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Abstract
The beryllium dimer and trimer are, despite their small number of electrons, excellent systems for assessing electronic-struc-
ture computational methods. With reference data provided by multi-reference averaged coupled-pair functional calculations, 
we assess several variants of range-separated density-functional theory, combining long-range second-order perturbation 
theory or coupled-cluster theory with a short-range density functional. The results show that (i) long-range second-order 
perturbation theory is not sufficient, (ii) long-range coupled-cluster theory gives reasonably accurate potential energy curves, 
but (iii) provided a relatively large value of � = 1  bohr−1 for the range-separation parameter is used.
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1 Introduction

Density-functional theory (DFT) has become in the last 20 
years a widely used tool in quantum chemistry due to its 
good performance for structural and thermochemical proper-
ties at an advantageous cost even for medium-size molecules 
and larger entities. Nevertheless, research is still very active 
to improve the usual DFT approximations, notably for the 
treatment of long-range dispersion interactions and the treat-
ment of genuine multi-reference cases.

To address the former issue, János Ángyán, to the 
memory of whom this article is dedicated, worked on the 
development of range-separated density-functional theory 
(RS-DFT), in a long-standing and fruitful collaboration 
with the present authors (see, e.g., Refs. [1–5]). A never-
published work that was started with János some years ago 
was on the application of RS-DFT on the dimer and trimer 

of Beryllium, which contain both dispersion and multi-ref-
erence effects. For this special issue, we have reexamined 
this work and completed it.

Be2 is weakly bound and has been the subject to a long-
standing discussion between theoreticians and experimen-
talists [6–13], whereas  Be3 is a fairly stable aggregate, thus 
of completely different nature in bonding. This has been 
reviewed by, e.g., Kalemos in a recent publication [14]. The 
goal of the present paper is to see whether different flavors 
of RS-DFT can correctly describe these different chemical 
bonds.

The paper is organized as follows. After a short recall of 
RS-DFT, we give a brief survey of existing data and con-
struct consistent reference results for both the dimer and the 
trimer. To these we compare different flavors of RS-DFT and 
discuss their performance. All further technical details are 
collected in “Appendix”, and the underlying datasets can be 
consulted in the Supplementary Material.

2  Range‑separated density‑functional 
theory

The common Kohn–Sham procedure [15] minimizes the fol-
lowing energy expression with a single Slater determinant 
wave function Φ

(1)Eexact = min
Φ

�
⟨Φ�T̂ + V̂ne�Φ⟩ + EHxc

�
nΦ

��
,
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where T̂  is the kinetic energy operator, V̂ne is the elec-
tron–nucleus attraction operator, and EHxc

[
nΦ

]
 is the Hartree-

exchange-correlation functional evaluated at the density nΦ 
produced by Φ . With the exact density functional EHxc[n] , 
the exact ground-state energy would be obtained, in the limit 
of a complete basis set, by virtue of the Hohenberg–Kohn 
theorem.

The Kohn–Sham method can be considered as a special 
case of a more general RS-DFT scheme (see, e.g., Ref. [16])

where Ψ is a general, multi-determinant wave function, 
Ŵ lr

ee
=
∑

i<j w
lr
ee
(rij) is a long-range electron–electron inter-

action, and Esr
Hxc

[n] the associated short-range complement 
Hartree-exchange-correlation density functional. The range 
separation of the electron–electron interaction

is achieved through the use of the error function with an 
arbitrary parameter �

In practice, approximations must be used for the wave func-
tion Ψ . A first step is to use only a single-determinant wave 
function Φ , which leads to the range-separated hybrid (RSH) 
approximation [1]

the expectation value of the long-range interaction, 
⟨Φ�Ŵ lr

ee
�Φ⟩ , giving a long-range Hartree-Fock (HF) con-

tribution to the energy. The minimization in Eq. (5) leads 
to self-consistent Kohn–Sham-like RSH equations for the 
orbitals ��i⟩ and orbital energies �i

where V̂H is the full-range Hartree potential, V̂ lr
x,HF

 is the 
long-range nonlocal HF exchange potential (evaluated with 
the “erf” part of the electron–electron interaction), and V̂sr

xc
 

is the short-range exchange-correlation potential (obtained 
from the functional derivative of Esr

xc
[n]).

