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Abstract
Theoretical description of molecular interactions remains a challenge for computational chemistry. In particular, systems 
dominated by static correlation, in which bonds are stretched or twisted, are often beyond capabilities of methods based on 
a single-electron approximation, being usually a method of choice. For interacting multireference systems, it is necessary 
to apply either high-level coupled-cluster methods (which however include multireference effects only partially) or base the 
theoretical description on a multireference wavefunction. Popular multireference methods like CASPT2 (complete active 
space perturbation theory) do not provide satisfactory results since they may suffer from problems with size consistency 
and poor accuracy. Recently we have shown that combining a simple multireference wavefunction, perfect-pairing gen-
eralized valence bond (GVB) with extended random phase approximation in embedding framework (EERPA) leads to a 
method EERPA-GVB providing accurate results for challenging multireference systems. In this paper, good performance 
of EERPA-GVB is confirmed by its application to van der Waals and hydrogen-bonded complexes. In addition, we show 
that the decomposition of the EERPA-GVB correlation energy into contributions from pairs of geminals can provide useful 
insight into the investigated interactions.

Keywords  Molecular interactions · Random phase approximation · Multireference systems

1  Introduction

The ubiquity of non-covalent interactions and their increas-
ingly appreciated role in such fields as material design [1], 
catalysis [2], medicine [3] and even photochemistry [4–6] 
necessitates the development of computational tools able 
to describe them. Historically, it has been a challenge, in 
particular due to the long-range nature and the subtlety of 
the London dispersion, but recently sophisticated coupled-
cluster approaches are becoming more computationally 
affordable [7, 8] and efficient approaches such as the density 
functional theory (DFT) [9] have developed ways to treat 

van der Waals interactions [10]. Molecular interactions can 
also be computed and analyzed using Symmetry-Adapted 
Perturbation Theory (SAPT) [11, 12], and other energy 
decomposition schemes [13, 14] and some progress toward 
providing the same description for intramolecular interac-
tions has been made [15, 16]. The success of computational 
methods has not however been extended to systems where 
the static correlation plays a role. This group includes, apart 
from somewhat exotic systems like chromium or beryllium 
dimers, all systems containing significantly stretched or 
compressed bonds. This is a severe limitation as computa-
tional and experimental studies, albeit scarce [17–21], have 
shown how essential the van der Waals interactions can be 
in the reaction process.

Capturing molecular interactions in systems where bonds 
are being twisted or broken is so challenging because one 
needs to ensure that both the static and the dynamic correla-
tion are accurately described. This usually means one needs to 
employ a multireference (MR) wavefunction and a good-qual-
ity dynamic-correlation correction. What is more, the method 
should be size-extensive and be able to produce smooth inter-
action energy surfaces. Favorable scaling with the basis set 
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size is also of value since the description of non-covalent 
interactions demands high-quality basis sets containing diffuse 
functions. Popular coupled-cluster methods are of single refer-
ence kind and they are prone to fail if applied to interacting 
strongly correlated systems, unless a high-level CC, with full 
triples or higher, is employed [22]. The CASPT2 method—
often a method of choice for multireference systems—may 
suffer from lack of size consistency, difficulty with obtain-
ing smooth potential energy curves, and poor accuracy when 
applied to the description of molecular interactions.

We have recently introduced an Embedding Extended 
Random Phase Approximation (EERPA) [22] correlation 
correction and paired it with a simple multireference wave-
function—a strongly orthogonal perfect-pairing generalized 
valence bond (GVB). GVB wavefunction accounts for electron 
pair correlation providing correct description of bond breaking 
process but it lacks long-range correlation. Consequently it is 
not able to account for weak interactions. Adding dynamic-
correlation correction to GVB energy via perturbation theory 
or linearized multireference coupled-cluster theory allows one 
to include dispersion interaction component but the accuracy is 
poor (it must be admitted that the applications are scarce) [23]. 
EERPA, on the other hand, based on introducing extended 
random phase approximation correlation correction in an 
embedding fashion, was shown to be a tailor-made approach 
for describing intermolecular interactions of multireference 
systems [22]. It is accurate and numerically stable. What is 
more, EERPA-GVB is not as computationally demanding as 
even CCSD(T) method, let alone the higher-level approaches 
like CCSDT. The cost of computing the EERPA correction is 
similar to that of the familiar RPA correlation, while the refer-
ence GVB wavefunction scales as NgM

4 , where M is the basis 
set size and Ng—the number of geminals [24],

The goal of this paper is to explore further capabilities of 
EERPA and show its usefulness in predicting not only values 
of interacting energy but also in getting insight into interaction 
between monomers. We firstly recap the theoretical frame-
work of EERPA-GVB, then we show the method’s robustness 
using examples of dispersion-dominated and hydrogen-bonded 
dimers, and finally we analyze the behavior of two van der 
Waals complexes with twisted or broken bonds.

