the local mode analy-
sis has been successfully applied to characterize covalent 
bonds [26–32] and weak chemical interactions such as hal-
ogen [33–36], chalcogen  [37–39], pnicogen  [40–42], and 
tetrel interactions [43] as well as intra- and intermolecular 
hydrogen bonding in various forms and systems.[44–50]

To simplify the comparison of local stretching 
force constants ka , we generally convert ka values into 
bond strength orders (BSO n) most chemists are more 
acquainted with [28, 29, 44, 51] via a generalized Badger 
rule [27, 52] which states that the strength of a bond cor-
relates with the local force constant in the form of a power 
relationship:

The constants a and b can be determined from 2 reference 
molecules with defined BSO n and known ka values and the 
assumption that ka = 0 corresponds to n = 0. In this work, we 
used as references HF (BSO n = 1 and ka = 9.350 mdyn/Å) 
and HF−

2
 (BSO n = 0.5 and ka = 0.852 mdyn/Å). This led to 

a = 0.524 and b = 0.289 . We determined the covalent char-
acter of the IMHBs via the Cremer–Kraka criterion [53, 
54] for covalent bonding which is based on the local energy 
density H(�)

where G(�) is the kinetic energy density (positive, destabiliz-
ing) and V(�) is the potential energy density (negative, sta-
bilizing). Taken at the bond critical point �b of the electron 
density �(�) [55, 56] between two bonded atoms, H(�b) < 0 
points to a covalent interaction, while H(�b) > 0 indicates 
an electrostatic interaction.

To find a practical and reliable computational method for 
describing weak IMHBs, the influence of dispersion cor-
rections was evaluated using (i) the semiclassical C6-based 
schemes of Grimme’s D2 [57], D3 [58], and D3(BJ) [59] 
dispersion corrections in combination with B3LYP [60] 
and (ii) the range-separated, dispersion-corrected �B97X-
D  [61] functional. We also compared Pople’s 6-311++
G(d,p) [62] triple-� augmented basis set with polarization 
and diffuse functions with Dunning’s aug-cc-pVTZ [63] 
correlation-consistent triple-� basis set of the same quality 
and features [64]. B3LYP-D3(BJ)/aug-cc-pVTZ turned out 
to be the most accurate level of theory for this work. The 
aug-cc-pVTZ basis set contains higher-quality polarization 
and diffuse functions compared to 6-311++G(d,p), and the 
B3LYP-D3(BJ) functional/dispersion correction combina-
tion provided a more accurate description of IMHBs com-
pared to �B97X-D (See Supporting Information).

A dual-level strategy was utilized, where geometry opti-
mizations and frequencies were calculated at the B3LYP-
D3(BJ)/aug-cc-pVTZ level of theory. Single-point energies 
were then calculated via the domain local pair natural orbital 
coupled cluster theory with singles, doubles, and perturba-
tive triples (DLPNO-CCSD(T)) method [65, 66] and aug-
cc-pVTZ basis set.

DFT calculations were performed using Gaussian09 ver-
sion D.01 [67]. Geometry optimizations and vibrational fre-
quencies were calculated with an ultra-fine integration grid 
and tight convergence criteria for forces and displacement. 
DLPNO-CCSD(T) single-point energies were calculated 
using ORCA [68]. Charge distribution and local charges 
were calculated using NBO6 [69, 70]. LVM frequencies 
( �a ) and ka were calculated using COLOGNE2017 [71]. 
Electron density ( �(�b) ) [72] and H(�b) , where �b is a bond 

(1)BSO n = a(ka)b.

(2)H(�) = G(�) + V(�),
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critical point, were calculated using AIMAll [73]. Struc-
tural models were made with UCSF Chimera [74]. NCI 
plots were made with ‘isosurface NCIPLOT’ in Jmol [75, 
76]. Standard gradient cutoff of s = 0.5 a.u. (s: the reduced 
density gradient) with color scale −0.04 < 𝜌 < 0.04 au was 
utilized [75]. LVM, AIMALL, and NCI plots all support 
the IMHBs discussed in the following section. To provide 
further support for this work, the density-dependent density 
overlap regions indicator (DORI) analysis was utilized (see 
Supporting Information) [77].

