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Abstract
The transformation of CO

2
 to more reactive and value-added chemical species is a crucial way of reducing environmental 

impact. The CO
2
+ M

+
→ MO

+
+ CO reaction, with M = transition metal, is an important channel in gas phase, and it has 

been accomplished by the Sc+ species. Besides being a better choice for sustainable transformations, early transition met-
als, such as scandium, can open new routes for a variety of novel reactions. In this context, DFT calculations are employed 
to explore N-heterocyclic olefins (NHOs) molecules as a ligand for scandium complexes in the CO

2
 to CO reduction. As 

revealed by the energetics of the process, the described NHO-Sc systems are able to convert CO
2
 to CO in an exoergic way, 

therefore showing great potential for CO
2
 conversion.
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1 Introduction

The properties and reactions of molecular metal complexes 
are highly dependent on the ligand and the metal [1–3]. For 
instance, early transition metals (ETM) are more earth-
abundant than late transition metals, such as Ru and Re. 
Therefore, their mediated reactions tend to be a better choice 
for sustainable transformations [4, 5]. Besides, the reactivity 
of ETMs differs from late metals, which opens new routes 
for a variety of novel reactions [6].

Among the early metal atoms (groups 3–7), scandium 
is seen as an environmentally benign Lewis acid, and 

it is compatible with Lewis bases and water [6–8]. For 
instance, some distinct scandium complexes have been 
explored in CO2 activations [6, 9–11]. In particular, the 
CO2 + M+

→ MO+ + CO conversion, with M = TM , to 
CO by metal ions is an important channel in gas-phase, and 
it has been accomplished by the Sc+ species [12–15]. The 
CO product can further be employed for introducing car-
bonyl functionalities into a plethora of molecular systems, 
and it is a key component in crucial industrial processes 
such as the Monsanto/Cativa acetic acid synthesis and the 
Fischer–Tropsch synthesis of hydrocarbons [16, 17]. Chemi-
cal reactions of CO2 that result in more reactive and value-
added chemical species become a crucial way of reducing 
environmental impact [18–24]. However, due to experimen-
tal complications of working with electropositive and small 
elements, such as scandium ions, the study of CO2 reactions 
mediated by their complexes is fairly recent compared to the 
other ETM systems [6].

To harness the high reactivity of low-valent ETMs toward the 
activation of small molecules is of great importance [25–30]. 
Although not usual, stable low-valent scandium complexes, 
such as the Sc+ complexes, [{�5-P

3
C
2
tBu

2
)Sc}

2
(�-�6 ∶ �

6
-P

3
 

C
3
tBu

3
)] [31],[Sc(�5-P
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P
3
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)] [32] and (LMgBr)2ScBr (L = Et2NCH2CH2NC 

(Me)CHC(Me)NCH
2
CH

2
NEt

2
) [33], have been reported. Oth-

ers examples of Sc0 complex and Sc2+ complexes [34, 35] are 
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also found. For instance, the Sc[N(SiMe3)2]3
− was described 

to react with the CO2 molecule [11].
Neutral N-heterocyclic olefins (NHOs), in special, have 

played a growing role as ligands in transition metal cataly-
sis, mainly because of their pronounced ylidic character 
[36–42]. Hence, it is expected that NHOs provide extra sta-
bilization to low-valent metal centers such as Sc+ [43–45]. 
Although other types of N-heterocyclic scandium complexes 
have been described [6, 9, 10, 46], at the best of our knowl-
edge, none has explored the potential of NHO-scandium 
(I) compounds toward the CO2 to CO reaction. In particu-
lar, the direct influence of NHO ligands on the CO2 to CO 
conversion mediated by the Sc+ . A study that allows us to 
investigate the sole importance of such ligands, simulating a 
controlled environment cleared with perturbing factors, pro-
vides a direct insight into the molecular or ionic properties 
of chemically interesting species. Therefore, it offers an ideal 
way to shed light on mechanistic details of corresponding 
and more complex condensed-phase systems, i.e., it might 
reveal the potential of Sc (I) related molecular complexes 
and their use in CO2 reactions [47–50].

In this context, the present work explores, by means of 
computational methods, the potential of NHOs as ligand for 
the scandium(I) mediated reduction of CO2 to CO. Besides, 
as their structure offers elevated degree of electronic con-
trol through the choice of different substituents (R) [2, 39, 
43–45, 51–54], we also explore this effect. Figure 1 presents 
the R groups attached to the current scandium NHOs sys-
tems, as well as the nomenclature adopted along with this 
work.