Equation (5) does not yet include the long-range correla-
tion energy. The exact energy is formally the sum of the RSH 
energy and the long-range correlation energy:

(2)Eexact = min
Ψ

�
⟨Ψ�T̂ + V̂ne + Ŵ lr

ee
�Ψ⟩ + Esr

Hxc

�
nΨ

��
,

(3)
1

rij
= wlr

ee
(rij) +

(
1

rij
− wlr

ee
(rij)

)
,

(4)wlr
ee
(rij) =

erf(� rij)

rij
.

(5)ERSH = min
Φ

�
⟨Φ�T̂ + V̂ne + Ŵ lr

ee
�Φ⟩ + Esr

Hxc

�
nΦ

��
,

(6)
�
T̂ + V̂ne + V̂H + V̂ lr

x,HF
+ V̂sr

xc

�
�𝜙i⟩ = 𝜖i �𝜙i⟩,

(7)Eexact = ERSH + Elr
c

as depicted schematically in Fig. 1. Whereas for instance 
dispersion interactions are often added to DFT via ad hoc 
corrections based on the evaluation of atomic polarizabilities 
[17–19], the RS-DFT formalism allows us to include explic-
itly these important contributions to intermolecular interac-
tions, only based on (i) the single parameter of the range 
separation � , (ii) the choice of the short-range exchange-
correlation functional, and (iii) the long-range correlation 
method. The long-range correlation energy can be calcu-
lated by second-order Møller–Plesset (MP2) perturbation 
theory [1], which leads to exactly the same equations as 
standard MP2 [20], i.e., for closed-shell systems:

where i, j and a, b refer to occupied and virtual RSH orbit-
als, respectively, and (ia|jb)lr are the long-range two-electron 
integrals (using the “erf” interaction). Of course, all these 
quantities (integrals and orbital energies) depend on the 
range-separation parameter � . Similarly, the long-range cor-
relation energy can be calculated by coupled-cluster singles, 
doubles and perturbative triples (CCSD(T)) [3, 21].

One of the central advantages of these methods with 
respect to standard quantum chemistry approaches like MP2 
or coupled-cluster theory is the considerably weaker basis-
set dependence as the short-range correlation hole is taken 
already into account via the density-functional part. As a 
consequence, basis-set superposition errors (BSSE) should 
be significantly reduced with respect to standard wave-func-
tion-based correlation calculations.

Concerning the short-range exchange-correlation func-
tional, several approximations [16, 21–27] have been pro-
posed. We employed from the different possibilities the 
short-range local-density approximation (LDA) of Ref. 
[25] and the short-range Perdew–Burke–Ernzerhof (PBE) 

(8)Elr
c,MP2

=
∑

ijab

[2(ia|jb)lr − (ib|ja)lr](ia|jb)lr
�i + �j − �a − �b

,

ERSH

Ec
lr

KSE
EHF

E

0
0

µ
E

HF + Ec

Fig. 1  Schematical composition of the RS-DFT total energy as the 
RSH energy plus the long-range correlation energy. For � = 0 , one 
obtains standard Kohn–Sham theory without explicit long-range cor-
relation correction, and for � → ∞ RSH reduces to HF (no short-
range functional) to which the correlation energy is added
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functional of Ref. [22]. We will refer to the range-separated 
methods as RSHLDA + MP2 and RSHLDA +CCSD(T), and 
RSHPBE + MP2 and RSHPBE + CCSD(T). Of course, set-
ting the range-separation parameter � to infinity, we obtain 
the standard MP2 or CCSD(T) approach without a density-
functional part.

3  Brief review of existing data

In the past, Be clusters have been abundantly studied, and 
an outstanding object of interest is the dimer (for a recent 
review, see [28]). Compared to the heavier alkaline-earth 
dimers,  Be2 already shows a shorter and stronger binding 
than expected for a purely dispersive interaction with an 
interatomic equilibrium distance and cohesion energy of 
about 2.4 Å and 2.5 kcal/mol, respectively.

This binding energy and interatomic distance have been 
a subject of long debates, experimentally and theoretically 
(see Refs. [6–12]). The experimental difficulties are sum-
marized in a recent article [13], and from the theoretical side 
both the near degeneracy of the occupied 2s orbital with the 
unoccupied 2p orbitals [29, 30] and the shallowness of the 
potential well without being a purely dispersion interaction 
require a careful treatment of electron correlation [28].