3 � Results and discussion

Table 1 summarizes relative (with respect to �IIa ) elec-
tronic plus zero-point energies ( �E ), electronic plus thermal 
enthalpies ( �H ), electronic plus thermal free energies ( �G ), 
CCSD(T) �E corrections ( �Ecorr ), IMHB distances (r), local 
mode force constants ( ka ), local mode frequencies ( �a ), 
bond strength order (BSO n), electron density ( �(�b) ), local 
energy density ( H(�b) ), and bond degree (BD: H(�b)∕�(�b) ) 
[78]. Calculated molecular geometries, selected NBO atomic 
charges, IMHBs (green dashed bonds), bond distances (r) 
reported in Å, and NCI isosurfaces (bottom row) are shown 
in Fig. 1. For the NCI plots, blue isosurfaces represent 
strongly attractive interactions, green/yellow surfaces indi-
cate weakly attractive interactions, and orange/red surfaces 
point to repulsive interactions.

In Fig. 2, local stretching force constants ka of IMHBs 
are plotted with respect to IMHB distance r. Figure 3 
shows a power relationship between BSO n and ka of the 
12 IMHBs in this work. In Fig. 4, BSO n is plotted with 

respect to local energy density at the BCP ( H(�b) ), where 
the vertical dashed line at H(�b) = 0 separates the covalent 
( H(�b) < 0 ) and electrostatic ( H(�b) ≥ 0 ) regions accord-
ing to the Cremer–Kraka criterion. Figure 5 reveals a cor-
relation between BSO n and �(�b) , where increased elec-
tronic density correlates with increased IMHB strength. 
Figure 6 shows the sum of IMHB ka values for each HIS 
conformer plotted with respect to �Ecorr.

3.1 � Intrinsic strength of IMHBs

Each conformer has a unique network of IMHBS, together 
comprising eight different IMHB types: 

1.	 N�−H⋯N� ( �IIa, �IIb ), donor/acceptor = NH2/Im-N, 
[purple circles]

2.	 N�−H⋯N� ( �Ia ), donor/acceptor = Im-NH/ NH2 , 
[orange diamond]

3.	 N�−H⋯O ( �Ia ), donor/acceptor = NH2/carbonyl-O, 
[brown hexagon]

4.	 C�−H⋯O=C ( �IIa, �IIa ), donor/acceptor = CH2/car-
bonyl-O, [red squares]

5.	 C�−H⋯OH ( �Ia ), donor/acceptor = CH2/OH, [red 
squares]

6.	 O−H⋯N� ( �IIa, �IIb, �IIa ), donor/acceptor = OH/NH2 , 
[blue triangles]

7.	 N�−H⋯O ( �IIa ), donor/acceptor = Im-NH/carbonyl-O, 
[blue pentagon]

8.	 N� − H⋯C� ( �IIa ), donor/acceptor = NH2/Im-C, [green 
triangle]

Table 1   Relative electronic plus zero-point energies ( �E ), electronic 
plus thermal enthalpies ( �H ), electronic plus thermal free energies 
( �G ), CCSD(T) �E corrections ( �E

corr
 ), IMHB distances (r), local 

stretching force constants ( ka ), local mode frequencies ( �a ), bond 
strength order (BSO n), electron density ( �(�

b
) ), local energy density 

( H(�
b
) ), and bond degree ( BD = H(�

b
)∕�(�

b
))

Calculated at B3LYP-D3(BJ)/aug-cc-pVTZ//DLPNO-CCSD(T)/aug-cc-pVTZ levels of theory. IMHBs are denoted under ‘Parameter’ as dotted 
bonds. Thermochemical data are reported as relative to �II

a
 in kcal/mol, r in Å, ka in mdyn/Å, �a in cm−1 , �(�

b
) in e/Å3 , H(�

b
) in Hartree/Å3 , and 

BD in Hartree/e

Conformer �E �H �G �E
corr

Parameter r k
a �a BSO n �(�

b
) H(�

b
) BD

�II
a

0.00 0.00 0.00 0.00 N�−H⋯N� 2.176 0.116 457 0.281 0.124 0.012 0.096
– – – – – O−H⋯N� 1.861 0.277 707 0.362 0.275 − 0.031 − 0.114
– – – – – O⋯H−C�H 2.621 0.142 504 0.298 0.166 0.010 0.059
�II

