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Abstract
The critical point is believed to be not amenable to quantum mechanical calculations because the correlation length goes 
to infinity, the density is largely inhomogeneous and some thermodynamic properties diverge. For these reasons, until very 
recently all theoretical information of the critical point has been obtained by statistical physics and nothing was known about 
the electronic structure. Employing a sequential quantum mechanical/molecular mechanical (S-QM/MM) approach for a 
nonpolar atomic fluid, we study the behavior of the dielectric constant at different temperatures, ranging from dense fluid to 
supercritical condition. Our primary focus lies on the vicinity of the critical point. By using quantum mechanical calcula-
tions with thermodynamic condition, we perfectly reproduce the behavior found previously for classical monoatomic fluid 
by using scaling functions and renormalization theory that in the vicinity of the critical point the dielectric constant shares 
the critical behavior of the internal energy and, although the dielectric constant remains finite, its variation with temperature 
diverges. This perfect agreement leads credence to multiscale QM/MM methods and suggests the possibility of obtaining 
theoretical information about the electronic structure of a fluid near the critical point.
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1  Introduction

The critical point of a fluid is a singular point at the end 
of the coexistence line separating the gas and the liquid 
phases. At this point, the increasing density of the gas and 
the decreasing density of the liquid meet and this conflu-
ence point determines the boundary where supercritical fluid 
appears. As such, the critical point is characterized by very 
large fluctuations and density inhomogeneity. The behavior 
of different properties of the fluid at the critical point is the 
subject of great interest. It is well known, for instance, that 
the specific heat diverges at the critical point [1, 2]. Also it 
is known is that the density presents large inhomogeneity 
and equally important the correlation length goes to infinity. 
These aspects make one believe that the critical point is not 
amenable to quantum mechanical calculations. In fact, for 

several years all theoretical knowledge of the critical point 
was obtained by statistical physics [3]. Universal scaling 
functions [1, 4] and renormalization theory [4, 5] have been 
applied to understand the several aspects and the behavior 
of polar and nonpolar fluids undergoing transition to critical 
conditions. An important characteristic aspect of the critical 
point is that it is believed to be universal, thus not depending 
on the details of the system. The difficulty of assessing the 
critical point for quantum mechanical calculations imposes 
a severe limitation precluding the analysis of the electronic 
structure of a fluid near or at the critical point.

Using statistical physics, successful studies of the behav-
ior of nonpolar fluids near the critical point were carried out. 
The behavior of the dielectric constant in the vicinities of the 
critical point has deserved considerable attention. Although 
the critical point is forbidden for quantum mechanical incur-
sions, the vicinities may be accessible. An essential point 
in this endeavor is that QM alone is not sufficient and the 
specification of the thermodynamic condition is imperative 
to ascertain the precise location of the system in the phase 
diagram. A combination of QM with thermodynamic condi-
tion is possible using the multiscale QM/MM methodology. 
Using the sequential QM/MM (S-QM/MM) [6, 7], we have 
recently considered the case of Ar only 2 K above the critical 
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temperature and obtained the dielectric constant value of 
1.173 ± 0.005 [8], in excellent agreement with the experi-
mental value of 1.179 [9]. In this same study [8], we pointed 
out for the first time that the dielectric constant shows a 
density-independent behavior around the critical density.

A few years ago, Bertrand et al. [10] used the complete 
scaling to study the critical behavior of a fluid in an electric 
field and found that the Clausius–Mossotti (CM) approxi-
mation can be obtained from thermodynamic theory in the 
mean-field regime. They suggested that, despite being only 
strictly correct in the mean-field approach, CM can still be 
useful for understanding the dielectric constant in the case 
of nonpolar fluids, since the error introduced is small. They 
[10] also argued that it would be very difficult to experimen-
tally observe the singularity in the variation of the dielectric 
constant near the critical point. This is in line with previ-
ous theoretical results [11, 12] and with the absence of the 
experimental observations [13–15].