It is therefore not surprising that at the HF level,  Be2 is 
not bound at all. Single-reference configuration-interaction 
(CI) schemes truncated at the level of single and double exci-
tations (CISD) are not suited for this system [29, 31], even 
when including all exclusion-principle-violating (EPV) dia-
grams in a coupled-electron-pair approximation (called full 
CEPA or self-consistent size-consistent CI) [32]. One has to 
go indeed to multi-reference or coupled-cluster (including 
triple excitations [31, 33]) correlation methods for a correct 
description.

With the work of Røeggen and Veseth [9], Patkowski 
et al. [12], Schmidt et al. [11], and corresponding experi-
mental data [13], we can consider that the potential well of 
the Be dimer is precisely known. DFT with usual semilocal 
approximations overestimates the interaction energy; how-
ever, the work of Jones [6] was the first theoretical one to 
claim the Be dimer to be significantly bound. RS-DFT with 
long-range MP2 or random-phase-approximation (RPA) 
approaches was applied to the Be dimer [2, 34, 35], giv-
ing significantly underestimated interaction energies. Range 
separation in combination with multi-reference perturbation 
theory (NEVPT2) has been published by Fromager et al. 
[36] with the conclusion that differences to the reference 
data despite the multi-reference long-range correlation treat-
ment should be imputed to deficiencies of the employed 
short-range PBE functional.

For  Be3 in  D3h symmetry, HF theory gives no overall 
binding [37–41]. Nevertheless, a distinct local minimum 

is produced, contrary to  Be2 where the HF potential curve 
is purely repulsive. Including electron correlation [37–41] 
results in a cohesion energy of the triatomic “molecule” 
between 15 and 30 kcal/mol, with an equilibrium intera-
tomic distance of about 2.2 Å, which is about the same as for 
the local minimum in HF. The significant difference in the 
binding of the dimer and the trimer (i.e., the importance of 
non-additivity or “3-body interactions”) has been discussed 
by Novaro and Kołos [42] and Daudey et al. [43] already in 
the 1970s in the framework of HF theory. A comparative 
study [44] of the dimer, trimer and tetramer of Be and of 
Mg, based on MP2, CCSD(T), and DFT methods, estimates 
the utility of different basis-set extrapolation formulae and 
concludes that an extrapolation from the difference between 
double-zeta and triple-zeta basis sets is sufficient to estimate 
converged results for binding energies. As in the case of 
rare-gas dimers and the Be dimer, the LDA overestimates 
the binding energy of the trimer [45, 46]. Even gradient-cor-
rected functionals such as BPW91 result in too high binding 
energies [47], the effect being less important but still present 
for the B3LYP hybrid functional [48].

4  Results and discussion

In order to dispose of a coherent reference dataset for the 
two systems, we perform MP2, MP4, CCSD(T), MRCI, MR-
ACPF [49], and MR-AQCC [50–52] calculations with the 
MOLPRO program package [53]. For the multi-reference 
calculations, two electrons and four orbitals of each Be atom 
are included in the complete active space (CAS), forming 
the reference space to which single and double excitations in 
the size-consistency-corrected ACPF or AQCC correlation 
formalism are added.

We employ the aug-cc-pVXZ basis sets (X = D, T, Q 
— see “Appendix”), and for the reference calculations we 
extrapolate the correlation energy via the inverse-cubic 
scheme Ec(X) = Ec(∞) + B∕X3 to an estimate of the com-
plete (valence) basis-set limit. For RS-DFT calculations, 
however, it has been shown that an exponential form 
Ec(X) = Ec(∞) + B exp(−�X) is more adequate [54]—we 
will therefore employ this scheme for the RS-DFT results. 
All data are corrected for the BSSE by the counterpoise 
scheme of Boys and Bernardi [55], even though this cor-
rection remains always smaller than 0.2 kcal/mol. The HF 
energy is considered to be converged with the quadruple-
zeta basis set.

For the wave-function-based correlation calculations, the 
core orbitals were kept frozen, i.e., only the valence shells 
are explicitly correlated. Indeed, this choice is consistent 
with the fact that the aug-cc-pVXZ basis sets do not contain 
functions to correlate core electrons. In the short-range func-
tional, however, core correlation is automatically included 
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even when long-range correlation is treated by a frozen-core 
wave-function-based method.