2  Computational methods

All electronic structure calculations were performed using 
the Gaussian 09 suite of quantum chemical programs (Revi-
sion D0.1) [55]. Geometry optimizations and frequency 
calculations of all chemical species were performed using 
the DFT/M06 method [56–58] along with the def2-TZVP 
basis set [59]. This level of theory is referred as DFT/M06/
def2-TZVP along with the work. The M06 density functional 
showed to be an efficient approach to explore scandium-
containing systems [60]. Besides, among other tested den-
sity functional methods, it was also able to better reproduce 
the experimental relative energy of 3Sc+ and 1Sc+ [61, 62]. 
See the Electronic Supplementary Material for more details. 
The nature of all structures, as minima or transition states 
(TSs), was confirmed by the vibrational analysis performed 
within the harmonic approximation at 298 K and 1 atm. 
The TSs were identified by only one imaginary frequency 
mode, which was further followed in order to check the 

connectivity between the transition state and its correspond-
ing minima.

To analyze the electronic structure and stabilizing effects 
on the stationary points of the explored potential energy sur-
face (PES), the intrinsic bond orbital (IBO) analyses were 
carried out using the DFT/PBE/def2-TZVP [59, 63, 64] level 
of theory, with the univ-JFIT [63] fitting basis set, as imple-
mented in the IboView program [65–67]. Because this pro-
gram does not have the M06 functional available, the PBE 
functional was chosen. However, in a previous study [30], 
we did not find a significant difference between the IBOs 
computed using PBE and M06 density functionals.

3  Results and discussion

This section is organized as follows: first, a detailed com-
parison between the 1,3(Sc+) + CO2 PESs is presented. Next, 
we use the parent NHO system (Scheme 1a) to explore the 
NHO ligand effect on this conversion. Finally, the influence 
of selected electron-withdrawing (–CF3 and –CN) and elec-
tron-donating substituents (–OMe and –tBu) on the NHO 
system is also investigated.

3.1  CO
2
 to CO mechanism mediated by Sc+

As the main point of the current work is to evaluate the 
influence of the NHO ligand on scandium (I) mediated CO2 
to CO reaction, an essential and prior step consists of the 
analysis of the isolated Sc+ ion mediated conversion. Fig-
ure 1 shows the energy profile for this reaction on the singlet 
(S) and triplet (T) potential energy surfaces.

First of all, we note that the inclusion of the zero-point 
energy (ZPE) does not change the overall trend along with 
the reaction. Therefore, in the discussion that follows, we 

(A) (B)

(C) (D)

Scheme  1  a Parent NHO ligand. b General structure of the NHO 
ligand. c General N-heterocyclic olefin scandium(I) complex. d Dif-
ferent substituents (R) explored in the CO

2
 to CO reduction mediated 

by different NHO-Sc(I) complexes
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retain ourselves to the electronic energy only. Although 
the 1Sc+ ion is more energetic than its respective triplet 
state, the singlet PES offers a way to a more feasible CO2 
to CO reduction mechanism. For instance, at the DFT/
M06/def2-TZVP level of theory, the 1ScO+ + CO channel 
lies at −40.6 kcal mol−1 , while the 3ScO+ + CO one is at 
50.7 kcal mol−1 . This result is in agreement with previous 
studies on the gas-phase CO2 → CO conversion mediated 
by the Sc+ ion [12, 13].

The reaction initiates with the formation of the lin-
ear 1,3[ScOCO]+ form, with the triplet structure only 
1.6 kcal mol−1 more stable than the singlet one. The sin-
glet and triplet transition states, 1,3[TS1], that yield to 
the 1,3[OScCO]+ systems, are −20.9 and 13.4 kcal mol−1 , 
respectively, in the explored energy profiles. Their respec-
tive imaginary frequencies are −329.5 and −370.9 cm−1 , 
respectively. The energy required to 1[ScOCO]+ to convert 
into 1[OScCO]+ is only 6.1 kcal mol−1 , while the respec-
tive conversion in the triplet PES requires 42.0 kcal mol−1 . 
The singlet [OScCO]+ structure is over 30 kcal mol−1 more 
stable than its related linear one. In the singlet [OScCO]+ 
intermediate, the ScC bond distance is 2.47 Å, compara-
tively to 2.27 Å on the triplet [OScCO]+ structure. There-
fore, the energy required to dissociate the singlet system 
into ScO+ + CO is lower, as viewed in Fig. 1.

Since the singlet PES is the most feasible way to con-
vert CO2 to CO using Sc+ , all the remaining discussion that 
follows focus on this multiplicity.