b
1.22 1.25 1.23 1.44 N�−H⋯N� 2.163 0.132 489 0.292 0.129 0.012 0.093

– – – – – O−H⋯N� 1.892 0.250 672 0.351 0.257 − 0.022 − 0.084
�II

a
0.52 0.48 0.83 0.49 O−H⋯N� 1.906 0.244 663 0.349 0.249 − 0.016 − 0.065

– – – – – N�−H⋯O 2.281 0.074 365 0.247 0.087 0.017 0.198
– – – – – C� − H⋯O=C 2.635 0.138 498 0.296 0.156 0.010 0.067
– – – – – N� − H⋯C� 2.861 0.056 321 0.228 0.068 0.006 0.086
�I

a
2.89 3.05 2.81 2.72 N� − H⋯N� 2.275 0.102 428 0.271 0.117 0.015 0.128

– – – – – HO⋯H−C�H 2.611 0.134 489 0.293 0.177 0.007 0.039
– – – – – N�−H⋯O 2.267 0.108 441 0.275 0.128 0.015 0.118
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Note: donor/acceptor refers to HB donor/HB accep-
tor, [color shape] indicates plot points in Figs.  2, 3, 5 
and  6 ,  N� = amino-N,N� = Im-N, C� = Im−C  ,  and 
C� = aliphatic-C.

Despite different physical location and pairs, IMHB 
type 1, type 2, and type 3 have comparable bond distances 
and strengths. The nature of IMHB type 1, type 2, and 

Fig. 1   (top) Structures of �II
a
 , �II

b
, �II

a
 , and �I

a
 showing selected 

NBO charges and IMHBs as green dashed bonds. H, N, O, and C 
charges are shown in black, blue, red, and gold, respectively. (bot-
tom) NCI plots showing isosurfaces and local vibrational force con-

stants ( ka ) for each IMHB. Blue surfaces represent strongly attractive, 
green/yellow surfaces are weakly attractive, and orange/red surfaces 
are repulsive

Fig. 2   Local stretching force constant ( ka ) plotted with respect to 
IMHB length
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type 3 is electrostatic. IMHB type 1 is found in �IIa and 
�IIb , where N�−H⋯N� found in �IIa is longer and weaker 
than the one found in �IIb . Type 2 and type 3 are uniquely 
found in �Ia.

Type 4 and type 5 are electrostatic in nature. Type 4 hav-
ing a carbonyl-O as a HB acceptor is found in �IIa and �IIa , 
whereas type 5 having a hydroxyl-O as a HB acceptor is 
uniquely found in �Ia . The C�−H acts as a HB donor on the 
both types. Both types are longer than types 1–3 yet slightly 
stronger by ca. 0.024 mdyn/Å. IMHB type 5 are found to be 
‘intermediates’ in terms of bond strength as illustrated in 
Fig. 3 ( 0.260 < BSOn < 0.330).

IMHB type 6 is found in �IIa, �IIb , and �IIa . Type 6 is the 
shortest and strongest HB studied in this work. The local 
stretching force constant ka values of type 6 are 79.35% 
larger than other IMHB types. The IMHB type 6 is covalent 

in nature as shown in Fig. 4. The IMHB type 6 links CO2H 
group to NH2 group.

As a result of poor HB acceptor and poor HB donor, 
these types are the longest and weakest IMHB studied in 
this work. Types 7–8 are on average 63.16% weaker than 
other types. IMHB type 7 and type 8 are found uniquely in 
�IIa . Though it is rarely discussed, the existence of IMHB 
type 8 has been verified experimentally using X-ray crystal-
lography, and in computational reports [79].

3.2 � IMHB networks in each conformer

�IIa contains a three-IMHB network: N� − H⋯N� (type 1), 
C� − H⋯O = C (type 4), and O − H⋯N� (type 6). None of 
these interactions are unique to �IIa , but the combination is 
unique. This network links NH2 to CO2H , NH2 to Im, and 
CO2H to the C-backbone. O − H⋯N� ( ka = 0.277 mdyn/Å, 
BSO n = 0.362 ) is the strongest IMHB of �IIa (also of the 
four conformers), followed by C� − H⋯O = C ( ka = 0.142 
mdyn/Å, BSO n = 0.298 ), then N� − H⋯N� ( ka = 0.116 
mdyn/Å, BSO n = 0.281 ). Force constants of the three 
IMHBs sum to ka