Naturally, while these studies take advantage of powerful 
statistical mechanical techniques that can even provide ana-
lytical solutions for cases where some approximations are 
adopted, none of them can describe the electronic structure 
of the system. Avoiding the critical point, but remaining in 
the close vicinity, it is in principle possible to combine QM 
and thermodynamic condition to obtain important informa-
tion on the electronic structure, by using multiscale methods 
[16, 17], as QM/MM methods. The essential question at this 
point is whether quantum mechanics can prove its reliability 
by providing positive results in a crucial test.

A rather important study was made in a seminal work 
by Stell and Høye [11]. They used a theoretical analysis, 
based on the deviation of the CM equation for discussing 
properties of classical nonpolar fluids at the critical point. 
They found that: (1) the dielectric constant shares the criti-
cal behavior of the internal energy, (2) the dielectric con-
stant ε is expected to be finite at the critical point (εc is 
finite), and (3) its derivative with respect to the temperature 
([∂ε/∂T]c) should diverge. These three points are non-trivial 
and were found using universal scaling laws on model sys-
tems (hard-sphere and Lennard-Jones fluid with constant 
atomic polarizability and variable polarizability depending 
on the position of the neighboring atoms) and are very chal-
lenging to be obtained by any other method. Sengers et al. 
[12] obtained a similar conclusion by employing universal 
scaling laws and renormalization-group theory for classical 
fluids. It is known that all fluids with short-range interac-
tions, including polar fluids, are expected to belong to the 
same universality class [11, 12]. Therefore, the short-range 
interactions between the atoms in the fluid determine the 
nature of the critical point singularity. Experimental inves-
tigations reported finite values for εc although there are still 
some controversy about the behavior of the variation of ε 
(δε = ε − εc) with respect to temperature variation (t = T − Tc) 

where apparently anomaly was not found for fluids [12–15]. 
In the experimental setup, the noxious volume effect could 
either create a spurious anomaly in ε or mask a true anomaly 
[12, 13].

The analysis of the three points of Stell and Høye [11] 
presented above, under the confines of quantum mechanics, 
is the challenge one considers in this work.

In the present study, we extend our previous QM/MM 
model [8], now discussing the dielectric constant depend-
ence on the temperature, the comparison with the internal 
energy and its behavior near the critical point. As the critical 
point is believed to be universal, we conveniently selected 
the Ar fluid. The classical MM simulations are carried out 
using Metropolis Monte Carlo (MC) as explained in the next 
section as well as the QM that uses the density functional 
theory (DFT) quantum mechanical calculations.

As we will show our results agree with previously dis-
cussed theoretical works [10–12], which were performed 
using different statistical mechanical techniques, and show 
that with the current computational protocol QM/MM meth-
ods can, in principle, be used to study the electronic struc-
ture of atomic and molecular systems in the vicinities of the 
critical point.

2 � Methods

We have employed the S-QM/MM [6, 7], where classical 
simulations are carried out first to generate configurations 
of the fluid in the desired thermodynamic condition. After 
the classical simulation is performed, all configurations are 
analyzed and only statically uncorrelated configurations 
are used to perform quantum mechanical calculations. This 
allows obtaining statistically convergent results with a rela-
tively small number of configurations. This is of importance 
because these selected configurations will be used next in 
QM calculations, where the computational effort can be 
considerable. In this study, all the results presented are sta-
tistically stable and obtained from QM calculations on 200 
configurations sampled from the MC simulation.