3.2  CO
2
 conversion to CO by the parent NHO‑Sc(I) 

complex

Figure 2 shows the minimum energy path (MEP) for the 
CO2 to CO reduction mediated by the parent NHO-Sc (I) 
system. The main point here is to evaluate whether the NHO 
system has the potential to be used as ligand in larger Sc(I) 
systems; for instance, if NHO could be a potential ligand in 
Sc complexes for CO2 conversions.

As revealed by the energetics of the reaction, the 
described NHO-Sc (I) system is able to convert CO2 to CO 
in an exoergic way. The [(Me)2NHO-ScO]

+ + CO chan-
nel lies at −30.0 kcal mol−1 , i.e., 10.6 kcal mol−1 above 
the corresponding ScO+ + CO one (Fig.  2, gray line). 
Therefore, this result raises the potential of NHO sys-
tems as ligands for Sc complexes to be employed on the 
CO2 to CO reduction. In addition, both intermediates, the 
linear [(Me)2NHO-ScOCO)]

+ and the oxidative product 
[(Me)2NHO-OScCO]

+ forms, are stable ones (Fig. 2). In 
the [(Me)2NHO-ScOCO]

+ system, the Sc-O2 bond distance 
is 0.13 Å larger than the corresponding bond in 1[ScOCO]+ , 
which could help to explain the better stabilization of this 
latter. The transition state [(Me)2NHO-TS1]

+ (see Fig. 2) 
that leads to the [(Me)2NHO-OScCO]

+ intermediate has an 
imaginary mode of −113.1 cm−1 and it is −13.3 kcal mol−1 
on this potential energy surface. Moreover, since its associ-
ated activation energy is only 1.9 kcal mol−1 , the process can 
occur at room temperature.

Fig. 1  Singlet (red) and triplet 
(black) relative energy profiles 
of the CO

2
 to CO mechanism 

mediated by the Sc+ ion. All 
energies are given in kcal mol

−1 
with respect to the separated 
reactants in their singlet elec-
tronic state. Relative energies 
that do not and do include zero-
point energy (ZPE) corrections 
are written in regular and bold, 
respectively. Bond distances 
are in Å
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To add a quantitative interpretation to the bond break-
ing/forming processes and stabilizing effects along with 
the mechanism, the main active IBOs along with the reac-
tion are also viewed, Fig. 3. IBOs consist of a set of occu-
pied molecular orbitals, which form an exact representa-
tion of a given Kohn–Sham wave function.

The analysis over the transition states structures reveals 
that all five relevant IBOs have contributions upon the 
formation of the Sc-C1 bond on the Sc+ ion mediated 
mechanism (Fig.  3a), while in the [(Me)2NHO-Sc]

+ 
one, this observation holds true for three of them, IBOs 
(3), (4) and (5) (Fig. 3b). This result sheds light on the 
extra stabilization seen on the [TS1]+ comparatively 
to the [(Me)2NHO-TS1]

+ . The major contributor to this 
forming process is the IBO (5). IBO (5) starts centered 
at scandium—it has a d character essentially—on the 
[(Me)2NHO-ScOCO]

+ and ScOCO+ intermediates, and 
it spreads through the Sc, C1 , O2 and O3 atoms on their 
respective transition states. For more details on the con-
tributions of each atom, see Fig. 3. On the [OScCO]+ and 
[(Me)2NHO-OScCO]

+ intermediates, this IBO remains 
basically over Sc and O 2 to form a � bond character 
between them. In addition to this � bond, the Sc and O 2 
interaction on the oxidative addition intermediates has 

great contributions from the IBOs (3) and (4), which show 
a � and � character, respectively.

3.3  Substituents effects on the CO
2
 conversion

Next, we explore the effect of selected electron-withdraw-
ing (–CF3 and –CN) and electron-donating substituents 
(–OMe and –tBu) on the CO2 → CO reduction mediated 
by the NHO-Sc (I) systems. Figures 4 and 5 present all 
the corresponding relative energy profiles. The general 
[(R)2NHO-Sc]+ structures are seen in Scheme 1. The opti-
mized structures of the stationary points discussed below are 
presented in Electronic Supplementary Material.