�IIa
= 0.535 mdyn/Å, the largest value com-

pared to �IIb (0.382 mdyn/Å), �IIa (0.512 mdyn/Å), and �Ia 
(0.344 mdyn/Å). H⋯N� is 2.176 Å in length with �q of 
0.910 e. H⋯N� is significantly shorter ( r = 1.861 Å) and 
more polar ( �q = 1.379 e) due to the close proximity of NH2 
and CO2H and the quality of the donor (OH). The third 
IMHB of �IIa ( C� − H⋯O = C ) is the longest and least polar 
of the three interactions ( r = 2.621 Å, �q = 0.833 e). This 
IMHB type, though often neglected in the HB conversation 
[80], is well characterized [81] and plays an important role 
in the structures of proteins, amino acids, and crystals 
[82–84].

Fig. 4   Bond strength order (BSO n) plotted with respect to local 
energy density at the bond critical point ( H(�

b
))
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Fig. 5   Bond strength order (BSO n) plotted with respect to electron 
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�IIb , the R-enantiomer of �IIa , has two IMHBS: 
N� − H⋯N� (type 1) and O − H⋯N� (type 6) with 
r = 2.163, 1.892 Å and �q = 0.913, 1.378 e, respectively. 
Once again, neither type is unique to �IIb , but the combina-
tion is unique. Analogous to �IIa , NCI plots show H⋯N� 
being weakly attractive and H⋯N� being strongly attrac-
tive. A tiny isosurface is seen between O and the H − C� , 
but C�H⋯O is 0.104 Å longer than that of C� − H⋯O = C 
in �IIa and LVM/AIMALL calculations do not support a 
bond. In terms of ka , H⋯N� is stronger ( +0.016 mdyn/Å) 
and H⋯N� is weaker ( −0.027 mdyn/Å) than respective 
counterparts in �IIa (Fig. 2). BSO n values for H⋯N� and 
H⋯N� are 0.292 and 0.351, respectively. H⋯N� is charac-
terized as a covalent IMHB, with �(�b) = 0.257 e/Å3 and 
H(�b) = − 0.022 Hartree/Å3 , whereas H⋯N� is electrostatic 
in nature ( �(�b) = 0.129 e/Å3 , H(�b) = 0.012 Hartree/Å3).

�IIa is an N-tautomer of �IIa with its Im ring 
f lipped 179.14◦ and is the only conformer with 
four IMHBS: C� − H⋯O=C (type 4), O − H⋯N� 
( type 6) ,  N� − H⋯O ( type 7) ,  and N� − H⋯C� 
( type 8) with r = 2.635, 1.906, 2.281, 2.861 Å and 
�q = 0.847, 1.366, 1.045, 0.465 e, respectively. The NCI 
plot confirms that O − H⋯N� is a strongly attractive inter-
action, while the other three IMHBs are all weakly attrac-
tive. N� − H⋯O and N� − H⋯C� are unique to �IIa as 
the only IMHBs with donor/acceptor combinations being 
H − N�/carbonyl-O and H − N�∕C� , respectively. These two 
IMHBs are the only interactions with ka < 0.100 mdyn/Å 
and BSO n < 0.250 . O − H⋯N� is the only strong and cova-
lent ( H(�b) = − 0.016 Hartree/Å3 ) IMHB out of the four. 
�IIa is more stable than �IIa because: (i) O − H⋯N� and 
O⋯H − C�H are stronger in �IIa , and (ii) the intermedi-
ately strong N�⋯H − N�H in �IIa is replaced by the weak 
N� − H⋯C� in �IIa.

�Ia is another tautomer of �IIa , with CO2H and NH2 
rotated ≈ 180◦ about their C-C and C-N bond axes, respec-
tively. This is the only conformer without the type 6 IMHB. 
Each IMHB in this case is technically unique to �Ia : 
N� − H⋯N� (type 2), N� − H⋯O (type 3), and C� − H⋯OH