In order to study core-valence correlation explicitly, we 
did some exploratory calculations with the core-polarization 
potentials (CPPs) of the Stuttgart group [56] added to the 
frozen-core calculations, as well as correlated all-electron 
calculations in an aug-cc-pwCVTZ basis set with core func-
tions [57] added to the standard aug-cc-pVTZ set.

4.1  Wave‑function‑based reference calculations

For the dimer, the extrapolated MR-ACPF and MR-AQCC 
interaction energy curves are close to the reference potential 
of Refs. [9] or [12] (see Table 1, left column for bond lengths 
and potential depths), while the CCSD(T) curve has a simi-
lar shape but underestimates the interaction energy signifi-
cantly (see Supplementary material for data and graph). 
As discussed above, CCSD is not at all adequate here, and 
perturbation theory yields as well quite different interaction 
potentials, MP2 underestimating at the equilibrium distance 
and MP4 overestimating at larger distances.

For the trimer (see Fig. 2), we do not dispose of an accu-
rate reference curve from the literature, but we see that 
CCSD(T) and multi-reference methods give potentials of 
similar shape, and again second-order perturbation theory 
yields significantly different results, but in the opposite 
way with respect to  Be2. MP4 overestimates the interaction 
energy as much as CCSD(T) underestimates it (Table 1, 
right column). CCSD again largely underbinds.

By taking into account core and core-valence correla-
tions, the interaction energy is lowered (in a triple-zeta basis 
set) by about 0.1 kcal/mol for the all-electron calculations, 

and by about 0.4 kcal/mol using the CPPs, for the dimer. For 
the Be trimer, the effect is about 1 kcal/mol for the inclusion 
of core correlations and about 4 kcal/mol for the use of the 
CPPs. We thus use the frozen-core data, and, due to these 
estimations, we keep in mind that the true interaction poten-
tial may be slightly lower than our actual multi-reference 
data.

4.2  RS‑DFT calculations

From the previous section, we conclude that today’s “gold 
standard” CCSD(T) with basis-set extrapolation gives for the 
trimer too low a cohesion energy, by about 2.5 kcal/mol or 
10%. The calculations need a non-negligible effort, which 
may be avoided by resorting to DFT-based calculations 
while resulting in not worse an error. In Fig. 3, we display 
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Fig. 2  Basis-set extrapolated interaction energy curves for the Be trimer, as obtained by wave-function-based methods. The right panel is a zoom 
into the minimum-energy region of the left panel

Table 1  Equilibrium bond lengths (Å) and interaction energies (kcal/
mol) from inverse-cubic basis-set extrapolated potential curves for the 
Be dimer and trimer

See text for the extrapolation procedure

Be2 Be3

r
Be-Be

E
min

r
Be-Be

E
min

MP2 2.71 − 1.32 2.20 − 30.7
MP4 2.52 − 2.38 2.22 − 28.8
CCSD 4.42 − 0.17 2.21 − 14.4
CCSD(T) 2.48 − 1.87 2.21 − 24.0
MRCI 2.47 − 2.40 2.20 − 25.9
MR-ACPF 2.46 − 2.52 2.20 − 26.7
MR-AQCC 2.46 − 2.44 2.20 − 26.4
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the evolution of the RS-DFT interaction energies with the 
range-separation parameter � , in comparison with our MR-
ACPF reference data, and the “region of confidence” around 
the reference energy as shaded area, which we chose to be 
the deviation of basis-set extrapolated CCSD(T) around the 
MR-ACPF reference. In order to remain inside this region, 
we may take a value for the range-separation parameter � 
between 0.7 and 1.7 a.u., and either short-range functional 
combined with long-range CCSD(T). In the figure, we see 
as well the reduction in the influence of the extrapolation 
procedure when going from large � to � = 0.

For simplicity, we will use for further comparisons 
� = 1.0 a.u. at the lower end of the interval of confidence, 
however significantly larger than the commonly employed 
value of 0.5 a.u. (see, e.g., Refs. [5, 22, 58]). For this value 
of � = 1.0 a.u., the contribution from the short-range func-
tional with its advantages (low computational cost, small 
basis-set superposition error, and weak basis-set depend-
ence) is still present. Without loosing too much in accuracy, 
we still may carry out the calculations in the aug-cc-pVTZ 
basis set.