The perfect-pairing GVB ansatz, being of interest in this 
paper conforms to the generalized product function form pro-
posed by McWeeny [25] and it reads [26–28]

where N is a number of electrons assumed to be even. Each 
� I is an antisymmetric two-electron wavefunction, called 
a geminal. The antisymmetry of the total wavefunction is 
assured by the antisymmetrizing operator Â , which includes 

(1)𝛹GVB = Â

N∕2∏

I=1

𝛹 I ,

a proper normalization factor. Geminals are constrained to 
be strongly orthogonal [25, 29]

(here and elsewhere in the paper �, � combines spatial and 
spin coordinates of a single electron). Additional two con-
straints imposed on geminals are: singlet symmetry and the 
constraint that each geminal is expanded in a subspace of 
only two orbitals. Consequently, each GVB geminal can be 
written in the following form

The squares of expansion coefficients cp present in Eq. (3) 
are the natural occupation numbers {np}

{�p} being a set of the natural orbitals pertaining to the 
ansatz �GVB.

Strong orthogonality of geminals is a restriction imposed 
on the wavefunction but in return one is rewarded with a 
simple expression for the electronic energy reading [28, 30]

where 
{
hpp =

⟨
𝜑p|t̂ + 𝜐̂ext|𝜑p

⟩}
 are one-electron integrals in 

the representation of the natural orbitals and two-electron inte-
grals are defined using a standard r1r2r1r2 convention. Sym-
bols Ip in Eq. (5) indicate a geminal to which a spinorbital �p 
belongs. Thus, a symbol �IpIq equals 1 only if both orbitals p 

and q are used in expansion of the same geminal (cf. Eq. (3)), 
whereas (1 − �IpIq) is different from zero for two orbitals p and 

q belonging to two different geminals. A quick look at the 
GVB energy expression reveals immediately its main appeal-
ing features: electron pair correlation is accounted for due to 
presence of the middle term (GVB goes beyond a single par-
ticle picture), the number of CI coefficients undergoing opti-
mization is only equal to N. In addition, active orbitals in 
GVB are unique and the number of them is N. Taking into 
account that in widely used multireference methods like CAS-
SCF or MCSCF the number of CI coefficients is exponentially 
growing and the choice of active orbitals is often problematic 
and arbitrary, it becomes clear that the GVB ansatz is more 
computationally attractive than the latter methods. 

(2)∀I≠J � � I(�, ��)� J(�, ��) d�� = 0

(3)
∀
I
� I = � I(�1, �2) = 2

−1∕2(c1
I

�1
I

(�1)�1
I

(�2)

+ c2
I

�2
I

(�1)�2
I

(�2))(�� − ��).

(4)∀p c2
p
= np ∈ [0, 1],

(5)

EGVB = 2

N�

p

np hpp +

N�

pq

�IpIqcpcq⟨pp�qq⟩

+

N�

pq

(1 − �IpIq)npnq(2⟨pq�pq⟩ − ⟨pq�qp⟩),
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Deficiencies of GVB have been known, see, e.g., Refs. 
[31–33], and they include a deteriorated performance for mol-
ecules described by more than one Lewis structure, failure in 
dissociating multiple bonds, practical limitation to closed-
shell systems and the lack of dispersion energy in weakly 
interacting systems. Recently we have shown that GVB, when 
corrected with properly designed correlation energy correc-
tions, yields excellent results for molecules undergoing con-
formational changes [30, 34], and for molecular interactions 
[22]. For the convenience of the reader, we will present two 
correlation energy corrections: ERPA and EERPA. The for-
mer is generally applicable and can be seen as extension of 
the random phase approximation (RPA) [35] correlation 
energy for multireference wavefunction. EERPA (Embedding 
ERPA), on the other hand, in its current formulation is appli-
cable to weakly interacting dimers.