(type 5). However, as previously mentioned, type 4 and 
type 5 are highly similar. �Ia is also unique in that it does 
not have any IMHBs < 2.000 Å in length, the NCI plot in 
Fig. 1 indicates no strongly attractive interactions, and all 
three IMHBs are weak electrostatic interactions ( ka < 0.200 
mdyn/Å, BSO n < 0.300 , H(�b) > 0.000 Hartree/Å3 , 
𝜌(�b) < 0.200 e/Å3 ). C� − H⋯OH is 2.611 Å in length and 
has a O⋯H�q = 0.905 e, N� − H⋯O is 2.267 Å in length 
with O⋯H�q of 0.977 e, and N� − H⋯N� is 2.275 Å in 
length with N⋯H�q of 1.291 e. C� − H⋯OH is the strong-
est IMHB in �Ia ( ka = 0.134 mdyn/Å, BSO n = 0.293 ), fol-
lowed by N� − H⋯O ( ka = 0.108 mdyn/Å, BSO n = 0.275 ) 
and N� − H⋯N� ( ka = 0.102 mdyn/Å, BSO n = 0.271 ). The 
trend in �(�b) is similar to H(�b) , where the strongest IMHB, 

C� − H⋯OH , has the largest �(�b) value (0.177 e/Å3 ), but 
N� − H⋯O has slightly larger �(�b) than N� − H⋯N� : 0.128 
and 0.117 e/Å3 , respectively.

3.3 � Relationship between intrinsic IMHB strength 
and relative stability

�IIa is the most thermochemically stable conformer by 
0.49, 1.44, and 2.72 kcal/mol compared to �IIa , �IIb , and 
�Ia , respectively, in accord with previous studies [12–14]. 
The small �E values between the four conformers ( < 2.72 
kcal/mol) are in agreement with results from Kovačević 
et al. [85], and the 0.49 kcal/mol difference between the two 
most stable conformers, �IIa and �IIa , is near the 0.60 kcal/
mol value previously reported by Huang et al [12]. In terms 
of cumulative IMHB force constants of each conformer: 
𝜀IIa > 𝛿IIa > 𝜀IIb > 𝛿Ia , which matches the trend in �E and 
supports IMHB strength being a primary factor in the con-
formational stability of HIS.

O − H⋯N� is present in �IIa , �IIb , and �IIa but not in 
�Ia . Instead, N� − H⋯O links CO2H to NH2 in �Ia . The 
important difference between these two interactions is 
the donor/acceptor roles are reversed. The result being 
N� − H⋯O is drastically weaker ( ka = 0.108 mdyn/Å) and 
longer ( r = 2.267 Å) than O − H⋯N� by ≈ 0.150 mdyn/Å 
and ≈ 0.380 Å. Consequently, absence of O − H⋯N� corre-
sponds with �Ia being the least stable conformer. In addition, 
�IIa has the strongest type 6 IMHB with ka more than 10% 
larger than in �IIb and �IIa.

Despite having only two IMHBs, �IIb is the third most 
stable HIS conformer, whereas �IIa has four IMHBs and 
is the second most stable. The most stable and least stable 
conformers each have three IMHBs, which indicates that the 
number of interactions is not as important as intrinsic nature 
and strength, type of interaction, and donor role. Although 
the number of IMHBs is not a primary stabilizing factor, a 
cooperative effect exists among IMHB networks with vary-
ing influence on the interactions individually. For example, 
the structure of �IIa was modified to prevent OH⋯N� by 
rotating the OH bond away from NH2 , resulting in significant 
lengthening and weakening of the remaining two IMHBs, 
C�H⋯O and N�H⋯N� by 0.151 Å, 0.068 mdyn/Å and 0.267 
Å, 0.075 mdyn/Å, respectively. Conversely, eliminating 
N�H⋯N� by flipping the Im-ring and protonating N� instead 
of N� resulted in a much smaller change to OH⋯N� ( +0.060 
Å, −0.019 mdyn/Å) and C�H⋯O is shortened ( −0.103 Å) 
and strengthened ( +0.016 mdyn/Å). Optimizing the afore-
mentioned structure also results in the Im ring flipping back 
to its original orientation, thus allowing for re-introduction 
of the N�H⋯N� interaction. Another attempt to remove 
N�H⋯N� was executed by rotating the C� − C� bond ≈ 180◦ , 
so H� is forward-facing. This approach, however, leads to a 



Theoretical Chemistry Accounts (2020) 139:125	

1 3

Page 7 of 10  125

transition state. Based on this example, OH⋯N� strengthens 
the IMHB network, whereas N�H⋯N� and C�H⋯O do so to 
a lesser degree, or not at all.