For sampling the configurations of the dense fluid argon, 
we carried out classical Monte Carlo Metropolis simulations 
in the NPT ensemble, by using the DICE code [18]. The 
calculations were performed on the isobaric line at 50 atm, 
which is higher, but close to the experimental critical pres-
sure (Pc = 48.18 atm) [9]. The system used for the MC simu-
lation was composed of 2500 argon atoms interacting by 
Lennard-Jones (LJ) potential, simulated in a cubic box with 
periodic boundary conditions and the image method. Stand-
ard procedure such as the sampling technique was described 
before [19]. The parameters used in the LJ potential were 
proposed by Maitland and Smith [20] (εLJ = 0.2378 kcal/
mol and σLJ = 3.41 Å), which shows an accurate description 
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of thermodynamic properties near the critical point [8]. 
In addition, test calculations [8] of the specific heat cv for 
Ar reproduced the experimental value for liquid condition 
(T = 120 K and density of 1.166 g/cm3). After the system 
reaches the equilibrium, 2 × 109 MC steps were performed 
to calculate the average of density (ρ), internal energy per 
particle (u = U/N) and molar heat capacity (cp). Fourteen 
temperature values between 130 and 180 K were used to per-
form the calculations of the dielectric constant. The reported 
experimental critical temperature is Tc = 150.7 K [9].

As discussed in our previous works [6–8], we used the 
autocorrelation function of the energy to select statistically 
uncorrelated configurations from the MC simulation (less 
than 10% of statistical correlation). For each temperature T, 
a total of 200 configurations were selected to be used in DFT 
quantum mechanical calculations of the static dipole polariz-
ability. As we will see, this is enough to produce converged 
results in all cases. We employed the Kohn–Sham approach 
for the DFT calculations using the B3P86 exchange func-
tional [21, 22] with the correlation consistent basis set [23] 
aug-cc-pVDZ. This is termed as B3P86/aug-cc-pVDZ. This 
calculation level has been selected because it was success-
fully used in our previous study [8], leading to very accurate 
results for the dielectric constant. The use of dispersion-
corrected functionals has shown to be immaterial [8]. For 
each configuration i, we calculate the isotropic static dipole 
polarizability αi of the central atom in the presence of the 
nearest 13 atoms, corresponding to the number of atoms 
present in the first solvation shell for the simulation at the 
dense fluid phase with 130 K and 50 atm. For consistency, 
we use this number of atoms for all cases. For each case, 
two calculations are needed: one with 14 atoms and another 
with 13 atoms (without the central atom) for obtaining the 
dipole polarizability of the central atom by subtraction. This 
is a valid approximation because the interacting contribution 
to the static polarizability is very small. This is one of the 
reasons for the general validity of the CM equation even for 
liquid or dense fluid phase in the case of Ar, as discussed 
before [24–26]. The use of the CM equation in our study 
deserves some observations. It relates the static dipole polar-
izability to the static dielectric constant for nonpolar gaseous 
systems. It is known to present limitations in the case of 
liquids because the overlap of the electron densities of the 
constituents should be considered. This is needed because 
in the liquid, or dense fluid, the atomic interaction should 
be considered. In the case of Ar, this correction is small, 
as discussed above. Note that in our QM calculations the 
atomic interaction is included naturally by considering the 
Schrödinger equation for the system, composed by all 14 
atoms, sampled from the MC simulation. The Kohn–Sham 
determinant is antisymmetric over the entire system, and this 
allows the wave function delocalization over all atoms, thus 
including overlap naturally.

For each αi, we obtained the dielectric constant εi, by 
using the CM equation:

where ρ is the density of the system, NA is the Avogadro 
constant and M is the molar mass. The final value of εi is 
presented as the average of 200 configurations at the same 
temperature. This procedure was performed for all the 14 
temperature values considered, allowing us to discuss the 
behavior of the dielectric constant with the temperature. All 
DFT calculations were performed using the Gaussian 09 
program [27]. In total, 5600 QM calculations at the B3P86/
aug-cc-pVDZ level were performed in this study.

3 � Results and discussion

First, we discuss the results obtained from the classical 
simulations. The calculated results for different properties 
including the molar heat capacity at constant pressure cp are 
shown in Table 1.