Let us begin with the Extended Random Approximation 
(ERPA). The ERPA equation reads [36–39]

For a system S the  ,  , and   matrices (assumed to be 
real-valued) are determined from the one- and two-electron 
reduced density matrices, �S and � S , obtained from an 
assumed reference wavefunction (GVB in this case)

(see Appendix in Ref. [30] for the explicit expressions for 
the matrix elements of  for the GVB wavefunction). The 
eigenvectors [�� ,��] provide approximation to reduced 
transition density matrices that has led to obtaining the fol-
lowing spin-summed ERPA correlation energy expression 
[30, 34, 40]

Notice that the expression (1 − �IpIq�IrIs�IqIr ) in Eq. (10) van-

ishes if all orbitals p, q, r, s belong to the same geminal. In 

(6)
( 

 
)(

��

��

)
= ��

(
− �

� 
)(

��

��

)
,

(7)∀p>q,r>s S
pqrs

= pqrs(𝛾
S,𝛤 S),

(8)∀p>q,r>s S
pqrs

= pqsr(𝛾
S,𝛤 S),

(9)∀p>q,r>s  S
pqrs

= (np − nq)𝛿pr𝛿qs

(10)EERPA
corr

(S) =
∑

p>r,q>s

(1 − 𝛿IpIq𝛿IrIs𝛿IqIr )W
S
pqrs

,

(11)

WS
pqrs

=

�
�

�

(nr − np)(ns − nq)
�
X�
pr
+ Y�

pr

�
(X�

qs
+ Y�

qs
)

−
1

2

�
(1 − nr)np + (1 − np)nr

�
�rs�pq

�
⟨pq�rs⟩.

this way, intra-geminal correlation energy already included 
in the GVB ansatz is excluded from EERPA

corr
 and double count-

ing of correlation is avoided. The ERPA-GVB interaction 
energy for a dimer consisting of monomers A and B reads

Thus, the ERPA equations are solved three times: for a 
dimer, S = AB and for two monomers, S = A and S = B.

In the EERPA-GVB approach, inspired by one-electron 
reduced density matrix embedding theory [41], energies of 
monomers are obtained in the same fashion as in ERPA-
GVB but the correlation energy description of a dimer is 
modified in order to account separately for a correlation of 
electrons in a monomer embedded in the field of another 
monomer, and for inter-monomer correlation effects. The 
EERPA correlation has been defined as follows:

The correlation energy of the monomer A embedded in B, 
EA
corr

 , results from solving truncated ERPA equations with 
the following matrices

and

where the set �A defines excitations originating from an 
orbital localized on a monomer A (a set GA includes all occu-
pied orbitals assigned to A) and ending in either another 
orbital from GA or an unoccupied orbital (V is a set of all 
unoccupied orbitals) or one of the weakly occupied orbital 
localized on a monomer B, i.e.,

where

The correlation energy EA
corr

 entering Eq. (13) results from

(12)

EInt
ERPA-GVB

= EGVB
AB

+ EERPA
corr

(AB)

−
(
EGVB
A

+ EERPA
corr

(A) + EGVB
B

+ EERPA
corr

(B)
)
.

(13)EEERPA
corr

(AB) = EA
corr

+ EB
corr

+ EAB
corr

.

(14)
A =

[pqrs(𝛾
AB,𝛤 AB)

]
p > q, r > s

pqrs ∈ 𝛺A

,

(15)
A =

[pqrs(𝛾
AB,𝛤 AB)

]
p > q, r > s

pqrs ∈ 𝛺A

,

(16)
 A =

[
(np − nq)𝛿pr𝛿qs

]
p > q, r > s

pqrs ∈ 𝛺A

,

(17)
𝛺A =

{
p > r, q > s ∶ r, s ∈ GA ∧ p, q ∈ GA ∪ Gweak

B
∪ V

}
,

(18)Gweak
B

=
{
𝜑p ∶ p ∈ GB ∧ np <

1

2

}
.
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where WA
pqrs

 is defined in Eq. (11). The energy for a monomer 
B embedded in A, EB

corr
 , is obtained analogously. EAB

corr
 , the 

remaining term in the EERPA correlation energy expres-
sion for a dimer (13), accounts for inter-monomer correla-
tion effects and it is obtained by solving ERPA equations for 
a dimer with the matrices