Figures 4 and 5 show the RSHLDA + MP2, RSHPBE 
+ MP2, RSHLDA + CCSD(T) and RSHPBE + CCSD(T) 
interaction energies with aug-cc-pVTZ basis for � = 1 a.u., 
for the dimer and for the trimer, in comparison with the 
available reference data. The equilibrium bond lengths 
and interaction energies obtained from RS-DFT calcula-
tions with a series of basis sets are reported in Table 2, and 
compared to those obtained from standard DFT, MP2, and 
CCSD(T) calculations.

Calculations with standard density-functional approxima-
tions overestimate the interaction energies considerably. For 
instance in the case of the dimer with a factor of 5 for LDA, 
and still a factor of 1.5 for B3LYP. RSHLDA + CCSD(T) 
and RSHPBE + CCSD(T) produce interaction energies in 

good agreement with the reference data. In contrast, RSH-
LDA + MP2 and RSHPBE + MP2 significantly underbind 
the dimer and overbind the trimer, as we have seen already 
from Figs. 4 and 5. Note that for  Be3, RSH + CCSD(T) 
(Fig. 5) and CCSD(T) (Fig. 2) give the same deviation from 
the reference data for large interatomic distances.
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For the  Be2 case, the energy differences due to different 
basis sets are small, and we may look first at the  Be3 results. 
We see that if we take the difference in binding energies 
between the DZ and TZ as one, the difference between TZ 
and QZ is about one quarter, consistently for all methods. 
In absolute values, the differences due to the basis sets are 
divided by a factor of two between MP2/CCSD(T) and the 
RS-DFT interaction energies. However, using RS-DFT this 
dependence is twice as large as for the pure density-func-
tional calculations, employing the standard functionals LDA, 
PBE, B3LYP or the short-range functionals only. The same 
factor of 4 between the DZ–TZ and the TZ–QZ differences 
is found in the case of the  Be2 in the RS-DFT calculations.

Let us look in more detail into the RS-DFT calcula-
tions (Figs. 6, 7). Varying the range-separation param-
eter, we determine the minima of the cohesion-energy 
curves, which all lie in a narrow range of distances, but 
not on energies. Again, we note that MP2 and CCSD(T) 
long-range correlations have not the same effect on the 
results. Indeed, when aiming at reproducing the refer-
ence calculations, electron correlation of order higher 
than second-order perturbation theory is needed. This 
is more pronounced in  Be2 than in  Be3, where RSH + 
MP2 or RSH + CCSD(T) follow similar trends with the 

range-separation parameter � . The interpolation between 
� = 0 (pure Kohn–Sham DFT) and � → ∞ (no contribu-
tion of a functional) appears to be not at all linear, nei-
ther for  Be2 nor for  Be3, and the optimal range-separation 
parameter should be chosen significantly larger than 0.5 
a.u., as found before. Of course, for large � the difference 

Table 2  Equilibrium bond 
lengths (Å) and interaction 
energies (kcal/mol) for different 
methods and basis sets for the 
Be dimer and trimer

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ

r
Be-Be

E
min

r
Be-Be

E
min

r
Be-Be

E
min

Be2

 LDA 2.44 − 12.5 2.46 − 12.8 2.33 − 12.9
 PBE 2.45 − 9.5 2.44 − 9.7 2.43 − 9.8
 B3LYP 2.51 − 3.9 2.49 − 4.1 2.40 − 4.1
 MP2 – – 2.83 − 0.9 2.74 − 1.2
 CCSD(T) – – 2.54 − 1.2 2.50 − 1.6
 RSHLDA � = 1 – – – – – –
 RSHPBE � = 1 – – – – – –
 RSHLDA + MP2 � = 1 2.65 − 1.0 2.61 − 1.6 2.59 − 1.8
 RSHPBE + MP2 � = 1 2.69 − 0.8 2.64 − 1.4 2.63 − 1.5
 RSHLDA + CCSD(T) � = 1 2.45 − 2.0 2.42 − 2.9 2.41 − 3.1
 RSHPBE + CCSD(T) � = 1 2.48 − 1.6 2.44 − 2.5 2.44 − 2.7

Be3

 LDA 2.17 − 54.7 2.14 − 56.7 2.14 − 57.2
 PBE 2.20 − 44.8 2.18 − 46.2 2.17 − 46.6
 B3LYP 2.18 − 29.6 2.16 − 31.2 2.16 − 31.5