The simulations were performed in fourteen different 
temperature values, ranging from the dense fluid to the 
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Table 1   Results obtained for different temperatures, from Monte 
Carlo simulation (density ρ, molar heat capacity at constant pressure 
cp, module of internal energy per atom | < U/N > |) and from DFT cal-
culations (dipole polarizability α, dielectric constant ε)

For the properties obtained in Monte Carlo simulation, the results are 
the average of all the sampled configurations (810,000); for the prop-
erties obtained by using DFT, the results are the average over 200 cal-
culations, performed by using the selected configurations. The stand-
ard deviation is around ~ 6%, except for the thermodynamic properties 
at T = 156 K (the highest value of cp), where the thermal fluctuation is 
higher (~ 20%)

T (K) ρ (g/cm3) c
p
 (kcal/mol K) | < U/N > | 

(kcal/mol)
α 
(

a
3

0

)

� (Dimen-
sionless)

130 1.120 0.012 1.102 11.372 1.408
140 1.027 0.015 1.002 11.285 1.367
144 0.982 0.016 0.956 11.276 1.349
148 0.928 0.019 0.902 11.223 1.326
152 0.856 0.024 0.834 11.154 1.296
154 0.804 0.034 0.787 11.097 1.275
155 0.768 0.046 0.755 11.033 1.260
155.5 0.736 0.070 0.728 11.021 1.248
156 0.369 0.400 0.406 10.669 1.115
156.5 0.324 0.056 0.360 10.647 1.101
157 0.310 0.045 0.344 10.566 1.095
160 0.264 0.022 0.292 10.514 1.080
170 0.206 0.012 0.222 10.369 1.061
180 0.177 0.009 0.187 10.319 1.053
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supercritical phase, passing through the critical point region. 
The results for the molar heat capacity at constant pressure 
cp are shown in Fig. 1. One can note the behavior of the 
molar heat capacity at constant pressure cp suggesting the 
location of the critical temperature Tc near 156 K. The ther-
mal conductivity also diverges at the critical point.

Additional evidence of the critical point can also be noted 
looking at the density. There is a discontinuity around 156 K 
(Fig. 2). Again, further calculations in the small interval 
close to 156 K are very difficult. Note that Fig. 2 indicates 
that the density remains finite at the critical temperatures, 
but its variation ∂ρ/∂T with the temperature diverges. For 
reference, we should mention that the experimental value 
of the critical density ρc is 0.531 g/cm3.

We now analyze the radial distribution function G(r) 
(Fig. 3). The continuous (blue) lines correspond to the dense 
fluid phase. As expected for a dense fluid, we can observe 
more than one solvation shell (related to the multiple peaks 
of the G(r)), indicating a well-structured dense fluid. This 
is in due agreement with experimental results [28]. At the 
fixed pressure of 50 atm, by increasing the temperature, the 
system eventually gets into the supercritical region. As the 
theoretical critical temperature Tc is found around 156 K, 
this is the transition point. And this is noted in Fig. 3 where 
the radial distribution functions within the supercritical 
region are represented by dotted (red) lines. Now the second 
peak becomes wider and decreases. This characterizes the 
supercritical region.

Let us now analyze the QM calculations that are the major 
focus of this study. As said before for each simulation at a 
given temperature, we selected 200 representative configura-
tions, which were used for calculating the dipole polarizabil-
ity using DFT B3P86/aug-cc-pDVZ calculations and, using 
these in the CM equation (Eq. 1), obtaining the dielectric 
constant. The result for each temperature was obtained as 
the average of the 200 configurations. The results are also 

presented in Table 1. Each value of α presented in this table 
is the average of 200 QM αi calculations. Now we examine 
the dielectric constant. For each temperature, the 200 values 
of αi generate the equivalent 200 values of εi using the CM 
equation (Eq. 1). From this set of εi values, the average ε 
for the given fixed temperature was calculated. To show the 
convergence of the results, Fig. 4 shows the calculated aver-
age for one specific case. (We have selected T = 155 K and 
P = 50 atm.) Clearly, the distribution of calculated values of 
εi leads to a converged value for the dielectric constant, in 
this case ε = 1.260.