and

and computing the correlation energy from the expression

where the set 𝛺̄A defines intra-monomer contributions

and analogously for 𝛺̄B.
The EERPA-GVB interaction energy results from the 

supermolecular calculation and it is computed as (cf. Eq. 
(12))

where the correlation energy expression for monomers 
is given by Eqs. (6)–(11). Thus, the difference between 
EERPA-GVB and the ERPA-GVB interaction energy given 
in Eq. (12) amounts to a different approach to the correla-
tion energy for a dimer, which for EERPA is given by Eqs. 
(13)–(24). It should be stressed that in the limit when a dis-
tance between monomers tends to infinity the EERPA and 
the ERPA correlation energy for a dimer become equivalent 
and the interaction energy tends to inter-monomer correla-
tion energy EAB

corr
 , which in turn reduces to the second-order 

dispersion energy [39], i.e.,

(19)

EA
corr

=
∑

p > r, q > s

pqrs ∈ 𝛺A

(1 − 𝛿IpIq𝛿IrIs𝛿IqIr )W
A
pqrs

,

(20)AB =
[pqrs(𝛾

AB,𝛤 AB)
]
p>q,r>s

,

(21)AB =
[pqrs(𝛾

AB,𝛤 AB)
]
p>q,r>s

,

(22) AB =
[
(np − nq)𝛿pr𝛿qs

]
p>q,r>s

,

(23)

EAB
corr

=
∑

p > r, q > s

pqrs ∉ 𝛺̄A

pqrs ∉ 𝛺̄B

(1 − 𝛿IpIq𝛿IrIs𝛿IqIr )W
AB
pqrs

,

(24)𝛺̄A =
{
p > r, q > s ∶ r, s ∈ GA ∧ p, q ∈ GA ∪ V

}
,

(25)

EInt
EERPA-GVB

= EGVB
AB

+ EEERPA
corr

(AB)

−
(
EGVB
A

+ EERPA
corr

(A) + EGVB
B

+ EERPA
corr

(B)
)

,

(26)

E
Int
EERPA-GVB

(R
AB

→ ∞) = E
Int

ERPA-GVB
(R

AB
→ ∞) = E

AB

corr
= E

(2)

disp
(AB),

where EAB
corr

 is the inter-monomer correlation term as defined 
in the EERPA approach, cf. Eq. (13).

2 � Weakly bounded complexes in‑ 
and out‑of‑equilibrium geometry 
in the EERPA‑GVB picture

2.1 � Computational details

To highlight the properties of the ERPA-GVB and 
EERPA-GVB approaches, we carried out calculations of 
interaction energies for a number of weakly interacting 
dimers bound by hydrogen bonds, such as NH3⋯H2O , 
hydrogen sulfide and water dimers, and for van der Waals 
(vdW) complexes where dispersion energy is the driv-
ing force, i.e., in He⋯Ne , acetylene and ethene dimers. 
All systems are described by the aug-cc-pVDZ basis 
set [42]. To judge the accuracy of those results, we com-
puted CCSD(T) energies as implemented in the DALTON 
software package [43] in the same basis set. We also per-
formed SAPT2+3(CCD) (hereafter referred to as SAPT) 
computations [44] using Psi4 software [45].

In addition, we performed an analysis of the basis 
set dependence (in basis sets aug-cc-pV�Z , where 
� = 2,… , 6 ) of ERPA-GVB and EERPA-GVB methods 
using the example of helium dimer.

We have also focused on dimers involving molecules in 
out-of-equilibrium geometries, i.e., ethene dimer with one 
of the monomers twisted, ethene–fluorine complex with 
F–F bond stretched and compressed, and the same com-
plex with ethene molecule twisted. Those computations 
were also performed in aug-cc-pVDZ basis set.

Interaction energies computed with supermolecular 
methods were corrected for the basis set superposition 
error (BSSE) using the Boys’ counterpoise correction 
[46]. GVB computations were performed in a developer 
version of DALTON software package [43]. ERPA and 
EERPA corrections were computed in our in-house code 
interfaced with DALTON. Core orbitals were correlated. 
The only orbitals included in the “active” set as described 
in Ref. [30] were those involved in twisting or stretch-
ing of the bonds. The equilibrium geometries of studied 
complexes were taken from NIB database developed by 
Truhlar et al. [47].