MP2 2.26 − 23.0 2.22 − 28.1 2.21 − 29.7
 CCSD(T) 2.27 − 16.2 2.23 − 21.6 2.22 − 23.1
 RSHLDA � = 1 2.15 − 9.2 2.11 − 10.8 2.11 − 11.2
 RSHPBE � = 1 2.15 − 7.7 2.12 − 9.0 2.12 − 9.4
 RSHLDA + MP2 � = 1 2.21 − 30.6 2.19 − 33.9 2.18 − 34.7
 RSHPBE + MP2 � = 1 2.21 − 29.3 2.19 − 32.5 2.18 − 33.2
 RSHLDA + CCSD(T) � = 1 2.21 − 24.9 2.18 − 28.5 2.18 − 29.3
 RSHPBE + CCSD(T) � = 1 2.21 − 23.8 2.19 − 27.3 2.18 − 28.0
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Fig. 6  Equilibrium cohesion energies and bond lengths as a function 
of the range-separation parameter � , for  Be2 and the aug-cc-pVTZ 
basis set. We include our basis-set extrapolated MR-ACPF/AQCC 
reference point
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between the two functionals employed becomes reason-
ably small.

Before concluding, we might look at the performances 
of other recent DFT approaches as provided by the double-
hybrid functionals including both HF exchange and a MP2 
correlation part. Thus, results should lie somewhere between 
standard MP2 and our RSH + MP2. Using the B2PLYP [59], 
the XYG3 [60], and the �B97X-2(TQZ) [61] functionals, 
we find indeed (data in the Supplementary Material) for the 
trimer that all functionals overshoot as did MP2 and RSH + 
MP2 already. For the dimer, the situation is a little different 
as MP2 and RSH + MP2 resulted in a too weak interaction, 
but the double hybrids overbind, and the three variants lead 
to significantly different shapes of the potential.

5  Conclusion

We investigated the challenging systems  Be2 and  Be3 with 
different wave-function and DFT methods, comparing 
these to RS-DFT approaches, which are capable of describ-
ing explicitly long-range correlations, absent in standard 
Kohn–Sham theory with semilocal approximations. The 
interaction energy in small Be clusters is certainly not only 
due to dispersion as the interatomic distances are far smaller 
than typical van der Waals interactions, and interaction ener-
gies are much higher.

We observe that for this particular type of bonding—no 
chemical bond properly speaking, but no dispersion-only 
binding either (as for rare-gas complexes)—the RS-DFT 
approach, when used with the usual range-separation 
parameter of � = 0.5 a.u., produces too high binding ener-
gies, similar to the commonly employed B3LYP functional. 
Using a value of � around 1 a.u. in our RS-DFT scheme with 
a CCSD(T) long-range part permits to reproduce well the 
MR–ACPF or MR–AQCC reference energies of the trimer.

Long-range single-reference CCSD(T) thus seems ade-
quate for obtaining a reliable binding energy—even if per-
haps due to fortuitous error cancelation. On the other hand, 
adding only second-order diagrams for expanding the long-
range correlation energy is not sufficient, for any value of the 
range-separation parameter. This last point is in particular 
important for the modern development of double hybrids, 
leaving room for further developments.
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Appendix: Technical details

All calculations were performed on 3.3 GHz Intel PCs run-
ning CentOS Linux, using Molpro [53] in its version 2008.2 
(standard DFT and MCSCF/MRCI calculations) and a local 
development version, 2008.2, for the RS-DFT calculations. 
The employed aug-cc-pVXZ basis sets originate from the 
Gaussian basis set exchange form at Pacific National Labo-
ratories. Only for the calculations on double hybrids, we 
employed the QChem code, version 5.0 [62].

For the single- and multi-reference methods and the long-
range correlation part of the RS-DFT calculations, only the 
valence electrons of the Be atom were correlated. Energy 
thresholds were 10−7a.u. for convergence and 10−9a.u. as 
target accuracy for establishing the grid for the numerical 
density-functional integration.

The multi-reference calculations started from a complete-
active-space (CAS) wave function with the two valence elec-
trons in four orbitals for each atom. The subsequent ACPF 
or AQCC calculations used this CAS wave function as refer-
ence space (60 configuration state functions (CSFs) for  Be2, 
and about 4000 CSFs for  Be3).

Minima in the 1D potential curves were determined 
through a spline fit with points spaced at 0.1 Å, starting 
at 1.9 Å and including some large distances to check size 
consistency.
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