Finally, Fig. 5 shows the behavior of the dielectric con-
stant with respect to the temperature varying from 130 to 
180 K. The behavior of the dielectric constant depending on 
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Fig. 1   Behavior of the molar heat capacity at constant pressure 
(50 atm) depending on the temperature. Note the evidence of diver-
gence at T ~ 156 K
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Fig. 2   Density of argon in several temperatures obtained from Monte 
Carlo simulations. There is a discontinuity around 156 K, indicating 
the critical temperature and the transition between dense fluid and 
supercritical phases

Fig. 3   Radial distribution function G(r) of argon in different temper-
atures. Continuous (blue) lines correspond to the dense fluid phase, 
while dashed (red) lines indicate the supercritical phase. Note that in 
the supercritical phase, the fluid is less structured, with the G(r) pre-
senting just one solvation shell
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the temperature is very clear: As the temperature increases, 
ε decreases. In spite of the fact that we cannot perform cal-
culations at the critical point, we can clearly infer the result  
close to the critical point when it crosses the critical tem-
perature Tc. We see in Fig. 5 that in the vicinity of the critical 
point, ε behaves as a well-defined, finite, quantity. How-
ever, there is an abrupt change between 155.5 and 156 K 
when the dielectric constant value rapidly decreases from 
1.248 to 1.115 (Table 1). From the curve ε(T), we see that 
∂ε/∂T becomes infinity. Hence, we see an agreement with the 
studies of Stell and Høye [11] in that “while the dielectric 
constant ε is expected to be finite at the critical point, its 
derivative with respect to the temperature should diverge.” 
There is an additional topic to analyze because Stell and 
Høye [11] also stated that the dielectric constant should 
share the behavior of the internal energy per particle. Thus, 
Fig. 5 also shows the internal energy per particle obtained 
from the Monte Carlo simulations, in an appropriate scale, 
and one can see a remarkable agreement. The absolute value 
of internal energy from the classical simulation follows the 

same behavior of the dielectric constant obtained from the 
QM calculations. At this point, one can see a perfect agree-
ment between the results obtained by quantum mechanics 
and statistical physics using universal scaling laws. This is 
a most relevant theoretical aspect in spite of the possibility 
that effects derived from this behavior of the dielectric con-
stant are possibly too small to be detected [10, 12].

4 � Conclusions

We have studied the behavior of the dielectric constant of 
a nonpolar fluid (argon) in the vicinity of the critical point 
on an isobaric line. By using the S-QM/MM methodology, 
with different thermodynamic conditions, we have found at 
the critical point that the dielectric constant εc is finite, while 
[∂ε/∂T]c diverges. This is in remarkable agreement with find-
ing from statistical physics methods using universal scal-
ing laws. Also, we found that the dielectric constant follows 
the behavior of the internal energy per particle. Note that 
whereas the first property is obtained by quantum mechani-
cal calculations, the second is obtained from the classical 
simulations. The classical simulations are used to provide 
the configurations for the quantum mechanical calculations. 
Thus, this clearly emphasizes the consistency of the results 
obtained here. Our quantum mechanical results not only 
agree with previous studies using scaling theory but also 
validate this outcome obtained before only for model sys-
tems. Extending the availability of theoretical methodologies 
used to describe and understand the properties of fluids in 
the critical region presents a possibility to study quantum 
mechanical properties of atoms/molecules in the close vicin-
ity of such region. The possibility of explicitly include the 
thermodynamic condition in quantum mechanical calcula-
tions, or combining classical statistical mechanics and first-
principles quantum mechanics may open large avenues for 
the study of atomic and molecular fluids and optimistically 
will permit to access the electronic properties of systems 
close to the critical point.
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