2.2 � Results and discussion

The intuitive understanding of what embedding in the 
EERPA method does is that it counteracts the counter-
poise correction, since the correlation energy for a dimer, 
Eq. (13), includes embedded-monomer correlation terms, 
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cf. Eq. (19), which are obtained by allowing excitations 
from one monomer to weakly occupied orbitals on another 
monomer. One could then wonder whether—if the basis 
set used is sufficiently large—the counterpoised corrected 
ERPA and EERPA methods would produce the same 
results. This is, however, not the case, since the correla-
tion effects included in EERPA are missed in ERPA and 
this is not related to the basis set size. This conclusion can 
be illustrated by the example of helium dimer (see Fig. 1) 
where ERPA-GVB and EERPA-GVB interaction energies 
nearly parallel each other up to the aug-cc-pV6Z basis 
set. Notice also that EERPA-GVB curve remains close 
but above the benchmark MC-ACPF one for all basis sets. 
Although it is not guaranteed to be the case for all systems, 
such behavior is a sign of dependable performance of the 
method.

Already in [22], we have shown that EERPA-GVB 
describes accurately the dispersion-dominated systems. 
Here, we reaffirm this statement, adding that for this type of 
systems EERPA-GVB tends to be on par or even more accu-
rate than SAPT [11, 44] computations (see Table 1). Inter-
estingly, in terms of SAPT energy decomposition scheme, 
GVB interaction energies are almost exactly the sum of 
what SAPT identifies as electrostatic, exchange and induc-
tion components. While this is a rather intuitive result, it has 
not been previously demonstrated, since the perfect-pairing 
strongly orthogonal GVB method is not, as a rule, used for 
describing non-covalent interactions. The task of the EERPA 
correction should be therefore to add the dispersion compo-
nent as well as mixed terms such as exchange–dispersion, 
exchange–induction and the exchange–induction–dispersion. 
The latter three play no significant role in the interaction of 
systems presented in Table 1, but as we shall see later, this 
is not always the case.

It is impressive that even in the challenging case of 
helium–neon interaction, which is purely dispersion-driven, 
the EERPA-GVB curve stays on top of the CCSD(T) one 
(see Fig. 2) when even the SAPT energies follows the MP2 
curve. The ERPA-GVB minimum is even more shallow than 
the MP2 one and the GVB method, as expected, does not 
produce a minimum at all.

All three systems presented in Table 1 are single refer-
ence and weakly interacting so this is not surprising that 
both MP2 and SAPT describe them reasonably well. How-
ever, EERPA-GVB is clearly the best performer here, not 
just in the vdW minimum, but also along the entire curves 
(see Figs. 2 and 3). The ERPA-GVB method underbinds the 
complexes, while MP2 and SAPT slightly overestimate the 
interaction energies.

For hydrogen-bonded systems, EERPA-GVB is less 
accurate than for van der Waals complexes although it stays 
superior to the ERPA-GVB, and (obviously) GVB meth-
ods. Below we present a set of three hydrogen-bonded sys-
tems: water and hydrogen sulfide dimer and water–ammonia 
complex (see Table 2). For each of them, the electrostatic 
component is a significant part of the interaction, so already 

Fig. 1   He
2
 interaction energy at R

He-He
= 5.6 a.u. computed in aug-

cc-pV�Z basis set. The reference MR-ACPF energies were taken 
from [48]

Table 1   Interaction energies of 
dispersion-dominated systems 
in kcal/mol computed in aug-cc-
pVDZ basis set

Errors w.r.t. CCSD(T) are given in parentheses. In the last column, a sum of electrostatic, exchange, and 
induction components (SAPT calculation) is shown. Geometries for complexes are  taken from Ref. [47] 
and the assumed distances between centers of masses of monomers read: 6.02 a.u. , 8.41 a.u. and 7.32 a.u. for 
He⋯Ne , (C

2
H

2
)
2
 and ( C

2
H

4
)
2
 , respectively

CCSD(T) MP2 GVB ERPA-GVB EERPA-GVB SAPT Elst+Exch+Ind

He⋯Ne − 0.029 − 0.020 0.024 − 0.014 − 0.029 − 0.017 0.020
(0.009) (0.053) (0.015) (0.000) (0.012) (−0.049)

(C
2
H

2
)
2

− 1.12 − 1.23 − 0.33 − 0.96 − 1.16 − 1.21 − 0.33
(− 0.11) (0.78) (0.16) (− 0.04) (− 0.10) (0.79)