Depending on physiological properties such as pH and 
temperature, histidine exists in two different forms: a neutral 
and a zwitterionic form [4]. Our results show that the latter 
form is more favorable in water by 3.55 kcal/mol compared 
to the former (see Table 2). In water, the O − H⋯N� (type 
6) found in the zwitterionic form is by far stronger than the 
one found in the neutral form parallel to the thermodynamic 
results (see Table 2). The zwitterionic form is known to be 
more dominant in the solution as a result of gaining extra 
stabilization energy through interactions with the polar envi-
ronment [10]. In the gas phase, the neutral form is more 
favorable compared to the zwitterionic form. However, 
neutral HIS has proven difficult to isolate and characterize 
experimentally due to its high melting point, low vapor pres-
sure, and thermal instability [12, 13].

4 � Conclusions

In this work for the first time, we quantified IMHB strength 
in neutral HIS and established a link between this property 
and structural stability/conformational preferences. Increase 
in bond strength and covalent properties correlate with 
increase in thermochemical stability. O − H⋯N� (type 6) 
is the IMHB having the largest effect on structural stability 
due to increased bond strength, covalent character, and low 
susceptibility to cooperative effects. We also found donor/
acceptor identity to play a major role in conformational sta-
bility, and not the number of IMHBs. Details of our major 
findings are summarized as follows: 

1.	 Strength of the IMHB (BSO n, ka , and �(�b) ): 

2.	 D o n o r  a b i l i t y  t o  i n c r e a s e  B S O  n : 
H − O > H − C𝛽 > H − N𝛼 > H − N𝛿 ; acceptor plays a 
lesser role

3.	 Cumulative strength of IMHB networks correlates with 
�E : 

4.	 Observed donor–acceptor roles: CH2 is a surprisingly 
capable donor, OH is a superior donor due to its polar 
nature, NH2 and Im are surprisingly poor donors, and 
any combination of NH2 donor/acceptor and Im donor/
acceptor results in the weakest IMHBS

F u t u r e  g o a l s  a r e  t o  c o m p l e t e  a  c o m p r e -
h e n s i ve  a n a lys i s  o f  m o l e c u l e s  c a p a b l e  o f 
N� − H⋯C� , C� − H⋯OH,C� − H⋯O=C , and other HBs 
involving carbon to determine their similarities/differences 
between more well-studied and traditional HBs. The local 
mode analysis will play a key role because it provides a 
unique and quantitative measure of the intrinsic strength 
of a HB and any other weak chemical interaction or chemi-
cal bond.

Acknowledgements  This work was financially supported by the 
National Science Foundation, Grant CHE 1464906. The authors thank 
SMU HPC for providing generous computational resources.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

O − H⋯N𝛼 >> HO/O⋯H-C𝛽H > N𝛿∕O⋯H-N𝛼H >

N𝛿 − H⋯N𝛼 >> N𝛿 − H⋯O > HC𝛿⋯H-N𝛼H

𝜀IIa > 𝛿IIa > 𝜀IIa > 𝛿Ia

Table 2   Relative electronic plus zero-point energies ( �E ), electronic 
plus thermal enthalpies ( �H ), electronic plus thermal free energies 
( �G ), CCSD(T) �E corrections ( �E

corr
 ), IMHB distances (r), local 

stretching force constants ( ka ), and local mode frequencies ( �a ) of 
neutral and zwitterionic form of the most stable conformer in solution 
(water)

Calculated at B3LYP-D3(BJ)/aug-cc-pVTZ//DLPNO-CCSD(T)/aug-cc-pVTZ levels of theory. The solvent effect was calculated using PCM 
model. Thermochemical data are reported as relative to zwitterionic form in kcal/mol, r in Å, ka in mdyn/Å, and �a in cm−1

Conformer �E �H �G �E
corr

Parameter r k
a �a

Neutral 0.51 0.17 0.65 3.55 N� − H⋯N� 2.174 0.110 446
O − H⋯N� 1.788 0.248 669
O⋯H-C�H 2.687 0.135 491

Zwitter 0.00 0.00 0.00 0.00 N� − H⋯N� 1.856 0.208 612
O-H⋯N� 1.015 6.864 3520
O⋯H − C�H 2.637 0.130 483
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