Clearly, the CO2 reduction to CO is a feasible path-
way using the NHO-Sc systems, regardless the substitu-
ent group. As seen in Figs. 4 and 5, all reactions are exo-
ergic. The linear intermediates, [(tBu)2NHO-ScOCO]+ , 
[(OMe)2NHO-ScOCO]

+  ,  [(CF3)2NHO-ScOCO]
+  a n d 

[(CN)2NHO-ScOCO]
+ are well stabilized, −13.7 , −19.5 , 

−17.0 and −18.7 kcal mol−1 , respectively, in the explored 
PES. The –tBu substituent provides a [(tBu)2NHO-Sc]+ 
mediated mechanism energetically similar to its – CH3 coun-
terpart (Fig. 4a, gray line). This is a reasonable behavior 
since both are alkyl groups; for instance, the transition states 

Fig. 2  MEP of the CO
2
 to CO 

reduction mediated by the par-
ent NHO, the [(Me)

2
NHO-Sc]+ 

system (red line). The corre-
sponding mechanism mediated 
by the single Sc+ ion is also 
shown for comparison (gray 
line and gray values). All ener-
gies are given in kcal mol

−1 
with respect to the separated 
reactants. Relative energies that 
do not and do include zero-
point energy (ZPE) corrections 
are written in regular and bold, 
respectively
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[(tBu)2NHO-TS1]
+ and [(Me)2NHO-TS1]

+ are very close in 
energy, as well as the intermediates [(tBu)2NHO-OScCO]+ 
and [(Me)2NHO-OScCO]

+ . As the electron-donating 
substituent type is changed, the –OMe group in our case 
(Fig. 5b), the stabilization along the mediated process is 
more evident. The transition state [(OMe)2NHO-TS1]

+ 
lies at −17.8 kcal mol−1 in the current profile, while the 
oxidative addition intermediate [(OMe)2NHO-OScCO]

+ 

is at −50.9 kcal mol−1 . The imaginary frequencies associ-
ated with the [(tBu)2NHO-TS1]+ and [(OMe)2NHO-TS1]

+ 
transition states are relatively low, −44.7 and −66.8 cm−1 , 
respectively, as well as their respective activation barriers, 
1.0 and 1.7 kcal mol−1.

Within the electron-withdrawing (–CF3 and –CN) class 
(Fig. 5), although the transition states [(CF3)2NHO-TS1]+ 
and [(CN)2NHO-TS1]+ have similar energies along their 
respective mechanism, the –CN substituent offers the 
largest stabilization to the oxidative addition products, 
−45.5 kcal mol−1 and −53.4 kcal mol−1 , respectively, 
for [(CF3)2NHO-OScCO]+ and [(CN)2NHO-OScCO]+ . 
The transition states are characterized by an imaginary 
frequency of −117.4 cm−1 for [(CF3)2NHO-TS1]+ and, 
−165.9 cm−1 for [(CN)2NHO-TS1]+ ; in addition, their 
activation energies are −2.0 and −3.1 kcal mol−1 , respec-
tively. Overall, the electron-withdrawing substituents 
also make the respective oxidative addition intermediates 
require less energy to release the CO molecule; for instance, 
[(CF3)2NHO-OScCO]

+ and [(CN)2NHO-OScCO]+ require 
7.6 kcal mol−1 and 12.6 kcal mol−1 , respectively, while the 
[(OMe)2NHO-OScCO]

+ needs 14.9 kcal mol−1.

4  Conclusions

In the present work, DFT computations were applied to 
explore the potential of NHOs as a ligand for scandium(I) 
mediated reduction of CO2 to CO. The CO2 to CO mecha-
nism mediated by the 1Sc+ ion was found to be the most 
feasible way for such conversion. Based on that, the potential 
of different 1[NHOs-Sc]+ mediators was also investigated.

As revealed by the energetics of the reaction, the parent 
NHO-Sc (I) system, the [(Me)2NHO-Sc]

+ complex, was also 
able to convert CO2 to CO in an exoergic way. Therefore, 
it points out the potential of NHOs ligands for scandium 
complexes in the CO2 to CO reduction. Besides, the effect 
of selected electron-withdrawing (–CF3 and –CN) and elec-
tron-donating (–OMe and –tBu) substituents on the CO2 → 
CO reduction mediated by the NHOs-Sc (I) systems was 
also investigated. Regardless of the substituent group, the 
CO2 reduction to CO was seen as a viable process by using 
these NHOs-Sc systems. Among the selected substituents, 
the –CN group showed to be a better choice for releasing 
CO more easily. The results discussed along this work raise 
the potential of the newly NHOs-Sc complexes in CO2 
transformations.

(A)

(B)

Fig. 3  Relevant IBOs along the reaction mechanism mediated by a 
the Sc+ ion and b the parent [(Me)

2
NHO-Sc]+ complex. Each IBO 

has a different color. The numbers after the colon are the fraction of 
electrons assigned to individual atoms of each IBO. The fraction of 
electrons adds up to two. Some IBOs are plotted together just for con-
venience
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