(C
2
H

4
)
2

− 1.14 − 1.21 0.54 − 0.78 − 1.12 − 1.23 0.61
(− 0.07) (1.68) (0.36) (0.02) (− 0.09) (1.75)
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the GVB method reproduces part of the binding. As it has 
been observed for dispersion-bound complexes, GVB inter-
action energies stay close to the sums of the electrostatic, 
exchange and induction components in a SAPT computation. 
The absolute error of the interaction energies produced by 

EERPA-GVB is at most 0.6 kcal/mol , but this may amount 
to as much as 15% of the binding. What is the reason for 
this (relative with respect to dispersion-bound systems) 
inaccuracy? In the first three examples, the exchange–dis-
persion component of the energy was very small (less than 
8% ) compared to the dispersion component. For the con-
sidered hydrogen-bonded systems, the exchange–disper-
sion is between 10 and 20% of the dispersion energy. The 
exchange–dispersion component is always positive and 
can be interpreted as the change in the exchange interac-
tion introduced by the monomer correlation [49]. While the 
GVB wavefunction itself is antisymmetric, there is no addi-
tional antisymmetry-related constraint put on the correlation 
energy expression. The two-body ERPA correlation compo-
nent EAB

corr
 converges to dispersion energy for well-separated 

monomers, cf. Eq. (26). From those observations, one can 
conjecture that the inaccuracies are related to exchange–dis-
persion component, which is not properly accounted for by 
EERPA. Indeed, for the NH3⋯H2O complex (see inset in 
Fig. 5), one can see that in the region of no density overlap 
the Ecorr

AB
 correlation curve follows the sum of SAPT pure 

dispersion terms rather than the sum of all terms containing 
dispersion (dispersion, exchange–dispersion, induction–dis-
persion and exchange–induction–dispersion).

Regardless of this observation, as evident from Figs. 4 
and 5, EERPA-GVB is a reliable method for description 
of hydrogen-bonded systems. In particular in case of H2S 
dimer, it yields a very similar curve as SAPT (see Fig. 4). 
The shapes of all the curves are correct, and the minima are 
only slightly too deep.

The true advantage of EERPA-GVB lies however else-
where, i.e., in its ability to accurately describe the interac-
tions of systems out-of-equilibrium geometry when bonds 
are stretched or broken and one (or both) of the monomers 
requires multireference description. This ability gives one 
a nearly unique opportunity to elucidate the effects of the 
non-covalent interactions on systems attempting chemical 
reactions.

Let us look again at the ethylene dimer in D2d symmetry. 
We have established that EERPA-GVB describes this sys-
tem accurately and that the GVB method is responsible for 
the description of the electrostatic, exchange and induction 
component of the interaction. Let us now twist the C-C bond 
in one of the monomers to � = 90◦ (see Fig. 6). Clearly, in 
the attraction region the GVB method produces essentially 
the same results for both geometries—no binding, which 
means that the total attraction here is related to the disper-
sion interaction (including the mixed terms). The binding 
energy of the twisted complex is more than 40% smaller than 
in the flat dimer. While one often intuitively understands dis-
persion as a “bulk” interaction between electron clouds, not 
discriminating between different types of bonds, this is not 
a full picture: according to a frozen-orbital SAPT analysis 

Fig. 2   He⋯Ne interaction energy curves computed in aug-cc-pVDZ 
basis set

d

Fig. 3   C
2
H

2
 dimer interaction energy curves computed in aug-cc-

pVDZ basis set
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by Cao and Wong [50], the main contributors to dispersion 
in the D2d ethylene dimer are �−� bond pairs and dihydro-
gen contacts (where contacts are understood as significant 
interactions between electron pairs). The reduced attraction 
can be partly attributed to the geometry change: one of the 
�−� “contacts” disappears, but most of the reduction has to 
be attributed to the destruction of C=C � bond. This obser-
vation is in agreement with the view of � electrons having 
larger polarizabilities than � ones and therefore contributing 
more to the dispersion interaction [51].

A particularly useful feature of EERPA-GVB is its ability 
to decompose the correlation energy into contributions from 
pairs of interacting geminals, which are localized on differ-
ent monomers . This is possible since the inter-monomer 
correlation energy given in Eq. (23) and used in EERPA 
is a sum of inter-geminal terms involving orbitals p, q, r, s 
of which at least one is assigned to one of a geminal IA 

localized on the monomer A and at least one is assigned to 
a geminal localized on B, IB

where V indicates a set of unoccupied orbitals. Therefore, 
contribution to inter-monomer correlation energy from a pair 
of geminals, one localized on A and the other on B can be 
extracted from EAB

corr
 by selecting only terms with indices per-

taining to Eq. (27). By excluding terms corresponding to a �
-bond-geminal interacting with lone-pair geminals localized 
on the fluorine atom F1 , closer to the ethylene molecule, one 
can check how much the �-bond–lone pairs (LP) interaction 
contributes to the total binding energy of the charge-transfer 

(27)pqrs ∈ IA ∪ IB ∪ V

Table 2   Interaction energies of 
hydrogen-bonded systems in 
kcal/mol computed in aug-cc-
pVDZ basis set

Errors w.r.t. CCSD(T) are given in parentheses. Geometries for complexes are taken from Ref. [47] and 
the assumed distances between centers of masses of monomers read: 5.56 a.u. , 5.67 a.u. and 8.09 a.u. for 
(H

2
O)

2
 , NH

3
⋯H

2
O and (H

2
S)

2
 , respectively

CCSD(T) MP2 GVB ERPA-GVB EERPA-GVB SAPT Elst+Exch+Ind

(H
2
O)

2
− 4.40 − 4.44 − 2.48 − 3.76 − 4.86 − 4.53 − 2.59

(− 0.04) (1.92) (0.64) (− 0.46) (− 0.13) (1.81)
NH

3
⋯H

2
O − 5.70 − 5.85 − 2.97 − 4.88 − 6.29 − 6.01 − 3.21

(− 0.15) (2.73) (0.83) (− 0.59) (− 0.31) (2.49)
(H

2
S)

2
− 1.35 − 1.53 − 0.23 − 1.04 − 1.52 − 1.49 − 0.19

(− 0.18) (1.12) (0.31) (− 0.17) (− 0.13) (1.16)

d

Fig. 4   H
2
S dimer interaction energy curves computed in aug-cc-

pVDZ basis set Fig. 5   NH
3
⋯H

2
O complex interaction energy curve computed in 

aug-cc-pVDZ basis set. On the inset, the EERPA correlation is plot-
ted against the sum of SAPT pure dispersion terms and the sum of 
SAPT pure dispersion and mixed (dispersion–exchange, exchange–
dispersion and exchange–dispersion–induction)
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complex of ethylene and fluorine and how this changes upon 
the twisting of ethylene molecule. In Fig. 7, we can see that 
for flat ethylene the �–LP interaction constitutes about 40% 
of the total binding. This observation does not hold for 

twisted ethylene, where the binding energy is small and the 
role of the corresponding interaction (LP-p orbitals on eth-
ylene) is minor. Hypothesis about the special character of �
-bonds in non-covalent interactions is here again reaffirmed.

Studying such systems as the complex of fluorine mol-
ecule and twisted ethylene brings insight into the interac-
tions of electrons forming different types of bonds, but 
what is more important, the interactions of molecules 
out-of-equilibrium geometry have very practical conse-
quences. Namely, they facilitate (or obstruct) chemical 
reactions. Only recently it has finally been confirmed 
experimentally that by selective vibration excitation one 
can accelerate certain chemical reactions [52]  Such an 
acceleration due to throwing one of the reactants out of 
equilibrium can be a geometry-related effect (e.g., more 
favorable relative position of fragments of reactants tak-
ing part in the reaction) but it can also be an electronic-
structure effect related to a bond twist or stretch.

Take, e.g., the reaction of ethylene fluorination. As the 
simplest example of organic molecule fluorination, it is 
interesting both for theorists and experimentalists. Despite 
its simplicity, there is a large discrepancy between the 
experimentally and theoretically determined reaction bar-
rier heights [53, 54]. The experimentally observed barrier 
is lower than those obtained by state-of-the-art theoreti-
cal approaches, and it was hypothesized that the thermal 
vibrations of F2 molecule may promote reaction [53].

We studied a T-shaped structure of the C2H4⋯F2 com-
plex at different intermolecular distances and F2 bond 
lengths (see Fig. 8). One can immediately see that as F2 
bond is stretched, the vdW minimum deepens. A maxi-
mal attraction is achieved when the F2 bond is stretched 
to c.a. 4.80 a.u. and the distance between the monomers 
is only 3.20 a.u. While in real systems vibrations do not 
cause the bonds to be stretched this much, even close to 
the equilibrium along this stretching mode, the interac-
tion energy grows significantly enough to have impact on 
the reaction barrier. Additionally, we see that the optimal 
intermolecular distance diminishes along this stretching 
mode. While those observations do not allow one to deter-
mine the height of the fluorination barrier energy, they do 
highlight the importance of accurate description of non-
covalent interactions, while the molecules are attempting 
a reaction. Since even highly sophisticated coupled-cluster 
methods frequently fail at this task [22], it is unsurpris-
ing that the computed value of a reaction barrier may be 
inaccurate.

We have already observed a similar behavior (i.e., 
attraction growth accompanying a bond stretching) for 
other vdW complexes in Ref. [22], where we explained 
it by the increased polarizability of the electrons in the 
stretched bond region and an electron density buildup in 
the region between monomers. This causes a rise in both 

Fig. 6   Ethylene dimer interaction energy curves computed in aug-cc-
pVDZ basis set

Fig. 7   Ethylene–fluorine complex EERPA-GVB interaction energy 
curves computed in aug-cc-pVDZ basis set
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Pauli repulsion and dispersion interaction, which explains 
the existence of a minimum in the interaction energy along 
the F2 bond stretch mode.

3 � Conclusions

We have shown that the Embedding Extended Random 
Phase Approximation GVB method produces results on 
par with CCSD(T) for dispersion-dominated van der Waals 
complexes and is similar in accuracy to SAPT(CCD) when 
it comes to hydrogen-bonded systems. The method is par-
ticularly useful when it comes to non-covalently bonded 
complexes involving molecules out of their equilibrium 
geometries, as it is able to simultaneously capture both the 
energetic effects of bond stretching and twisting and more 
subtle van der Waals interactions.

To showcase this advantage, we have employed EERPA-
GVB to study two unusual vdW systems, for which sin-
gle-reference methods like MP2 break down. The first, 
a T-shaped ethylene dimer where one of the C=C bonds 
was twisted, was compared to its classic, flat counterpart, 
which highlighted the importance of the �–� interaction 
and the particular role that � electrons play in dispersion 
interactions.

Role of � electrons was shown to be equally promi-
nent in another studied system: a C2H4⋯F2 complex. 
We have demonstrated the significance of a lone pairs–� 

interaction, by not only comparing the interaction energy 
for complexes of twisted and flat ethylene with fluorine, 
but also by decomposing the inter-monomer correlation 
energy expression into contributions from interactions 
between pairs of geminals. Such energy decomposition 
is also possible for any other system, and since geminals 
are usually localized on bonds and atoms, it is an excel-
lent and intuitive interpretive tool. It could be employed, 
e.g., to investigate also �−� , �−� and other types of 
interactions.

Finally, we have shown that stretching the F2 bond in 
the same ethylene–fluorine complex causes a significant 
deepening of the vdW minimum, which is a result of a 
rise in the dispersion interaction. The enhanced attraction 
between the molecules may facilitate the ethylene fluori-
nation reaction when the fluorine molecule is thermally 
excited to a stretching vibrational mode.

We conclude that EERPA-GVB is a useful tool to study 
molecular interaction qualitatively and quantitatively when 
bonds stretching, breaking or twisting is involved. This 
area is largely unexplored due to the lack of theoretical 
methods of both sufficient accuracy and modest compu-
tational cost. EERPA-GVB fills this gap in the computa-
tional chemistry toolbox.

Finally, it is worth mentioning that the concept of 
embedding a group of electrons of one monomer in a field 
created by electrons in another monomer, exploited in the 
EERPA correlation correction, can be applied to smaller 

Fig. 8   Interaction energy map 
for the C

2
H

4
⋯F

2
 complex. d 

indicates a distance between a 
center of mass of the ethyl-
ene molecule with the fixed 
geometry ( R

CC
= 2.53 a.u., 

R
CH

= 2.05 a.u, �
HCH

= 117◦ ) 
and the position of the F 
nucleus. R

F-F
 denotes the varied 

bond length. R
eq

 and d
eq

 cor-
respond to the geometry of the 
lowest energy, whereas R

min
 and 

d
min

 to that corresponding to the 
lowest interaction energy
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localized entities, i.e., to geminals. Such an approach 
would extend the applicability of EERPA to any system 
and is under development in our group.
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